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1 Introducao

Este texto é de fato um pretexto para apresentar a estudantes de graduacao
alguns objetos geométricos bidimensionais que considero interessantes. Tais
objetos ndo aparecem na literatura acessivel aos iniciantes. Um motivo talvez
seja a dificuldade em desenhé-los, isto é representd-los no plano do papel.
De fato, mesmo o espago tridimensional nao é o bastante para representa-
los sem auto-intersecdo ou ainda pontos singulares. Porisso, denominaremos
esses objetos superficies singulares (ou semi-regulares).

Frequentemente tais superficies serao obtidas como projecao genérica so-
bre R® de um mergulho de um plano no R*.

Nos limitaremos as superficies que podem ser apresentadas como zero
de um polinémio de trés varidveis f(X,Y,Z) = 0 e como imagem de uma
aplicagdo ¢(z,y) = (a(z,y), B(z, y),¥(z,y)), onde a, B e 7 sdo polindémios.

A primeira forma é chamada equacdo implicita enquanto a segunda é
chamada parametriza¢ao da superficie .

Os tépicos que apresentaremos sao 0s seguintes:

e Superficies singulares, exemplos
e Equacoes e parametrizagoes de superficies singulares

e Pontos singulares de fungbes x pontos singulares de aplicagoes.

O leitor interessado podera encontrar estudos mais gerais nos trabalhos
de David Mond e outros [M].

Agradego minha colega Maria Aparecida Soares Ruas pelos comentdrios
criticos, porque nao dizer singulares e ao meu colega Sérgio Zani pela con-
versao das figuras em .eps.



2 Superficies singulares
2.1 projecoes R? — R?
Seja C a curva no espago R® imagem da aplicagéo g : R — R3, g(t) =

(t, 1%, ) (Figura 1). De fato, um pedago de arame torcido também serviria
para o nosso experimento.

Figura 1:

Fixemos uma direcao no R? e consideremos um plano ortogonal a esta
direcdo. Projegoes de C sobre planos fornecem diferentes tragados para a
curva (Figura 2). Em geral, aparecerdo auto-intersegdes transversais (pontos
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Figura 2:

duplos) e em particular, pontos cuspidais (singularidades). Esta particular
projecéo é aquela cuja direcdo no R® é definida pelo vetor tangente 3 C no
ponto que se projetara no ponto cuspidal.



O termo, em geral ou genericamente usado no texto significa que, pe-
quenas variagoes na dire¢do de projecao mantém o cruzamento transversal.
Neste caso diremos que a projecao é uma projecao genérica. Certas projecoes
também fornecem um tracado sem pontos duplos ou pontos singulares.

O motivo do aparecimento desses fenomenos no plano é que a curva C é
uma linha bem curvada e torcida, como pode ser visto! no R3.

Enquanto no R® uma vizinhanca de cada ponto da curva é localmente
homeomorfa a um segmento (neste caso diremos que a curva é regular), numa
projegao genérica da curva no plano, podemos ter um ponto duplo, isto é,
um ponto cuja vizinhanga é homeomorfa ao cruzamento transversal de dois
segmentos. Neste caso diremos que a curva plana é semi-regular.

Observe que variando-se continuamente a dire¢do de projecdo, podemos
obter uma familia de curvas planas como as curvas exibidas acima. Tal
familia de curvas planas d4 origem a uma superficie (Figura 3) que nos in-
teressara.
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Figura 3:

2.2 projecoes R* — R3

O mesmo procedimento que fizemos com curvas regulares no R® pode ser
repetido com superficies regulares no R*, basicamente adicionamos uma di-
mensao no caso tratado na secao anterior.

Planos curvados e torcidos sao exemplos de superficies regulares. Tais
planos podem ser mergulhados no R*.

1De fato deve-se considerar aqui que a curva C estd localmente em posigio geral, isto
é, as seguintes condigles se verificam (i) ¢'(t) # 0, Vt; (i) a fungio curvatura x(t) de C
nunca se anula e (4iz) os zeros da funco torsdo 7(t) de C sio nio degenerados, isto é, se
7(t) = 0 entdo 7/(t) £ 0.



Quando tais superficies sdo projetadas genericamente de R* em R3, os
fenomenos locais que se apresentam sao:

e pontos duplos (intersegdo transversal de dois planos),
e pontos triplos (intersecéo transversal de trés planos) e

e ponto singular chamado guarda-chuva de Whitney.
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Figura 5: guarda-chuva de Whit-
Figura 4: ponto triplo ney

A denominagio guarda-chuva sera justificada no exemplo 3.1.

