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1 Introdução
Este texto é de fato um pretexto para apresentar a estudantes de graduação
alguns objetos geométricos bidimensionais que considero interessantes. Tais
objetos não aparecem na literatura acessível aos iniciantes. Um motivo talvez
seja a dificuldade em desenha-los, isto é representa-los no plano do papel.
De fato, mesmo o espaço tridimensional não é o bastante para representá—
los sem autointerseção ou ainda pontos singulares. Porisso, denominaremos
esses objetos superfícies singulares (ou semi—regulares).

Frequentemente tais superfícies serão obtidas como projeção genérica so—

bre R3 de um mergulho de um plano no R4.
Nos limitaremos às superfícies que podem ser apresentadas como zero

de um polinômio de três variáveis f (X , Y, Z) = O e como imagem de uma
aplicação <p(a:, y) : (a(x, y), Mac, y), 'y(a:, y)), onde a, ,8 e ªy são polinômios.

A primeira forma é chamada equação implícita enquanto a segunda é
chamada parametrização da superfície .

Os tópicos que apresentaremos são os seguintes:

. Superfícies singulares, exemplos

. Equações e parametrizações de superfícies singulares

. Pontos singulares de funções x pontos singulares de aplicações.

O leitor interessado poderá encontrar estudos mais gerais nos trabalhos
de David Mond e outros [M].

Agradeço minha colega Maria Aparecida Soares Ruas pelos comentários
críticos, porque não dizer singulares e ao meu colega Sérgio Zani pela con—

versão das ngras em .eps.



2 Superfícies singulares
2.1 projeções R3 —+ R2

Seja C a curva no espaço R3 imagem da aplicação 9 : R —> R3, g(t) =
(t,t2, t3)(Figura 1). De fato, um pedaço de arame torcido também serviria
para o nosso experimento.

Figura 1:

Fixemos uma direção no R3 e consideremos um plano ortogonal a esta
direção. Projeções de C sobre planos fornecem diferentes traçados para a
curva (Figura 2). Em geral, aparecerão auto-interseções transversais (pontos
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Figura 2:

duplos) e em particular, pontos cuspidais (singularidades). Esta particular
projeção é aquela cuja direção no R3 é definida pelo vetor tangente a C no
ponto que se projetará no ponto cuspidal.



O termo, em geral ou genericamente usado no texto significa que, pe—

quenas variações na direção de projeção mantém o cruzamento transversal.
Neste caso diremos que a projeção é uma projeção genérica. Certas projeções
também fornecem um traçado sem pontos duplos ou pontos singulares.

O motivo do aparecimento desses fenômenos no plano é que a curva 0 é
ima linha bem curvada e torcida, como pode ser visto1 no R3.

Enquanto no Hª uma vizinhança de cada ponto da curva é localmente
homeomorfa a um segmento (neste caso diremos que a curva é regular), numa
projeção genérica da curva no plano, podemos ter um ponto duplo, isto é,
um ponto cuja vizinhança é homeomorfa ao cruzamento transversal de dois
segmentos. Neste caso diremos que a curva plana é semi-regular.

Observe que variando—se continuamente a direção de projeção, podemos
obter uma família de curvas planas como as curvas exibidas acima. Tal
família de curvas planas dá. origem a uma superfície (Figura 3) que nos in—

teressará.
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Figura 3:

2.2 projeções R4 ——> R3
O mesmo procedimento que Hzemos com curvas regulares no R3 pode ser
repetido com superfícies regulares no R4, basicamente adicionamos uma di-
mensão no caso tratado na seção anterior.

Planos curvados e torcidos são exemplos de superfícies regulares. Tais
planos podem ser mergulhados no R4.

1De fato deve-se considerar aqui que a curva C está localmente em posição geral, isto
é, as seguintes condições se verificam (i) g'(t) # O, Vt; (ii) a função curvatura x(t) de C
nunca se anula e (iii) os zeros da fimção torsão T(t) de C são não degenerados, isto é, se
T(t) : 0 então T'(t) # 0.



Quando tais superfícies são projetadas genericamente de R4 em R3, os
fenômenos locais que se apresentam são:

0 pontos duplos (interseção transversal de dois planos),

. pontos triplos (interseção transversal de três planos) e

o ponto singular chamado guarda-chuva de Whitney.

