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We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced
geometric objects over differentiable stacks. We establish a fundamental theorem that
characterizes VB-Morita maps in terms of fiber and basic data, and use it to prove
the Morita invariance of VB-cohomology, with implications to deformation cohomology
of Lie groupoids and of classic geometries. We discuss applications of our theory to
Poisson geometry, providing a new insight over Marsden-Weinstein reduction and the
integration of Dirac structures. We conclude by proving that the derived category of VB-
groupoids is a Morita invariant, which leads to a notion of VB-stacks, and solves (an

instance of) an open question on representations up to homotopy.

1 Introduction

Lie groupoids are a categorification of the notion of smooth manifolds. They were
first studied by A. Ehresmann and their examples include Lie groups, manifolds, Lie
group actions, fibrations, and foliations, among others. They manage to express both
global and local symmetries, and constitute a convenient unifying framework to perform

equivariant differential geometry.
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4396 M. del Hoyo and C. Ortiz

A Lie groupoid yields a Lie algebroid through a differentiation process that
extends the classic Lie theory. Abstract Lie algebroids arise naturally and they are not
always integrable. A key example of a Lie algebroid is given by the cotangent bundle
(T*M),, of a Poisson structure = on M. When integrable, its corresponding Lie groupoid
inherits a compatible symplectic structure, setting up a fruitful interaction between
Poisson geometry and Lie groupoids. This has been explored by A. Weinstein and others,
and made Lie groupoids a useful tool in related areas such as quantization [19, 30], Dirac
structures [9], and generalized complex geometry [3].

Another remarkable aspect of Lie groupoids is that they provide a geometric
setting to deal with singular spaces such as orbifolds [27] and, more generally,
differentiable stacks [4]. These are stacks over manifolds that can be presented as
global quotients. Abstract stacks were introduced by Grothendieck and rely on the
technical theory of sites and fibered categories. From the Lie groupoid perspective,
a differentiable stack is nothing but a Morita class of Lie groupoids. Under this
construction, orbifolds correspond to proper and étale Lie groupoids up to Morita
equivalence [27].

One can extend geometric notions from smooth manifolds to the framework of
differentiable stacks by looking at the corresponding notion over Lie groupoids. Here
we are concerned with vector bundles. A definition of vector bundles over differentiable
stacks can be found in [5]. If a differentiable stack X is presented by a Lie groupoid G =
(G = M), then a vector bundle over X corresponds to a vector bundle E — M endowed
with a representation of G. However, this definition does not include the tangent stack
unless in the orbifold case, which is quite unsatisfactory.

Seeking a notion of vector bundles over differentiable stacks that includes the
tangent stack as an example, we study vector bundles over Lie groupoids and their
Morita equivalences. Here, by a vector bundle over a Lie groupoid we mean a VB-
groupoid, a double structure a la Mackenzie that mixes Lie groupoids and vector
bundles. This concept has recently received increased attention due to its concrete
applications in Poisson geometry [24, 26] and representation theory [17].

Roughly speaking, a VB-groupoid is a Lie groupoid fibration  — G whose
fibers are two vects, categorified vector spaces. Besides the tangent and cotangent con-
structions, other examples arise from the representations of Lie groupoids. Extending
this, it is possible to set a correspondence between general VB-groupoids and two-
term representations up to homotopy [1, 17]. In this paper we show that VB-groupoids
serve as models for vector bundle over a differentiable stack, by studying VB-Morita

maps.
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After a quick review on VB-groupoids and two-term representations up to
homotopy, our 1st main result is Theorem 2.7, where we establish an equivalence of
categories between them, upgrading the correspondence of Gracia-Saz and Mehta [17],
and obtaining the global version of the equivalence of categories proved in [15, 16].

Then we discuss the notion of VB-Morita map that are the maps yielding isomor-
phisms between the corresponding stacks. We prove Theorem 3.5 that characterizes VB-
Morita maps as those that are Morita between the base and between the fibers. Under
the previous dictionary, we conclude that a VB-Morita map between VB-groupoids over
a fixed base corresponds to a quasi-isomorphism between the two-term representations
up to homotopy. We derive several corollaries out of it.

In Section 4 we study cohomology, we prove Theorem 4.2, which says that a VB-
Morita map induces an isomorphism in the level of VB-cohomology. This gives a general
proof of Morita invariance of the cohomology of a Lie groupoid with coefficients in a
two-term representation up to homotopy. In particular, with the adjoint representation,
we get the Morita invariance of deformation cohomology of [13].

Section 5 presents two applications of our results to symplectic geometry. First,
we observe in Proposition 5.2 that Marsden-Weinstein reduction of the cotangent lift
of an action can be seen as an instance of VB-Morita equivalence. Then we apply our
results to Dirac geometry. We give an interpretation of Dirac structures in terms of Lie
algebroids and their adjoint and coadjoint representations up to homotopy. This allows
us to show Proposition 5.4, which gives a neat description of pre-symplectic groupoids
and a simple proof of the integration of (non-twisted) Dirac structures [9].

The last Section 6 is about Morita invariance of VB-groupoids, one of the main
motivations for our work. After a thorough study of the category of VB-groupoids over
a fixed base, our Theorem 6.7 shows that its derived category is a Morita invariant.
This sets solid basis for future work on two-vector bundles over differentiable stacks,
and solves the two-term case of Morita invariance of representations up to homotopy, a
problem posed by C. Arias Abad and M. Crainic in [1, Ex. 3.18].

2 A Detour on VB-groupoids

We review basic definitions, constructions, and examples regarding Lie groupoids, VB-
groupoids, and representations up to homotopy, so as to set notations and ease the
reading. We recall the ideas, constructions, and results that we shall use throughout
the paper. Almost all this material can be found in the literature (see e.g., [8, 17]). Our
main contribution here is to upgrade the correspondence between VB-groupoids and

representations up to homotopy to an equivalence of categories.
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2.1 Basic concepts

A Lie groupoid G = (G = M) consists of manifolds G, M, two surjective submersions
s,t: G — M, and an associative multiplication m : G x3; G — G admitingunitu: M — G
and inverses i : G — G. A Lie groupoid morphism or map ¢ : G — G’ consists of smooth
maps ¢, : G —> G, ¢y : M — M’ between the objects and arrows and commuting with the
five structural maps.