Observe que segoes transversais do guarda-chuva de Whitney fornecem
curvas com & aparéncia daquelas da sec¢ao anterior (Figura 2).

Uma projecdo genérica da superficie regular de R* em R3, fornece um
objeto composto de linhas de pontos duplos e, quase sempre, de apenas
um numero finito de pontos triplos e pontos singulares, e serd denominado
superficie singular (ou semi-regular).

Os pontos de auto-intersecao da superficie em R? possuem ao menos duas
pré-imagens no plano em R*. Tais pontos constituem a curva de pontos duplos
ordindrios da projecdo. Os pontos singulares sao pontos onde a dire¢ao da
projecao tangencia a superficie. Esses pontos singulares estdo na aderéncia
da curva de pontos duplos ordinarios.

Para ver como a superficie (o plano) est4 no R* numa vizinhanga do
ponto de tangéncia da dire¢ao de projecdo, procedemos da seguinte forma:

O cubo representar4 uma vizinhanca no R3. A Figura 6 exibe uma vizi-
nhanca do ponto singular da superficie em R3.
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Figura 6: ponto singular Figura 7: hipercubo

Agora consideremos o hipercubo, como uma vizinhanca no R* (Figura 7)

O plano torcido no R* (Figura 8), quando projetado no R*® fornece o
guarda-chuva de Whitney. A linha central desenhada neste plano contém a
curva de pontos duplos ordindrios e é projetada na linha de auto-intersecio
do guarda-chuva. Isto é, a projecao do plano torcido de R* em R? é um-a-um,
exceto nos pontos desta curva.

Figura 8: Figura 9:

O resultado da projecio de R* em R? é representado na Figura 9.

Outro exemplo: O plano projetivo real P?

O plano projetivo é apresentado de varias formas equivalentes:

e como o plano euclidiano adicionado dos pontos no infinito - se repre-
sentarmos o plano euclidiano por um disco sem bordo, entao adicionar
os pontos no infinito é o mesmo que identificar os pontos antipodais do
bordo, isto é, os pontos diametralmente opostos do bordo do disco.
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e como a superficie obtida identificando-se os pontos antipodais da esfera,
S2.

e como a faixa de Moebius com um disco colado ao londo de seu bordo

Uma representacao de P2 no R? possui necessariamente auto-intersegao,
em outras palavras, nao é possivel mergulhar P2 no R3.

Um teorema de Whitney? garante que qualquer superficie M? mergulha
no R%. De uma conjectura de Whitney, demonstrada por Massey3, sabe-se
que qualquer projegio genérica no R® de um mergulho de P2 no R* terd no
minimo dois pontos singulares, sempre do tipo guarda-chuva.

No desenho do hipercubo acima (Figura 8), podemos imaginar uma faixa
de Moebius no lugar do plano torcido. Assim a projecao no R? teria a
seguinte aparéncia:

Figura 10: duas vistas do condide de Pliicker

Esta superficie, obtida da colagem de dois guarda-chuvas, é conhecida
como condide de Plicker(Figura 10). Observe que o bordo do condide, dife-
rentemente do bordo da faixa de Moebius, estd preparado para receber a
colagem de um disco mergulhado no R2. Colando-se um disco ao longo do
bordo do condide obtemos a tradicional representacao de P? no R?, deno-
minada chapéu cruzado ( ou cross-cap).

2Hassler Whitney, The self-interseclions of o smooth n-monifold in 2n-spoce. Ann. of
Math. (2) 45, 220 — 246 (1944).
3W. S. Massey, Proof of a conjecture of Whitncy. Pacific J. Math. 31,143 — 156, (1969)



Observacao: Existem exemplos de superficies semi-regulares no R?® que
nio sdo obtidas como projecdes genéricas de superficie regular do R? (eg.
superficie de Boy)[DH]. A superficie de Boy (Figura 11) é uma representagao
do plano projetivo P2 no R3, sem pontos singulares, apenas com linhas de
auto-intersegdo e um ponto triplo. Como dissemos acima, um teorema de
Whitney, demonstrado 50 anos depois da publicacao do trabalho de Boy sob
a orientacdo de Hilbert, estabelece que qualquer projecao de R* em R3 de
uma superficie ndo orientavel deve possuir ao menos dois pontos singulares
do tipo guarda-chuva de Whitney. Portanto este nao é o caso da superficie
de Boy.