*ºtª.“
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Figura 5: guarda—chuva de Whit—

Figura 4: ponto triplo ney

A denominação guarda—chuva será justificada no exemplo 3.1.
Observe que seções transversais do guarda-chuva de Whitney fornecem

curvas com a aparência daquelas da seção anterior (Figura 2).
Uma projeção genérica da superfície regular de R4 em R3, fornece um

objeto composto de linhas de pontos duplos e, quase sempre, de apenas
um número finito de pontos triplos e pontos singulares, e será denominado
superfície singular (ou semi-regular).

Os pontos de auto-interseção da superfície em R3 possuem ao menos duas
pré-imagens no plano em Bºª. Tais pontos constituem a curva de pontas duplas
ordinários da projeção. Os pontos singulares são pontos onde a direção da
projeção tangencia a superfície. Esses pontos singulares estão na aderência
da curva de pontos duplos ordinários.

Para ver como a superfície (o plano) está no R4, numa vizinhança do
ponto de tangência da direção de projeção, procedemos da seguinte forma:

O cubo representará uma vizinhança no R3. A Figura 6 exibe uma vizi-
nhança do ponto singular da superfície em R3.
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Figura 6: ponto Singular Figura 7: hipercubo

Agora consideremos o hipercubo, como uma vizinhança no R4 (Figura 7)
O plano torcido no R4 (Figura 8), quando projetado no R3 fornece o

guarda—chuva de Whitney. A linha central desenhada neste plano contém a
curva de pontos duplos ordinários e é projetada na linha de auto—interseção
do guarda—chuva. Isto é, a projeção do plano torcido de R4 em R3 é um—a—um,
exceto nos pontos desta curva.

Figura 8: Figura 9:

O resultado da projeção de R4 em R3 é representado na Figura 9.

Outro exemplo: O plano projetivo real P2

O plano projetivo é apresentado de várias formas equivalentes:

. como o plano euclidiano adicionado dos pontos no inlinito - se repre-
sentarrnos o plano euclidiano por um disco sem bordo, então adicionar
os pontos no infinito é o mesmo que identificar os pontos antipodais do
bordo, isto é, os pontos diametralmente opostos do bordo do disco.
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o como a superfície obtida identificando—se os pontos antipodais da esfera
Sº.

. como a faixa de Moebius com um disco colado ao londo de seu bordo

Uma representação de P2 no R3 possui necessariamente auto-interseção,
em outras palavras, não é possível mergulhar P2 no R3.

Um teorema de Whitney2 garante que qualquer superfície M2 mergulha
no R4. De uma conjectura de Whitney, demonstrada por Masseyª, sabe—se

que qualquer projeção genérica no R3 de um mergulho de P2 no R4 terá no
mínimo dois pontos singulares, sempre do tipo guarda—chuva.

No desenho do hipercubo acima (Figura 8), podemos imaginar uma faixa
de Moebius no lugar do plano torcido. Assim a projeção no R3 teria a
seguinte aparência:

Figura 10: duas vistas do conóide de Pliicker

Esta superfície, obtida da colagem de dois guarda—chuvas, é conhecida
como conóide de Plúcker(Figura 10). Observe que o bordo do conóide, dife—

rentemente do bordo da faixa de Moebius, está preparado para receber a
colagem de um disco mergulhado no R3. Colanddse um disco ao longo do
bordo do conóide obtemos a tradicional representação de P2 no R3, deno-
minada chapéu cruzado ( ou cross-cap).

2Hassler Whitney, The .s-elf—interseclions of a smooth n—manifold in 2n-space. Ann. of
Math. (2) 45, 220 — 246 (1944).

3W. S. Massey, Proof of a conjectura of Whitney. Pacific J. Math. 31,143— 156, (1969)



Observação: Existem exemplos de superfícies semi-regulares no R3 que
não são obtidas como projeções genéricas de superfície regular do R4 (eg.
superfície de Boy) [DH] A superfície de Boy (Figura 11) é uma representação
do plano projetivo P2 no R3, sem pontos singulares, apenas com linhas de
auto-interseção e um ponto triplo. Como dissemos acima, um teorema de
Whitney, demonstrado 50 anos depois da publicação do trabalho de Boy sob
a orientação de Hilbert, estabelece que qualquer projeção de R4 em R3 de
uma superfície não orientável deve possuir ao menos dois pontos singulares
do tipo guarda-chuva de Whitney. Portanto este não é o caso da superfície
de Boy.