A VB-groupoid I = (I' =2 E) over G consists of a Lie groupoid morphism = : ' —
G such that the corresponding maps I' — G and E — M are vector bundle projections,
for which the structure maps of I are linear (cf. [8, 17, 25]). Given ',I'’ VB-groupoids
over G,G’, respectively, a VB-map (®,¢) : I’ — I is a Lie groupoid map ® : I — I/

covering another ¢ : G — G’ and such that ® is fiberwise linear.

I <— |~
<
-

Given I’ — G a VB-groupoid, the vector bundle C = ker(s : I' — E)|,, is called
the core and the map 8 = t|; : C — E is called the anchor. There are canonical
identifications ker(s : ' — E) = t*C and ker(t : ' — E) = s*C. In light of Dold-
Kan correspondence, the anchor, regarded as a two-term chain complex, encodes the
restriction of I to the units M = (M = M). A VB-map yields a morphism between the

core complexes
cipclr

and we say that (®,¢) is a quasi-isomorphism if it yields a (fiberwise) quasi-
isomorphism between the core complexes. We say that " is acyclic if 9 is a fiberwise

isomorphism, or equivalently, if [ — 0 is a quasi-isomorphism.

Remark 2.1. Acyclic VB-groupoids were called of type I in [17]. Note that an acyclic
VB-groupoid is determined by the base and the unit bundle up to isomorphism; as a
vector bundle I' = s*E @ t*E, and as a groupoid there is one arrow in " between two

vectors if and only if they sit over points in the same orbit (cf. [17, Prop. 6.5]).

A VB-groupoid is a special case of a Lie groupoid fibration (cf. [23, 25]). Given
I = (I' = E) a VB-groupoid, a (linear) cleavage is defined to be a linear section X of the
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source map s : I' — s*E over G. Thus, given y Z x on G and e over x, X(g,e) is an arrow
in I projecting on g with source e. The cleavage is said unital if ¥(id, e) = id, and flat
if X(h,tX(g,e)) o X(g,e) = Z(hg, e). Cleavages for a VB-groupoid were called horizontal
lifts in [17] and other references. Every VB-groupoid admits a unital cleavage, which can
be constructed by using a partition of unity, but they may not admit a flat one. We will
often assume that our cleavages are unital.

Given I' a VB-groupoid over G, and given ¢ : G' — G a Lie groupoid map, the
base-change ¢*I" is the VB-groupoid over G’ obtained by constructing the groupoid-
theoretic fiber product between the projection 7 : I’ — G and ¢ (cf. [8, Rmk 3.2.7]).

Example 2.2. Let G be a Lie groupoid.

e The tangent groupoid TG = (TG = TM) is a VB-groupoid over G, defined by
differentiating the structural maps. Its core is A;, the vector bundle of the
Lie algebroid of G, and the anchor 9 : A; — TM is the usual anchor map of
the algebroid. Cleavages for TG are called Ehresmann connections on [1] and
Cartan connections on [6].

e The cotangent groupoid T#G = (T*G = A*) is also a VB-groupoid over G, the

definition of its structure maps is rather subtle, see [25, §11.3] for details.

The cotangent T*G can be built out of TG by a general duality construction. Given
a VB-groupoid I, its dual VB-groupoid I'* = (I'* == C*) can be defined, as a VB-groupoid
over G, whose core-sequence is dual to that of I'. More on duality of VB-groupoids can
be consulted in [8, 17, 25].

We go now to another fundamental example, that allows us to think of VB-
groupoids as generalized representations. Recall that a representation G ~ E of a Lie

groupoid G = (G = M) over a vector bundle E — M can be described as a map
p:GxyE—E p(yix,e):g-e

such that pjq = id, pppy = ppg, and py : Ey — E, is linear. In the case on which p;q = id

holds but pyp, = ppg may fail we refer to it as a pseudo-representation.

Example 2.3. Given p : G ~ E, the corresponding action groupoid G x,; E =% E, with
source map the projection, and target map p, is naturally a VB-groupoid over G with
trivial core. Since the source map is a fiberwise isomorphism, there is only one cleavage

for the action groupoid, and it is unital and flat.
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Conversely, if ' — G is a VB-groupoid with trivial core C = 0y, then the source
map induces a vector bundle isomorphism I' = s*E = G x,; E, and the composition
GxyE=T L E yields a representation G ~ E. This gives a 1-1 correspondence
between (isomorphism classes of) representations G ~ E and VB-groupoid I' — G with

trivial core (cf. [17, 20]), regarding VB-groupoids as generalized representations.

2.2 Representations up to homotopy

The previous correspondence can be extended so as to relate general VB-groupoids with
certain representations up to homotopy, as it was done in detail in [17]. We briefly recall
the basics on representations up to homotopy. They are very relevant in the theory of
Lie groupoids and algebroids, necessary to make sense, for instance, of the adjoint and
coadjoint representations.