Figura 12: superficie romana de
Figura 11: superficie de Boy Steiner

Outra conhecida representacao do plano projetivo P? no R? é denomi-
nada superficie romana de Steiner (Figura 12). Neste caso temos um ponto
triplo e seis guarda-chuvas. Tal superficie singular é obtida como projecao
de uma superficie regular do R* no R?, isto é, de um mergulho de P? no R*
(denominado superficie de Veronese). A classificacao das superficies com um
ponto triplo e seis guarda-chuvas pode ser encontrada em [CM].

3 Equacoes e parametrizacoes de superficies
singulares

Exemplo 3.1: (guarda-chuva de Whitney)
Equacdo: f(X,Y,Z2)=22-YX%2=0



Parametrizacao: ¢(z,y) = (z,y?, zy).

Figura 13: zeros da f Figura 14: imagem da ¢

A superficie pode ser melhor apreciada quando se consideram as in-
tersegoes com planos:
ZP-YX?’=0
{ X=k
onde k é uma constante nao nula.
As curvas assim obtidas sdo as pardbolas Y = klzZ 2,
Por outro lado, as intersegées
ZP-YX?=0
{72
onde k é uma constante positiva fornecem pares de retas concorrentes.

Note que os pontos de auto-intersegdo desta superficie (ie, pontos com
mais que uma pré-imagem) constituem a imagem, pela parametrizacdo ¢,
da curva (z = 0). Denominaremos esta curva, curva de pontos duplos de
¢ e denotaremos por D%(p). Observe também que a parametrizagio ¢ leva
pontos da forma (0,y) e (0, —y) na mesma imagem (0,%?,0). Ou seja, neste
caso, a restricao |D?(p) é uma involug@o com a origem (0,0) como ponto
fizo.

A justificativa para o nome guarda-chuva vem do fato que todo o eixo Y,
isto é, (X = 0) N (Z = 0) pertence & superficie algébrica Z2 - YX?2=0. O
semi-eixo negativo é o cabo do guarda-chuval



Note que existem pontos do conjunto de zeros f que nio se apresentam
na imagem da parametrizagdo. De fato, a semi-reta (Y < 0) nao é coberta
pela parametrizagio cuja segunda funcio coordenada é y? e portanto > 0.

Este é um fenémeno freqiiente entre as superficies algébricas reais, a im-
agem da parametrizagao € um subconjunto dos zeros da equacgao.

Exemplo 3.2: (duplo guarda-chuva)
Equagio: f(X,Y,2)=22-Y(X?2+Y —1)
Parametrizacdo: p(z,vy) = (z, 9%, 2%y + 4% — v)

>

e ey,
SR LT A AT T T

Figura 15: zeros da f Figura 16: imagem da

Note que os pontos de auto-intersegao desta superficie sao imagem pela
parametrizagao da curva D?(¢). Aqui, esta curva é a circunferéncia de equagio
22+y?—-1=0.

De fato, os pontos duplos sao caracterizados pela propriedade : p(z,y) =
o(z1, %), com (z,y) # (z1,¥1), © que é 0 mesmo que

=2
yzzy% )y7éy1-
Py+yP—y=2yp+yi-n

Que por sua vez pode ser escrito como

yz_yzl =0

y—n _

xz_y_—yl + YU oy 0
y-n y—n ¥—un

Ou seja,



y+1y:1 =90
2+ 4yt —-1=0

A projecao no dominio de coordenadas (z,y) da parametrizagio ¢ fornece
acurvaz? + 9y —1=0.

Neste caso a parametrizacdo ¢ envia os pontos da forma (z,y) e (z, —y)
de D?*(p) na mesma imagem (z,y?,0). Além disso, (1,0) e (—1,0) sio pontos
fixos desta involugao.

Exemplo 3.3: (superficie Hy de David Mond)

Esta superficie é a imagem da parametrizacao p(z,y) = (z,y* — y, zy +
y® — y®) (Figura 17). Como pode ser visto no tragado abaixo feito com o
software Maple®, a superficie possui auto-intersecio na qual se destacam
um ponto triplo (ie, ponto com trés pré-imagens) e dois guarda-chuvas de
Whitney.