Figura 12: superfície romana de
Figura 11: superfície de Boy Steiner

Outra conhecida representação do plano projetivo P2 no R3 é denomi—
nada superfície romana de Steiner (Figura 12). Neste caso temos um ponto
triplo e seis guarda-chuvas. Tal superfície singular é obtida corno projeção
de uma superfície regular do R4 no R3, isto é, de um mergulho de P2 no R4
(denominado superfície de Veronese). A classificação das superfícies com um
ponto triplo e seis guarda-chuvas pode ser encontrada em [CM].

3 Equações e parametrizações de superfícies
singulares

Exemplo 3.1: (guarda-chuva de Whitney)
Equação: f(X, Y, Z) : Z2 — YX2 = O



Parametrização: <p(a:, y) = (a;, yº, my).

$“w&&“ Ao“ºtªsêâªsssâ
XX=X1=18:

..

Figura 13: zeros da f Figura 14: imagem da <p

A superfície pode ser melhor apreciada quando se consideram as in—

terseções com planos:

Z2 -— YX2 : 0% X = Ic

onde k é uma constante não nula.
As curvas assim obtidas são as parábolas Y = klzZº.
Por outro lado, as interseções

Z2 — YX2 : 0
%
Y = k

onde k: é uma constante positiva fornecem pares de retas concorrentes.
Note que os pontos de auto—interseção desta superfície (ie, pontos com

mais que uma pré—imagem) constituem a imagem, pela parametrização (p,
da curva (a: = 0). Denominaremos esta curva, curva de pontos duplos de
<p e denotaremos por D2(<p). Observe também que a parametrização <p leva
pontos da forma (0, y) e (0, —y) na mesma imagem (0, 312,0). Ou seja, neste
caso, a restrição <p]Dº(<p) é uma involução com a origem (0,0) como ponto
fixo.

A justificativa para o nome guarda-chuva vem do fato que todo o eixo Y,
isto é, (X = 0) 0 (Z = O) pertence à superfície algébrica Z2 — YX2 = 0. O
semi—eixo negativo é o cabo do guarda-chuva!



Note que existem pontos do conjunto de zeros f que não se apresentam
na imagem da parametrização. De fato, a semi-reta (Y < 0) não é coberta
pela parametrização cuja segunda função coordenada é yº e portanto Z 0.

Este é um fenômeno freqiiente entre as superfícies algébricas reais, a im-
agem da parametrização é um subconjlmto dos zeros da equação.

Exemplo 3.2: (duplo guarda—chuva)
Equação: f(X, Y, Z) : Z2 —— Y(X2 + Y — 1)
Parametrização: <p(a;, y) = (a:, yº, xºy + y3 — y)

("'!O..-S.;?f.:....-

Figura 15: zeros da f Figura 16: imagem da (p

Note que os pontos de auto—interseção desta superfície são imagem pela
parametrização da curva D2 (<p). Aqui, esta curva é a circunferência de equação
azº + y2 — 1 = 0.

De fato, os pontos duplos são caracterizados pela propriedade : <p(a;, y) =
<p(m1,y1), com (x,y) # (a,-1,311), o que é o mesmo que

$=Í131
y2=y% vy7éy1-
mºy+yª—y=xíy1+yí—y1

Que por sua vez pode ser escrito como
2 2

11 y; :31—111
3 3

3323—311 + 11 “y; _ y—yi = 0
ill—i'll y—y1 y—yl

Ou seja,



y+yl=0
wº+yº+yy1+yÍ—1=0

A projeção no domínio de coordenadas (a:, y) da parametrização <p fornece
acurvaw2+y2—l =O.

Neste caso a parametrização <p envia os pontos da forma (x, g) e (x, —y)
de Dº(<p) na mesma imagem (x, yª, 0). Além disso, (1,0) e (——1, 0) são pontos
lixos desta involução.

Exemplo 3.3: (superfície HQ de David Mond)
Esta superfície é a imagem da parametrização gp(a:, y) = (a:, 3;3 — y, 11; +

y5 — yª) (Figura 17). Como pode ser visto no traçado abaixo feito com o
software MapleR, a superfície possui autointerseção na qual se destacam
um ponto triplo (ie, ponto com três pré-imagens) e dois guarda—chuvas de
Whitney.

Figura 17:

Esta superfície possui uma propriedade surpreendente, de fato ela é a
única superfície singular com um ponto triplo que verifica tal propriedade (v.
[MM]). Tal notoriedade fez desta superfície a capa da revista Notices da AMS,
March 97. A beleza desta superfície foi revelada por Thomas Banchoff (que
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na época era um dos poucos que possuia computador capaz de tal revelação).
Hoje são acessíveis os computadores capazes de desenhar a imagem desta
parametrização. Contudo, mesmo sem o computador podemos ter uma boa
idéia da imagem de parametrizações deste tipo, seguindo o roteiro abaixo.