Given G = (G = M) a Lie groupoid, its nerve N(G) is the simplicial manifold
whose p-simplices are strings of p composable arrows GP = {(g,,... 9p)is(g;) =

t(9;41)}, and whose face maps 9; : GP) — G~ are defined as follows:

(92!”~/gp) i=0
%Grr---19p) = V(911 9iGit1r---19p) E=1,...,p—1-
G1r-+-1Gp-1) i=p

Out of the nerve one builds the differential graded algebra C(G) = (C*(G?)), §), that we

should think of as the algebra of functions over the Lie groupoid

p
§:C(GP) > CX(GPTY)  sa =D (-1)'df ().
i=0
Given G, a vector bundle E — M leads to a right C(G)-module C*(G,E) =
®,=0CP (G, E) by defining CP(G, E) = I'(($)*E), where 73 (gy, ..., g,) = t(g))-

Lemma 2.4 ([1, 17]). There is a 1-1 correspondence between representations p : G ~ E
and degree 1 differential operator D : C*(G,E) — C*(G, E) with square zero, implicit in

the formula below:

p
Do(gy,- -1 Gp) =Pg,@(Gar -1 Ip) —i—Z(—l)‘w(gl,...,gigiH,...,gp)

i=1

+ (—1)pa)(gl,...,gp_1).
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Following the above correspondence, if £ = @,.E, is a graded vector bundle over
M, one constructs the graded right C*(G)-module C(G, £) = ®C(G, )P, where C(G,E)P =
Og—r=p
degree 1 derivation D : C(G,£)* — C(G,E)*t! with D? = 0 (cf. [1]). A morphism £ — &’
is given by a total degree 0 map @ : C(G, &) — C(G, &) that is C(G)-linear and commutes

C1(G,E,), and define a representation up to homotopy (or ruth) G ~ £ as a total

with the differentials. This way we can define the category Rep®(G) of representations
up to homotopy of G.

Given G ~ &, the derivation D can be decomposed as a sequence D = @;D;
by using the bigrading, and each component D; has a simple geometric interpretation
[1]; the 1st D, = 9 is a differential on &£, the 2nd D, = p is a pseudo-representation
commuting with 9, the 3rd is a homotopy ruling the failure of p to be multiplicative, etc.

This interpretation relies on the following correspondence:

Homg,. g (C*(G,B),C*(G,B)) 3 @ = w € CP(G,B — B)

(é\)e)(gll e lgplgp-l,-]l- .. I.gp+q) = a)(gll' .. Igp)e(gp+ll e lgp+q)'

Here C*(G,B — B’) denotes the transformation complex associated to G. An

element w € CP(G,B — B') associates to any (g, .. '9p) € GP a linear map D(gy,...gp) -

/
t(g1)*

We refer the reader to [1] for a thorough description of the general case. Here we

Bs(gp) — B For more details, see [17].

are concerned only with two-term representations up to homotopy, that is, the case

when £ = E @ C[1] is concentrated on degrees 0 and 1.

Proposition 2.5 (cf. [17]). Aruth G ~ E®C[1]is the same as a tuple (9, pg, p¢, ), Where
d : C — E is a linear map, p%, p¢ are pseudo-representations G ~ C and G ~ E, and

y € C%(G,E — C) is a curvature tensor, satisfying
B c

,ogloa—ao,og1 =0

c ¢ c _
Pgy © Pg, ~ Pgig, +yg1,g2 0d=0

E _E E _
Pgy © Pgy — Pgig, T30 Vg .9, =0
¢ o - + - opE =0
Pg1 °© Vga.9s ~ V919295 T V91,9295 ~ Vg1.92 © Pgs = V-

The 1st equation says that the quasi-actions p¥, p¢ commute with the differen-
tial 9, the 2nd and 3rd say that they are multiplicative up to the curvature tensor y, and

the 4th is a compatibility condition that y must fulfill.
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4402 M. del Hoyo and C. Ortiz
Next we extend previous result to morphisms of representations up to homotopy.

Proposition 2.6. A morphism ¢ : £ — £’ is the same as a triple ® = (¢, O, 1), where
®.:C— C and &5 : E — E and n € C1(G,E — (') satisfy the following:
8/oCI)C—CI)Eo3=0
ng/oCIDE~|—8’oug—d>Eong=0
©(pg () = 1g(d(0)) = pg ©°(c) =0
D (vyn(€) + 1gppe + pguh(e) — 1tgn(@) — vy p(Pg(e) = 0.

The 1st equation says that ® commutes with the anchor maps. The 2nd and 3rd

say that ® preserves the quasi-action of G up to u. The last one should be read as a

compatibility condition between y and u, it will become clear in Theorem 2.7.
Proof. Given @, for each p > 0 we have

®: CP(G,E) ® CP*(G,C) — CP(G,E) & CPT1(G, C),
and this can be decomposed into the following four components:

C*(G,E) 25 C*(G,E) C*(G,0) 25 (G, C)
C*(G,E) ﬁ) C"H(Q, c)H C*'(G,0) i) C'_I(Q,E’).

These are C°(G)-linear operators corresponding to elements &y € Hom(E,E'), &, €
Hom(C,C'), and u € CYG,E — C'). The last component ¢ vanishes by grading
conventions. It is straightforward to check that the condition D’ o ® = ® o D translate

into the above identities. [ |

The category of two-term representations up to homotopy of a Lie groupoid
G is denoted by Rep3°.. (G). We refer to [1] for more details about morphisms of

representations up to homotopy of arbitrary terms and for further examples.

2.3 Grothendieck construction

The relation between two-term representations up to homotopy and VB-groupoids is
a linear smooth version of the classical Grothendieck correspondence between fibered

categories and pseudofunctors, see [18, Section 5] or the more recent [29, Section 3.1].
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Given a two-term representation up to homotopy G ~ (E & CI1]), its
Grothendieck construction I' = t*C @ s*E = E is a VB-groupoid over G, defined as
a semi-direct product groupoid [17]. More precisely, the structure maps of the Lie
groupoid t*C @ s*E =2 E are defined by

s(c,g,e) =e, t(c,g,e)=2a()+ ng(e), i, = (0°x), u(x),e), e € E,
(€1,91.€1) - (Cy, 95, 85) = (Cl + Pgl (cy) — Yg1.92 (92)19192192)

(€. g.07 = (=pg () +yg14@),97", () + pg (@)

The main result of [17] shows that the previous construction yields a 1-1
correspondence between isomorphism classes. Our 1st theorem is an upgrade of that
result, showing that it is in fact an equivalence of categories. This is crucial for us, for

we are interested in studying the category of VB-groupoids as an invariant.

Theorem 2.7. The Grothendieck construction is functorial, and sets an equivalence of

categories

Rep sz—}term (G) — VB(G).