Figura 17:

Esta superficie possui uma propriedade surpreendente, de fato ela é a
tinica superficie singular com um ponto triplo que verifica tal propriedade (v.
[MM]). Tal notoriedade fez desta superficie a capa da revista Notices da AMS,
March 97. A beleza desta superficie foi revelada por Thomas Banchoff (que
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na época era um dos poucos que possuia computador capaz de tal revelagéo).
Hoje sao acessiveis os computadores capazes de desenhar a imagem desta
parametrizacao. Contudo, mesmo sem o computador podemos ter uma boa
idéia da imagem de parametrizagoes deste tipo, seguindo o roteiro abaixo.

Considere a curva de pontos duplos no dominio D?*(y), ie, o fecho do
conjunto {(z,y) : 3 (z1,11) # (z,y) tais que p(z1,41) = ¥(z,y)}. Observe
que neste caso teremos x = z; A curva plana D%(p) é dada pela projegao
da curva no espago de coordenadas z,y,y;

y—-un !I;’yl 5 3 3
$g~g1 + s W Mt =0

{ ys_ys! —¥n _9
y—n Y- y—n

sobre o espaco de coordenadas x,y, dominio da parametrizagdo ¢. O que é
0 mesmo que projetar a curva

{ Y+yp+yi-1=0
c+y+vrPn+ vyl +y i - P Ay +43) =0

Usando a parametrizagao

h= %sen(@)
y = cos(f) — %sen(ﬂ) ‘

de ¥* + yy1 + 2 — 1 = 0, podemos obter z,y em funcio de 0, isto é, uma
parametrizagao da curva plana D?(y).

Com excegao de dois pontos, que serao enviados nos pontos singulares ,
cada ponto desta curva (Figura 18) possui ao menos um outro com o qual se
identifica na imagem da parametrizacao .

Depois da identificagao definida pelos pontos singulares, obtemos a curva
de auto-intersec¢ao da superficie He. Os dois pontos singulares sdo pontos fixos
desta identificagdo e serdo enviados, pela parametrizac¢ao, nos guarda-chuvas.

Na Figura 19 temos vistas inéditas da supeficie

Uma equagio para esta superficie pode ser obtida pondo

X=zx

Y=y—y
Z=zy+y’ -y

11



Figura 18:

Figura 19:

Eliminado-se y obtemos:
(XY, 2)=2%-22°Y + ZY* - ZX?> -3ZXY? - X3V +Y3X - Y3

Observacao:
1) Mesmo que o leitor tenha um bom software para o tragado de imagem
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de parametrizacoes, muitas vezes o resultado nao é muito claro. A projecao
no monitor do computador ou na impressora pode ser sofrivel e essa nao é uma
limitagao tecnoldgica, mas sim dimensional. Dai a utilidade do procedimento
acima.

2) No tracado da superficie singular, a curva de auto-intersecao fornece
um esqueleto no qual devemos adicionar apenas 2—células para completar o
desenho.

De fato, com a curva de pontos duplos D?(p) da parametrizacio, e os
possiveis pontos singulares (guarda-chuvas), fazemos as identificagées ade-
quadas determinadas pelos pontos singulares e assim obtemos a curva de
auto-intersecio da superficie imagem. A curva D?(yp) divide o dominio da
parametrizacdo ¢ em um nimero finito de 2—células (v. Figura 18). Nos
pontos do complementar do conjunto D?*(p), a parametrizacao ¢ é um-a-um.
Portanto a imagem da parametrizacao se completa colando-se adequada-
mente as 2— células ao longo da curva de auto-intersegao.

A confecgdo de modelos feitos com papel cartao também se constitui num
exercicio instrutivo. O leitor encontrard uma detalhada descricao dessas
cons- trugbes na segunda edi¢do do livro de J. Scott Carter [JSC], sob a
denominacao Marar’s models.

Na préxima segao veremos como obter equagdes para D?(p) a partir da
expressdo da parametrizacao ¢ e da equagdo f = 0 da superficie singular.

4 Pontos singulares

Pontos singulares de fungées f : R — R sao os pontos 9 € R onde a funcao
derivada f'(z) se anula. Analogamente, para fungbes de vérias varidveis,
f : R®*—= R, os pontos singulares x¢ € R™ sao os pontos onde todas as
derivadas parciais %(x) se anulam. Em outras palavras, o vetor gradiente
Fes :

\% f (Xo) = 0.