Considere a curva de pontos duplos no domínio Dº(<p), ie, o fecho do
conjunto ((ª?!) º 3 (31,291) 7ª (ªº, y) tais que (PWM/1) : Mªºri/ll- Observe
que neste caso teremos a: = :BL A curva plana D2(<p) é dada pela projeção
da curva no espaço de coordenadas a:, y, yl

y—yi !!?/1 5 3 ,;
(Bº—ºl + y —?l'1 __ Elª—y“! _ O

%

”yª-313! _ y—yi : O

yª!/1 y—yi y—yl

sobre o espaço de coordenadas a:, y, domínio da parametrização (p. O que é
o mesmo que projetar a curva

íy2+yy1+ylº=1=0m+y4+yªy1+yºyÍ+yyi+yÍ—(yº+yy1H;?) =º
Usando a parametrização

yl = %senw)
y = cos(0) — %senW) '

de yº + yyl + yí — 1 = 0, podemos obter a:, 3; em função de 9, isto é, uma
parametrização da curva plana D2(<p).

Com exceção de dois pontos, que serão enviados nos pontos singulares ,

cada ponto desta curva (Figura 18) possui ao menos um outro com o qual se
identifica na imagem da parametrização <p.

Depois da identificação definida pelos pontos singulares, obtemos a curva
de auto—interseção da superlicie Hz. Os dois pontos singulares são pontos lixos
desta identificação e serão enviados, pela parametrização, nos guarda-chuvas.

Na Figura 19 temos vistas inéditas da supefície
Uma equação para esta superfície pode ser obtida pondo

X=m
Y=yª—y
Z=zy+y5—y3

11



Figura 18:

Figura 19:

Eliminado—se y obtemos:
f(X,Y, Z) : Zª — 2ZºY + ZY2 — ZX2 — 3ZXY2 — XªY + Y3X — Y5

Observação:
1) Mesmo que o leitor tenha um bom software para o traçado de imagem
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de parametrizações, muitas vezes o resultado não é muito claro. A projeção
no monitor do computador ou na impressora pode ser sofrível e essa não é uma
limitação tecnológica, mas sim dimensional. Daí a utilidade do procedimento
acima.

2) No traçado da superfície singular, a curva de auto-interseção fornece
um esqueleto no qual devemos adicionar apenas 2—células para completar o
desenho.

De fato, com a curva de pontos duplos D2(<p) da parametrização, e os
possíveis pontos singulares (guarda-chuvas), fazemos as identificações ade—

quadas determinadas pelos pontos singulares e assim obtemos a curva de
auto—interseção da superfície imagem. A curva D2(ço) divide o domínio da
parametrização <p em um número finito de 2—células (v. Figura 18). Nos
pontos do complementar do conjunto Dº(<,0), & parametrização <p é um—a—um.

Portanto a imagem da parametrização se completa colando-se adequada-
mente as 2— células ao longo da curva de auto-interseção.

A confecção de modelos feitos com papel cartão também se constitui num
exercício instrutivo. O leitor encontrará uma detalhada descrição dessas
cons- truções na segunda edição do livro de J. Scott Carter [JSC], sob a
denominação Mamrªs models.

Na próxima seção veremos como obter equações para D2(<p) a partir da
expressão da parametrização (p e da equação f = O da superfície singular.

4 Pontos singulares
Pontos singulares de funções f : R —> E são os pontos xo E R onde a função
derivada f(x) se anula. Analogamente, para funções de várias variáveis,
f : II"—> R, os pontos singulares xo & R" são os pontos onde todas as
derivadas parciais g(x) se anulam. Em outras palavras, o vetor gradiente

_) *

Vf(Xo) = 0 .

Para aplicações <p : R" —> RP, diremos que xo & R" é um ponto singular
se a matriz jacobiana J<p = (%%) , 1 g i 5 n, 1 5 j 5 p, não possui o
posto máximo possível em xo e R". Em outras palavras, posto J<p(x0) <
minfn,p). Note que as linhas da matriz J(p são as derivadas parciais das
funções coordenadas de (p. Portanto, quando p = 1, isto é, no caso das
funções, o posto da jacobiana não será o máximo possível quando todas as
derivadas parciais da função se anularem.
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Casos particulares

Curvas planas (<p : R ——> R2)

Consideramos a curva plana C parametrizada por <p(t) : (a(t), ,8(t)) e
definida implicitamente por f (3), y) = O.