Proof. We know that this functor is essentially surjective, since, given a VB-groupoid,
by picking a cleavage, we can set an isomorphism with the Grothendieck construction
of a two-term ruth (cf. [17]). We will review this later. Let us now focus in showing that
the functor is fully faithful.

Let G~ E =E®Cllland G ~ £ = E' ® C'[1] be two-term representations up
to homotopy, and let I’ = t*C @ s*E = E and I'" = t*C' & s*E’ = E’ be the VB-groupoids

associated to them. We have to show that there is natural bijection
Hompepse () (€, €) = Homyp(g (T, ).

First, observe that any vector bundle map I' — I covering id : G — G is the
same as a pair of vector bundle maps ¢; : E — E/, $,: C — C’, and an element p €

CY(G,E — ('), as it follows from the following equation:

®(c,g,e) = (Pc(C) + uy(e), g, Pgle)).

We will show that & is a VB-map, that is, it commutes with the groupoid

structure maps, if and only if the components &5, ®,, and i define a morphism of
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4404 M. del Hoyo and C. Ortiz

two-term representations up to homotopy £ — &', that is, they satisfy the identities
in Proposition 2.6.

From the equations

Do t(c,g,e) = (Pgod)(c) + Dg(pfe)
tod(c,g,e) = (3 oc)c)+d (11y(e) + pf Pple),
it follows that ® commutes with the target map if and only if the 1st and 2nd conditions

in Proposition 2.6 hold.

From the equations

®((c,g7 ", 0 =@(—p5,9,0(c)) = (— Pepgc+ ngd(c), g, P(c))
(@(c,g ", 0) 7 = (@e(0),g7 1, 0) = (= pfPc(c), g, Pe(0))
we conclude that ® commutes with inversion if and only if the 1st and 3rd equations in

Proposition 2.6 hold.

Finally, from the equations

®((c,g,e)(C.h, &) =o(c+ ,ogcé ~ Yg,n&: gh, e)

= (Pc(0) + ¢ (psC) — Py n8) + 1gnes gh, P (@)
and

®(c,g,€)P(E, h, &) = (P(C) + 1ge, g, D) (Pg(E) + pyé, h, D5(8))

= (Dg(C) + ge + p§ P(E) + p§ 114 — ¥} PE(@), gh, Pp(E))
we have that ® preserves the multiplication if and only if the following equation holds:
c 5 = Ca (7 ¢, / 5
De(p5C) — (Vg n®) + 1ghe = kg€ + pg Pc(C) + pg 1pe — Vg Pr(@).

Since (c,g,e) and (¢, h, &) are composable arrows, we have that e = 9(¢) + ,ofé, and we

can rewrite the equation as

D (pEC) — (g n8) + igné = 1g(0(C) + py &) + pg D@ + pg 138 — v PE(@).
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Either assuming that ® is a VB-map or that its components are a morphism of ruths,
we already show that d¢(pc) — ,ogCDC(c) = 1140(c). Modulo this identity, we have that ®

commutes with multiplication if and only if
Ex c, = / = ~ ~
HgPp €+ pg hpe — Vg nPr(€) = ugpe — Pclyg e,

which is just the 4th and last condition of a morphism of representations up to
homotopy, as seen in Proposition 2.6.

Summarizing, we have shown that a VB-map yields a morphism of ruths, and
that a morphism of ruth yields a map ® commuting with multiplication, inverse, and

target, and therefore, units and source as well. [ |

Let us say a few words about how to break a VB-groupoid into a two-term ruth,
as promised. This was done in detail in [17]. We propose here a different approach that
will be crucial for us later. Recall that the arrow groupoid G’ of a Lie groupoid G is a
new Lie groupoid whose objects are the arrows of G, and where an arrow g’ < g is a

triple of composable arrows (¢’, h, g) in G, viewed as a commutative square as before:

xX <= x

g h\ |9 = g Lx) I Ly,

vV =—v

The composition on G is given by (9”,h’,g")(¢’,h,g) = (g",Wg'h,g). The Lie groupoid
maps 0,7 : G' — G and u : G — G’ corresponding to the source, target, and unit
are defined, at the level of arrows, by the formulas o(g’,h,g) = g, t(¢g’,h,g) = ¢/, and
w(@) = (9,91, 9). See [20, Section 4.1] for further details.

Lemma 2.8. There is a 1-1 correspondence between cleavages ¥ on I’ and VB-maps

p :0* — ©*T over G! satisfying u*p = id.

Proof. This is subtle, but tautological, and it is essentially the same computation done

in [21, Prop. 2.2.3]. Given X, we can define p : 6*" — 7*I via the formulas

pg.e)=t2(g,e) p(g. hg,v)=2(g ews(ge !,

g g . g.hg . .
whereec E,, € € E,;,y < x, and y’ < X’ are arrows in G, and g <—— g is an arrow in

G!. Since ¥ is unital the VB-map p satisfies u*p = id.
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4406 M. del Hoyo and C. Ortiz

Conversely, given p, we can define X(g,e) = p((g,id,,id,),id,). This arrow must
start in e because u*p = id, and must project over g, hence X is a cleavage. It is easy to

check that it is unital. Both constructions are mutually inverse. |

Given I and fixing a (unital) cleavage X, the VB-map p : ¢*LC — 7*[ in
Lemma 2.8 clearly encodes pseudo-representations pf, p¢ compatible with the anchor
map d : C — E, by defining pg(e) = p(g,e) and ,ogc(v) = ,o(idg,v). Moreover, a curvature

tensor y controlling the associativity is easily defined out of X as

Yon(@) = (g, pp(e)T(h, e)T(gh,e)”! — utT(gh, e)
so as to obtain an induced representation up to homotopy, fulfilling Proposition 2.5.

3 VB-Morita Maps

We develop here the characterization of VB-Morita maps that play a central role in our
paper. We provide a rapid overview to Morita maps, recalling notions and results, and
refer to [23] for more on Morita equivalences and differentiable stacks.