Para aplicagoes ¢ : R® — RP, diremos que xo € R™ é um ponto singular
se a matriz jacobiana Jyp = (%%») ,1<i<mn,1<j < p, nao possui o
posto méximo possivel em Xy € R™. Em outras palavras, posto Jp(xg) <
min{n, p}. Note que as linhas da matriz Jy sao as derivadas parciais das
funcoes coordenadas de . Portanto, quando p = 1, isto é, no caso das
funcoes, o posto da jacobiana nao serd o maximo possivel quando todas as
derivadas parciais da fungdo se anularem.
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Casos particulares

Curvas planas (¢ : R — R?)

Consideramos a curva plana C parametrizada por ¢(t) = (a(t), 5(t)) e
definida implicitamente por f(z,y) = 0.

(t)

/
Aqui, Jp(t) = ( g, ) ) . Esta matriz nao terd posto maximo nos pontos

onde a derivada de ambas fungoes coordenadas a e § se anularem. Como
7(t) = (/(t), §'(t)) é o vetor tangente a curva C, podemos dizer que os pontos
singulares da curva sao caracterizados pelo anulamento do vetor tangente.

Para efeito de generalizacdo do conceito de pontos singulares para di-
mensdes mais altas, vamos dizer que os pontos singulares da curva sdo ca-
racterizados pelo anulamento do vetor normal & curva C; neste caso, o anu-
lamento do vetor (—/f'(t), ¢/(t)).

Por outro lado, pontos singulares da funcao f , que define C implicita-
mente, sao os pontos onde as derivadas parciais de f se anulam.

E interessante notar que, nos pontos da imagem @(¢) da parametrizagao,
o vetor gradiente V f(p(t)) é paralelo ao vetor normal (—f'(t), ¢/(t)).
o De fat,o, c?‘mo f ((p(t)) = 0, da regra da cadeia obtemos:_ —g—f(qo(t))o/(t) +
5 (p(1))B'(t) = 0, isto &, o produto escalar V f(y(t)) - 7(t) = 0.

A relacao entre o vetor gradiente de f e o vetor normal de ¢ fornece
informagbes sobre auto-intersegbes da curva C, como demonstraremos nos
exemplos abaixo .

Exemplos:

1) Seja C o grafico de uma fungdo de uma variivel g(z), isto é, C é a curva
parametrizada por @(t) = (t, g(¢)) e definida como zero de f(z,y) = y—g(=).
Neste caso ndo temos pontos singulares para a parametrizagao  pois a matriz

jacobiana é da forma
—d'(t
Jo(t) = ( 7¢) ) .

Temos também que o vetor cujas componentes sdo as entradas da trans-
posta da matriz jacobiana (Jp(t))* é igual a V f(p(t)). Note que, possiveis

14



pontos singulares da fungéo g(z) ndo sdo pontos singulares da curva C, gréifico
da funcdo g.

2) Seja C a curva parametrizada por ¢(t) = (2, t*) e definida por f(z,y) =
y? — z3. Neste caso, o ponto (0,0) é um ponto singular para a aplicagao .
Temos também que V f(p(t)) sé se anula neste ponto.

3) Seja C a curva parametrizada por ¢(t) = (t2,t3 — t) e definida por
f(z,y) = y® — 2® + 22 — z. Neste caso nao temos pontos singulares para a
parametrizacao ¢ pois a matriz jacobiana é da forma

Jolt) = ( 3t22t—1 )

Isto é, ndo existe t € R para o qual (Jp(t))* = (0,0). Por outro lado,
V(@) = (2(82 —t), —3t* +4t2 — 1). Logo, Vf((t)) = (0,0), quando t = 1
et=—1

Em outras palavras, o gradiente de f se anula no ponto de auto-intersegao
da curva, mas a parametrizacado nao € singular em nenhum ponto. Este
exemplo mostra a diferenga entre o anulamento do gradiente V f(p(t)) e
ponto singular para a parametrizagdo. A parametrizagio diz respeito ao
objeto imagem, que neste caso possui auto-interse¢ao, mas nao é singular no
sentido que a matriz jacobiana tem posto maximo.