!

Aqui, J<p(t) = ( 2,8; . Esta matriz não terá posto máximo nos pontos
onde a derivada de ambas flmções coordenadas a e ,6 se anularem. Como
T(t) = (o/ (t), 6' (t)) é o vetor tangente a curva C, podemos dizer que os pontos
singulares da curva são caracterizados pelo anulamento do vetor tangente.

Para efeito de generalização do conceito de pontos singulares para di-
mensões mais altas, vamos dizer que os pontos singulares da curva são ca—

racterizados pelo anulamento do vetor normal a curva C; neste caso, o anu-
lamento do vetor (—,B'(t), (# (t))

Por outro lado, pontos singulares da função f , que define C implicita-
mente, são os pontos onde as derivadas parciais de f se anulam.

É interessante notar que, nos pontos da imagem go(t) da parametrização,
o vetor gradiente Vf (cp(t)) é paralelo ao vetor normal (—,6' (t), a' (t))

ºi
De fatp, co.mo f (<p(t)) : 0, da regra da cadeia obtemos:— %%(qo(t))o/(t) +

ay ((p(t)),6 (t) - 0, isto e, o produto escalar Vf (<p(t)) - 7'(t) _ 0.
A relação entre o vetor gradiente de f e o vetor normal de <p fornece

informações sobre auto—interseções da curva C, como demonstraremos nos
exemplos abaixo .

Exemplos:
1) Seja C o grálico de uma função de uma variável g(x), isto é, C é a curva

parametrizada por <p(t) = (t, g(t)) e delinida como zero de f (32, y) = y— g(x).
Neste caso não temos pontos singulares para a parametrização <p pois a matriz
jacobiana é da forma

_ ' t

Temos também que o vetor cujas componentes são as entradas da trans—

posta da matriz jacobiana (J<,o(t))t é igual a Vf (<p(t)) Note que, possíveis

14



pontos singulares da função g(x) não são pontos singulares da curva C, gráfico
da função 9.

2) Seja C a curva parametrizada por <p(t) = (tª, tª) e definida por f (33, y) =
y2 — zª. Neste caso, 0 ponto (0,0) é um ponto singular para a aplicação (,O.

Temos também que Vf (<p(t)) só se anula neste ponto.

3) Seja C a curva parametrizada por g0(t) : (tºntª — t) e delim'da por
f (n:, g) = yª — 933 + 2x2 — 113. Neste caso não temos pontos singulares para a
parametrização 99 pois a matriz jacobiana é da forma

Jªp“) : ( 3t22t—1 )
Isto é, não existe t e R para o qual (Jga(t))t : (0,0). Por outro lado,

Vf(<,o(t)) = (2(t3 —t), _3t4+4t2 — 1). Logo, Vf(<p(t)) = (0,0), quando t = 1

e t = —1.

Em outras palavras, o gradiente de f se anula no ponto de auto-interseção
da curva, mas a parametrização não é singular em nenhum ponto. Este
exemplo mostra a diferença entre o anulamento do gradiente Vf ((p(t)) e
ponto singular para a parametrização. A parametrização diz respeito ao
objeto imagem, que neste caso possui auto—interseção, mas não é singular no
sentido que a matriz jacobiana tem posto máximo.

15



Superfícies parametrizadas (<p : R2 —+ Rª)

Consideremos a superfície definida implicitamente por f (X , Y, Z) = 0 e
parametrizada pºr W:, 31) = (a(ªº, y), BCB, y), '7(ª=, y)).

Neste caso, a matriz jacobiana é dada por
º_º! ?º
$$ %%

'](p(x7 y) = 81 ag
91 ªl83 81;

Esta matriz não terá posto 2 nos pontos onde todos os menores 2 >< 2
se anularem. Isto é o mesmo que dizer que os pontos singulares de <p são
caracterizados pelo anulamento do vetor normal 37 = (pz A (py.

Aqui também, o vetor gradiente Vf (goku, y)) é paralelo ao vetor normal a
superfície. De fato, como f (<p(a;, y)) = 0, pela regra da cadeia, obtemos que
o vetor Vf (<p(:1:, y)) está no núcleo da transposta (J(,?)ª da matriz jacobiana
J<p. Mas, nos pontos não singulares, o núcleo da transposta (J<p)lt da matriz
jacobiana tem dimensão ] e é gerado pelo vetor normal ?. (exercício).