From the stack perspective, a Lie groupoid is a stack endowed with a presenta-
tion, and from the groupoid viewpoint, a (differentiable) stack is the Morita class of a
Lie groupoid (see e.g., [4, 27]). Morita equivalences of Lie groupoids can be defined either
by principal bibundles or by fractions of Morita maps. A Moritamap ¢ : G — G is a
map that is fully faithful and essentially surjective, in the sense that the source/target
map define a good fibered product of manifolds G = (M x M) Xy G and that the
map G Xy M — M, (y g ¢(x),x) — y is a surjective submersion [20, 2.2].

It is easy to see that a Morita map yields isomorphisms on the isotropy groups
and a homeomorphism on the orbit spaces. This result was improved with the following
characterization of Morita maps, that sheds light on the notion of differentiable stack,

and will play a crucial role for us. Given ¢ : G — G’ and given x € M, we write
¢:M/G—> M /G ¢ :(Gy N (0) = (Gl ~ Ny (0))
for the induced maps between the orbit spaces and the normal representations.

Proposition 3.1 (cf. [20, 23]). Let ¢ : G — G be a map. Then

(i) ¢ is fully faithful if and only if ¢ is injective and ¢, is an isomorphism on the

isotropy and monomorphism in the normal directions, for every x € M;
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(ii) ¢ is essentially surjective if and only if ¢ is surjective and ¢, is an

epimorphism for every x € M; in such a case, the map ¢ is open.

Thus, ¢ is Morita if and only if ¢ is a homeomorphism and ¢, is an isomorphism for

every x € M.

In this paper we are concerned with the study of Morita maps between VB-
groupoids. A VB-map (®,¢) : T — I’ is VB-Morita if ® is Morita. We are going to apply
the criterion given in Proposition 3.1 to the particular case of VB-groupoids, yielding
a characterization of VB-Morita maps in terms of fiber and base data. We are going to
analize first the case of the fibers that are very simple Lie groupoids.

A two-vect V is a category object in the category of vector spaces, or equiv-
alently, a VB-groupoid over the point groupoid * = . A two-vect V is equivalent to
a two-term chain complex V; 2 V, via the Dold-Kan correspondence. This complex

agrees with the core complex studied in general.

Lemma 3.2. Given ¢ : V — W a morphism of two vects, the following are equivalent:

1. ¢ is a (categorical) equivalence;
2. ¢ is VB-Morita; and

3. ¢ induces a quasi-isomorphism between the core complex.

Proof. Clearly 1 implies 2, and 2 implies 3. Conversely, since every sequence of vector
spaces splits, and since the Dold-Kan correspondence is a two equivalence, a quasi-
isomorphism between two vects is the same as a map homotopic to the identity, hence

3 implies 1. ]

Given ' — G a VB-groupoid, and given x € M, we denote by ', the fiber of
over x. This is a two vect, defined as the base change of I" along the inclusion x* = G.
Next we develop exact sequences relating the isotropies and normal representations of

the fiber, the total groupoid, and the base of a VB-groupoid.

Lemma 3.3. Given I’ — G a VB-groupoid, e € E, 7(e) = x, there is an exact sequence of

isotropy groups
1—->T,(e e —TIee — Gx,X)

and, when e = 0,, the latter map is surjective, and the natural section g — Og allows us

to express the isotropy of the total group as a semi-direct product

I'(0,,0,) = T,(0,,0,) x G(x,x).
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Proof. Itis easy and left to the reader. This exact sequence of isotropy groups actually

holds in any groupoid fibration. |

Given G =% M a Lie groupoid, the differential of the anchor map (¢,s) : G —
M x M at a point y 2 xisruled by the following exact sequence (cf. [20]):

0— TgG(y,X) — TgG — TYM x T,\M — NYM — 0,

where the last map sends (w, v) to [w] — glvl], here g acts by the normal representation.

Lemma 3.4. Given [ — G a VB-groupoid and given e € E, there is a natural exact

sequence
0 = Ty Tum (€€ = Tyl e) = TyG(X,X) > N,Ey — NE — N,M — 0
and when e = 0,, then d = 0 and the zero section yields splittings
Ty0.) ] (05, 0,) = Ty0 Tuie (O, 0y) ® TyG(x,%) N E = Ny E, & N, M.

Proof. In the next diagram of vector spaces the rows are exact, for in a submersion,
the tangent to the fiber is the kernel of the differential.

0 —— Tu(e)ru(x) EE— Tu(e)F _— Tu(X)G — 0

| | l

0 — > TeEx X TeExy —> TeE X TeE —> TyM x TyM — 0.

It follows from the Snake lemma that the kernels and cokernels of the vertical maps fit
into a long exact sequence. Since they identify with the tangent spaces to the isotropies
and the normal directions to the orbits respectively, the result follows. In the case on

which e = 0,, the horizontal sequences split by the zero section of the VB-groupoid. W

We are now ready to prove our 2nd theorem, asserting that VB-Morita maps are
exactly those maps that are Morita on the base and on the fibers. As seen in Lemma 3.2,
the latter is equivalent to requiring the map between the core sequences to be a quasi-

isomorphism.
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Theorem 3.5. A VB-map (®,¢) : I — I’ is VB-Morita if and only if the map on the base
¢ : G — G is Morita and the maps on the fibers ®, are Morita for all x € M.

Proof. Suppose that ® is Morita. Then ® is an isomorphism on the isotropies and
on the normal directions. By looking at the splitting isotropy sequence it follows that
d,, ¢ are isomorphisms on the isotropies. By looking at the splitting anchor sequence
it follows that ®,,¢ are isomorphisms on the normal directions. It follows that &, is
Morita for every x. Regarding ¢, in light of the criterion 3.1, it only remains to show that

¢ :M/G — M'/G is bijective. It is clearly surjective because of the following diagram:

E/T — > E/T

L

M/G —= M'/G,

but injectivity is also easy, as it follows by looking at the zero sections; Oz o ¢ = ® 0 0.