15



Superficies parametrizadas (¢ : R? — R3)

Consideremos a superficie definida implicitamente por f(X,Y,Z) =0e

parametrizada por ¢(z,y) = (a(z,y), B(z,y),7(2,Y)).
Neste caso, a matriz jacobiana é dada por

da  da

dx

i) I2)
Jo(z,y) = 5"3%

& &

oz Oy

Esta matriz ndo terd posto 2 nos pontos onde todos os menores 2 x 2
se anularem. Isto é o mesmo que dizer que os pontos singulares de ¢ sao
caracterizados pelo anulamento do vetor normal 7’ = @, A @,.

Aqui também, o vetor gradiente V f(p(z,y)) é paralelo ao vetor normal &
superficie. De fato, como f(p(z,y)) = 0, pela regra da cadeia, obtemos que
o vetor V f(yp(z,y)) estd no niicleo da transposta (Jp)* da matriz jacobiana
Jp. Mas, nos pontos nao singulares, o micleo da transposta (Ji)* da matriz
jacobiana tem dimens#o 1 e é gerado pelo vetor normal 7. (exercicio).

Em outras palavras, nos pontos (z,%) € R? onde ¢ é nao singular, existe
uma funcio A(z,y) tal que Vf(p(z,y)) = A(z,9) 7 (z,y).

O anulamento de A(z,y) define a curva de pontos duplos de ¢ em R?,
isto é, o conjunto de pontos que ¢é enviado pela ¢ na curva de auto-intersegao
-da superficie imagem de .

Como no caso anterior, todos os pontos da auto-interse¢ao da superficie
sdo pontos singulares para a fungao f(X,Y,Z), mas sao pontos nio singu-
lares para a parametrizagdo, pois também nas auto-intersegoes o posto da
jacobiana de ¢ é maximo.
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Observacao:

A superficie singular parametrizada por ¢ pode ser pensada como a
projecio em R3 de uma superfice mergulhada no R*. Os pontos de auto-
intersecdo da superficie R? correspondem a dois pontos da superficie em R*
e os pontos singulares da superficie sao pontos onde a dire¢do da projegao é
tangente a superficie. Desta forma é facil ver que os pontos singulares sao
pontos limites de pontos duplos.

Vejamos isso no caso de uma parametrizagao da forma

o(z,y) = (z,p(z,9), 9(,y))-

Aqui a matriz jacobiana tem a forma

1 0
8
Jozy)=| &
9 0Og
dx Oy

Um ponto singular da parametrizagdo é caracterizado pelo anulamento
dos menores 2 X 2, que neste caso coincide com o anulamento das derivadas

parciais gyﬂ e % Por outro lado, um ponto duplo ordinério é caracterizado

pela igualdade ¢(z,y) = ¢(z1,1) com (z,y) # (z1,3). Mas o(z,y) =
¢(z1,) implica que z = z,. Logo, (z,y) e (£1,7%) é um ponto duplo se,
e somente se,

ply)-p(zy) _
qu,yi:gglz,ylz -0’ Yy # u-

Y-

Quando y; — vy, obtemos o anulamento das derivadas parciais %ﬁ e —%
que, de fato, caracterizam os pontos singulares da parametrizagao .

Esta relagido enfre parametrizagio e equagdo da superficie fornece uma
equacao para a curva de pontos duplos (v. [JM]).

Exemplos:

1) p(z,9) = (&, yp(z,¥")) e [(X,Y,Z) = Z* = Yp(X,Y). A fungho
Az,y) = p(z,y”) verifica a relacdo V f(p(z,y)) = Mz, )7 (2,9)-

2) ¢(z,y) = (2,9, y;1(z, ¥°)+y’pa(2, %)) e (X, Y, Z) = Z2-Y ;u (X, Y )3
Yp2(X, Y)3 - 3YZp1 (X, Y)pz(X, Y)

A fungéo M(z,y) = p1(z, ¥°)* + ypi(z, ¥*)p2(z, ) + yPpa(z, y®)? verifica a

= —

relacao V f(p(z,y)) = Mz, y) 7 (z,y).
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Hipersuperficies

O mesmo ocorre para aplicagdes ¢ : R® — R™. Considere o vetor 7
cujas entradas, a menos de sinal, sao os menores n X n da matriz jacobiana
Jy. Este vetor é normal a hipersuperficie imagem de ¢. E o anulamento de
— . .
7 que caracteriza os pontos singulares de . Novamente temos V f(p(x)) =
A(x) 7 (x), onde o anulamento de A\(x) define a curva de pontos duplos de .
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