Em outras palavras, nos pontos (a:, y) 6 R2 onde 90 é não singular, existe
uma função A(z,y) tal que Vf(<,o(x, y)) : A(z,y)?(z, y).

O anulamento de A(m,y) define a curva de pontos duplos de gp em Rº,
isto é, o conjunto de pontos que é enviado pela cp na curva de auto-interseção
.da superfície imagem de <p.

Como no caso anterior, todos os pontos da auto-interseção da superfície
são pontos singulares para a função f (X , Y, Z), mas são pontos não singu-
lares para a parametrização, pois também nas auto-interseções o posto da
jacobiana de <p é máximo.
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Observação:
A superfície singular parametrizada por (,a pode ser pensada como a

projeção em R3 de uma superfíce mergulhada no R4. Os pontos de auto-
interseção da superfície R3 correspondem a dois pontos da superfície em R4
e os pontos singulares da superfície são pontos onde a direção da projeção é
tangente à superfície. Desta forma é facil ver que os pontos singulares são
pontos limites de pontos duplos.

Vejamos isso no caso de uma parametrização da forma

(p(.'L', y) : (93,1)(13 y)? (I(fªu y))
Aqui a matriz jacobiana tem a forma

1 O

_ 22 &Jªpª, y) _ ôa: By
& Qi
ôsc ôy

Um ponto singular da parametrização é caracterizado pelo anulamento
dos menores 2 X 2, que neste caso coincide com o anulamento das derivadas
parciais ªº e ª. Por outro lado, um ponto duplo ordinário é caracterizado
pela igualdade Way) = Mwm/1) com (x,y) # (ªma)- Mas Way) =
<p(z1,y1) implica que a: = z,. Logo, (a:, y) e (mhyl) é um ponto duplo se,
e somente se,

ligam—1253312 : 0
qgrwízãglrmz : 0 7 y 76 yl“

y-yi

Quando yl —» y, obtemos o anulamento das derivadas parciais %% e %
que, de fato, caracterizam os pontos singulares da parametrização (,º.

Esta relação entre parametrização e equação da superfície fornece uma
equação para a curva de pontos duplos (v. [JM]).

Exemplos:
1) Way) = (w,yz,yp(ª:,yº)) e f(X,Y, Z) = Zª — Yp(X,Y)º- A função

Mw, 11) = mas, yº) verifica a relaçãº Vf («)(—'ª, y)) = Mw,mm, 11)-

2) Mªº, y) = (ª:, y3,yp1(z, yª)+yºpz($,yª)) e f (X , Y, Z) = Zª-Yp1(X, Y)ª=
Yp2(X, Y)3 _ SYZPI (X, Y)p2(X, Y).

A funçãº Nªº, 9) = p1(ª=,y3)º + yp1(ª=, yª)pz(:v, yª) + yºpz(w, yª? veriªºª &
= _)relaçao Vf (aº(z, y)) = à(m, y) 77 (x, y)-
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Hipersuperfícies
O mesmo ocorre para aplicações go : R" —> Rª“. Considere o vetor Tí

cujas entradas, & menos de sinal, são os menores n X n da matriz jacobiana
J <p. Este vetor é normal à hipersuperfície imagem de <p. E o anulamento de
...—) . .
77 que caracteriza os pontos Singulares de 4,0. Novamente temos Vf (cp(x)) :A(x)?(x), onde o anulamento de à(x) define a curva de pontos duplos de <p.

Referências:

[JM] Bruce, J. W. & Marar, W. L., Images and varietz'es. J. Math. Sci.
82 (1996), no. 5, 3633—3641.

[JSC] Carter, J. Scott; How surfaces intersect in space. An introduction
to topology. Second edition.World Scientijic Publishing Co., Inc., River Edge,
NJ, 1995.

[CM] Cromwell, Peter R. & Marar, W. L., Semiregular surfaces with a
single triple-point. Geom. Dedicata 52 (1994), no. 2, 143—153.

[DH] Hilbert, D. & Cohn-Vossen, S.; Geometry and the imagination.
Translated by P. Neményi. Chelsea Publishing Company, New York, N.
Y., 1952.

[MM] Marar, W. L. & Mond, David; Real map-germs with good perturba-
tz'ons. Topology 35 (1996), no. 1, 157—165.

[M] Mond, David; Singularities of mappings from surfaces to 3-space.
Singularity theory (Trieste, 1991), 509—526, World Sci. Publishing, River
Edge, NJ, 1995.

Ton Marat
Vila Pureza, abril 2002

18