For the converse, suppose that ®,, ¢ are Morita. Then they are isomorphisms on
the isotropies and on the normal directions. By looking at the anchor sequence, and by
applying the five lemma, it follows that & is an isomorphism on the normal directions
and induces infinitesimal isomorphisms on the isotropies. By looking at the isotropy
sequence, and by applying the four lemma, it follows that ® is injective on isotropies.
Thus, again by criterion 3.1, it remains to show that (i) ® is surjective on isotropies, and
(ii) ® induces a bijection between the orbit spaces.

To show (i), let e € E, and write g = w(e), & = ®(e), g = ¢(g) = n(e'). Given
v e I''(¢,€) we seek for v € I'(e, e) such that ®(v) = v'. Let e L ebe any lift of g with
source e. Write ® (&) = € and ®(w) = w’. Then € & € is on the fiber I',,, and since
®,, is fully faithful, we can take e & &on T, such that ®(w) = v'w'~!. We can conclude
now that by taking v = ww.

Regarding (ii), it will follow once we show that ® is set-theoretically fully
faithful and essentially surjective. To prove set-theoretic fully faithfulness, let us fix
a cleavage X on I', and use it to canonically factor any arrow in I' as a vertical one

followed by a horizontal one. Then, given e;, e, € E, the following commutative square

[}
I'(ez2,e1) I'(e,, e))

Vs vE(T(v),e1) ! ViV OS¢ H(m(v)),e1) !

L Tx,(e2,pg(e1)) — LI F;/z(e’z,q>(p¢—1<g/)(€1)))

g€G(x2,x1) g'eG' (x5,x7)
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the vertical arrows are bijective, and since ®,, ¢ are fully faithful, the bottom arrow also
is. To prove set-theoretic essential surjectivity we start with an object ¢ € E’, we can
use a cleavage X’ to connect it with some € over an object in the image x’ = ¢ (x), and

conclude by the fiberwise essential surjectivity. |

We close this section by deriving several immediate corollaries that will be used

in the applications.

Corollary 3.6. Under the Grothendieck construction (cf. 2.7), quasi-isomorphisms of

representations up to homotopy correspond to VB-Morita maps over G.

Corollary 3.7. Let ¢ : G — G be a Morita map and [’ — G’ a VB-groupoid. Then the

canonical bundle map ¢*I"" — I is a VB-Morita map.

Corollary 3.8. A map ¢ : G — G’ is Morita if and only if its total differential d¢ : TG —
TG’ is VB-Morita.

Proof. Recall that the core sequence of TG is A, L TM, and over a point x, the kernel
is the Lie algebra of the isotropy G(x, x) and the cokernel is the normal direction N, M.
|

Corollary 3.9. A map ® : I’ — I’ over the identity is VB-Morita if and only if its dual

®* : I'"™* — I'* is so.
Corollary 3.10. The projection  : I’ — G is Morita if and only if T is acyclic.

4 Morita Invariance of VB-cohomology

We overview here the notion of VB-cohomology, revisiting some results from [17] and
[10], and as the 1st application of our previous results, we prove here the Morita invari-
ance of VB-cohomology. This generalizes both the Morita invariance of differentiable
cohomology (cf. [12]) and of deformation cohomology of Lie groupoids (cf. [13]), and is a
solid step towards achieving Morita invariance of ruth cohomology.

Given G a Lie groupoid, its differential cohomology H*(G) is obtained by taking
the cohomology of the differential graded algebra of functions C(G). The differential
cohomology of G with coefficients in a representation H*(G, E), or more generally, with
coefficients in a representation up to homotopy H*(G,€), is computed by using the

graded module C(G, E) (resp. C(G, £)) and the differential given by the representation.
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Given a VB-groupoid I' =% E over G =% M, the following two subcomplexes of
C(D) can be considered: the linear complex Cy;,(I') (cf. [10]) and the VB-complex C(I')
(cf. [17]). The 1st one consists of the fiberwise linear cochains, and the 2nd one consists

of the fiberwise linear cochains ¢ that are projectable, in the sense that they satisfy
i) o(vy,... ,Vp,l,Og) =0, and
ii) Py, V00 = @ (vy, ..., Vp).

A simple computation shows that ¢ is projectable if and only if the following hold:

i) ¢(vy,...,v,_1,09) =0, and
it") 8(¢)(vy,..., vy, 04 = 0.

The linear cohomology H}; (') and the VB-cohomology Hy,(I') are defined as the
cohomologies of the complexes Cj, (I') and Cy5(D).

It turns out that the linear and VB cohomologies are isomorphic. This is proven
in [10, Lemma 3.1]. We review that proof here in a rather conceptual version, based on

discussions with the authors of that article.
Proposition 4.1. The inclusion yields an isomorphism Hy(I) 3 Hy,, (D).

Proof. Consider the following increasing filtration on Cy;,(I):
Cyp@M)=F, CF,C--- CCy,(D),

where F; consists of the cochains « such that both » and dw vanish over sequences
(v1,...,vp) finishing on i zeroes. Note that F{ = Cgin(z) for j < i. We will show that the

inclusion F; C F;,, is a quasi-isomorphism for all i and therefore
Hip(D) = H*(Fy) = H¥(Fieyy) = Hi, (D).

Let ¥ be a cleavage in I'. Given (vy,...,v,) € r'®, denote by o(vy,...,v,) the
unique arrow in ¥ that has source s(vp) and projection 7w (v ... vp,). We can then define a

homotopy operator by
hiCh, @D = Cl D) RV, V) =V, Vo (v, V) ).

Note that h preserves the filtration, namely h(F;) C F;. We claim that the chain map
I =id + (—1)P(hs — 8h) is a homotopy inverse for the inclusion F;_; C F;. We must then
show that I(F;) C F;_;.
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When computing I(¢) several cancellations occur, and we get

I(¢)(Vlr e /Vp) =¢(V11 e erG(VI! e er)_l) + (_1)p¢(V2! . errU(Vll . ‘!Vp)_l)
— Wy, V1,0V, V)T = (mDP(Vy, .,V 0 (Vg vp) ).

If in addition v, = 0, for some g, then all the o arrows appearing in the above equation

are 0, and we can rewrite

1@y, V) = (CDPG(Vy oo Vi, Or o) = (DPO(va, oV, On gy, )

In particular, if ¢ € F;, then I(¢) vanishes on sequences ending in i — 1 zeroes, and the
same holds for §I(¢) = I(§(¢)), from where the result follows. |

The constructions Cy;,(I'), Cyp(I'), Hyp(I') are functorial on I, for any map & :
I — I must preserve linear and projectable cochains. Our next theorem shows that VB-
cohomology is a VB-Morita invariant. Its proof is a rather straightforward combination

of previous results.

Theorem 4.2. Let ® : ' — I be a VB-Morita map. Then the induced map in VB-

cohomology ®* : Hy,(I'") — Hyp(D) is an isomorphism.

Proof. As shown in [10], the natural projection Pr @ — Cp D), PLf(y) =
d%|t=0f(ty), satisfies P12“ = Pr and commutes with the groupoid differential. If we denote
by K = ker(Pr), then we have a natural direct sum decomposition of the space of

differentiable cochains, and hence another one at the level of cohomology
H*(I') = Hyp(D) & H*(K).

Now, given @ : I’ — IV VB-Morita, since the differential cohomology is Morita invariant

(cf. [12, Thm 1]), we have an isomorphism
HI./B(E/) D H.(KD) i HT./B(L) S H.(KL)

and since it has to preserve the direct sum decomposition, we can conclude that the

induced map on VB-cohomology is an isomorphism as well. |
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We will derive two corollaries out of this theorem. The 1st one asserts the Morita
invariance of ruth cohomology. In [17] VB-cohomology is related to the cohomology with

coefficients in a ruth.

Proposition 4.3 (cf. [17, Thm 5.6]). Given G ~ E @ C a two-term ruth, there is a

canonical isomorphism

C(G,E® C) — Cyp(T1]
between the differential complex of G with coefficients on E @ C and the VB-complex of
the dual of the Grothendieck construction, shifted by 1.

Combining this with our previous theorems we get the following corollary:

Corollary 4.4. Let ¢ : G — G’ be a Morita map and £ a two-term representation up to

homotopy of G'. The induced map H*(G, ¢*£) — H*(G, ) is an isomorphism.

The 2nd corollary presented here is an independent conceptual proof of
the Morita invariance of deformation cohomology. Given G a Lie groupoid, its
deformation cohomology H;.((G) was introduced in [13]. Its differential may seem
arbitrary a priori, but it turns out to be very efficient in describing important properties
of the Lie groupoid. We refer the reader to [13] for the definition of the deformation
complex, and using their notations, we show next how we can recover it from our

framework.

Proposition 4.5. The following map is an isomorphism of complexes:
Caef(G) = Cyp(T*G) e g (Vo V) > (Vl,c(n(vp),...,n(vl))).

Proof. The formula clearly defines a map CZ ef(g) — Cﬁn(T*G) for each p. Moreover, it

is immediate that ¢, satisfies condition i). By definition,

Pac(V) = —(v1,¢(0,9)c(9) ) + D_(vy, c(3;9))

>2
and

(o) (V) = (v4,C(399)) — (vovy,¢(3,9)) + D (vy, €(8;9))

i>2
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from where, denoting w, = (:(819)6(809)_1 and w, = c(9y9), we have

Dy (V) — 0(d) (V) = (Vv Wowy) — (Vy, Wy) — (v, wy) =0

since the canonical pairing T*G x TG — R is multiplicative. This proves not only that
the map commutes with the differential, but also that for arbitrary ¢ both ¢, and d(¢,)
satisfy i), and therefore, the map takes values in the VB-complex. It is straightforward
to check that it is bijective. |

The previous proposition brings some light over the very definition of the
deformation complex, and at the same time, provides us with conceptual simple proofs
for two of the theorems of [13].

Corollary 4.6. [13, Thm 1.1] A Morita equivalence yields an isomorphism on deforma-

tion cohomologies.
This is an immediate application of Corollary 3.8.

Corollary 4.7. [13, Thm 1.4] A cleavage on TG yields an isomorphism between the
deformation cohomology and the cohomology H(G,A; & TM) with coefficients in the

adjoint representation up to homotopy.

It is remarkable that even though we need a cleavage to relate the cohomology
with coefficients in the adjoint representation with either deformation cohomology
or VB-cohomology, these two theories compare canonically by just unraveling the

deformation differential (cf. Proposition 4.5).

5 Applications to Symplectic Geometry

In this section we deal with two applications of our results to symplectic geometry. The
1st one, due to conversations with Rui Fernandes, deals with an instance of Marsden—
Weinstein reduction, and it will be continued in the forthcoming paper [28]. The 2nd
one is about pre-symplectic groupoids, which are the global objects integrating Dirac
structures. We provide a characterization of them in terms of VB-Morita maps, and
derive a simple conceptual proof of the global-to-infinitesimal correspondence studied
in [9].
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5.1 An instance of Marsden-Weinstein reduction

Let G ~ M be a Lie group acting on a manifold. The corresponding infinitesimal action
is denoted by g — X(M); u — uy,. It is well known that there is a canonical lift to a

symplectic action on the cotangent bundle (T*M, w_,,), namely

GATM g (x,&)=(gx,§o0dg(g ).

This action is always Hamiltonian with moment map u : T*M — g* given by u(§)(u) =
£(uy(x)), for every £ € TiM and u € g. Within the language of VB-groupoids, we have

the following conceptualization.

Proposition 5.1. If G x M = M is the action groupoid, then the anchor map of the
cotangent VB-groupoid T*(G x M) is given by the moment map u : T*M — g* of the

Hamiltonian lifted action G ~ (T*M, w,,,,).

Proof. The core bundle of the tangent VB-groupoid T(G x M) is the vector bundle g;, =
g x M — M. Its core complex is p : gy; — TM, where p(u,x) = uy(x) is the induced
infinitesimal action of g on M. The core complex of the cotangent VB-groupoid T*(G x M)
is just the dual complex p* : T*M — g;,, which coincides fiberwise with the moment map
w:T*M — g*. |

Now, when the original action G ~ M is free and proper, the quotient M/G
inherits the structure of a smooth manifold, and we can compare its cotangent bundle

with the above cotangent VB-groupoid.

Proposition 5.2. The cotangent of the action groupoid and the cotangent of the
quotient manifold are VB-Morita equivalent. The Marsden-Weinstein reduction T*M//G
of the Hamiltonian action G ~ (T*M, w,,,) identifies with the cotangent bundle T*(M/G)
of the orbit manifold.

Proof. Letn : (Gx M = M) — (M/G = M/G) be the quotient map. Since the action
is free and proper this is a Morita map. Its tangent map is therefore VB-Morita (cf. 3.8),

and we can factor it as a fixed-based map followed by a pullback

(T(G x M) = TM)

T

(T TM/G) = 7y T(M/G)) —— (T(M/G) = T(M/G)),
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These three maps are not only VB-Morita, but also maps of LA-groupoids, see for exam-
ple, [8]. Since the pullback of VB-groupoids preserves duality, and duality preserves

VB-Morita maps (cf. 3.9), after dualizing, we obtain the following diagram:

(T*(G x M) = gpp)

T

(@ T*(M/G) = On) —— (T*(M/G) = Omy),

The dual object of an LA-groupoid is a PVB-groupoid, a VB-groupoid endowed with a
compatible Poisson structure. Since the dual of an algebroid map is a Poisson relation,
we have that this two maps are Poisson for the canonical symplectic structures. When

we look at the anchor sequences of previous diagram, we get the following:

(1M > i)

(@ T*(M/G) — Opm) — (T*(M/G) — Omyo),

Since the vertical map is a quasi-isomorphism, we can identify #;T*(M/G) with the
kernel of the moment map j. Since the horizontal map is also a quasi-isomorphism, we

can identify T*(M/G) with the quotient by the action by G. This way we conclude. |

When the action is not free, we should still think of the groupoid (G x M = M)
as a presentation for the orbit space, just that it is not going to be a manifold in general,
but a stack. Its tangent bundle is a sort of Lie algebroid over a stack, and an analog of
the previous result should say that this Lie algebroid is Morita invariant. This implies
defining brackets on vector fields over stacks, which is far from straightforward. For
instance, the space of sections is a Lie two-algebra rather than a mere algebra. All this

is explored in detail in the forthcoming paper [28].

5.2 Integration of Dirac structures

A Dirac structure on M [11] is a subbundle L € TM & T*M that is Lagrangian with
respect to the canonical pairing (,) on TM & T*M :

(X, ), (Y, B)) = a(¥Y) + B(X),
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and involutive with respect to the Courant bracket [,] on I'(TM & T*M):
[X, )Y, Bl = (X, Y], LxB — iyda).

The Courant bracket restricted to the sections of L, together with the canonical
projection L — TM, make L into a Lie algebroid over M.

Pre-symplectic groupoids were introduced in [9] as the global counterpart of
Dirac structures. A pre-symplectic groupoid is a Lie groupoid G = M with dim(G) =
2dim(M) equipped with a closed multiplicative two-form w € Q2(G) that satisfies
kerds(x) N kerdt(x) N kerw, = {0} for any x € M. We will next provide a nice
conceptualization of this definition by using VB-Morita maps, that clarifies the relation
between Dirac structures and pre-symplectic groupoids.

Before doing this, recall that a symplectic groupoid is a Lie groupoid G =
M equipped with a multiplicative symplectic form o € Q2(G). They are the global
counterpart of Poisson structures. The multiplicativity of w is equivalent to o* : TG —
T*G,X — w(X,-) being a (VB-)groupoid morphism. In this case, we can rephrase the
non-degeneracy condition by requiring »* : TG — T*G to be an isomorphism. In
particular, symplectic groupoids have isomorphic adjoint and coadjoint representations
up to homotopy. We will see that the conditions defining pre-symplectic groupoids can
also be interpreted as a non-degeneracy condition on o” : TG — T*G.

Let G = M be a Lie groupoid and ® : TG — T*G a VB-map over G. For any x € M,

let @, denote the induced map between the fibers and
Px P
(60, 91) ¢ (Ax = T M) — (TiM = A})
the corresponding chain map between the tangent and cotangent complexes.

Lemma 5.3. The map & is VB-Morita if and only if the following conditions hold:
1. dim(G) = 2dim(M);
2. kerds(x) Nkerdt(x) Nker(¢,) = {0};
3. kerds(x) Nkerdt(x) Nker(¢;) = {0},

for every x € M.

Proof. Assume first that ® is VB-Morita. This is the same as saying that the induced

map of complexes

(4, &5 T M) - (TiM P, A%)
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is a quasi-isomorphism for every x € M. In particular, both complexes must have the

same Euler characteristic, from where
dim(4,) — dim(T,M) = dim (T;M) — dim (4})

and we have dimM = rkA = dim G — dim M, giving 1. Condition 2 follows from the
injectivity of the induced map on cohomology, and condition 3 from the injectivity of
the dual of the induced map in cohomology.

For the converse, note that 2. and 3. imply that (¢y, ¢;) is a monomorphism on
degree 1 cohomology and an epimorphism on degree 0 cohomology, and thus the Euler
characteristicof A, 2 T,M is greater or equal than that of T;M L A%, and the equality
only holds if both maps on cohomology are isomorphisms. But then 1. tells us that both

Euler characteristics must agree, hence we conclude. [ |

Given ® a VB-map as above, its dual ®* is again a VB-map from the tangent
to the cotangent. The map & is called symmetric if & = ®*, and skew-symmetric if
® = —@* If ¢ is either symmetric or skew-symmetric, then we can identify ¢, = +4¢;,
and conditions 2 and 3 in the above proposition agree.

The previous proposition combined with Theorem 3.5 provides a characteriza-
tion of Lie groupoids having quasi-isomorphic adjoint and coadjoint representations up

to homotopy. We can now conclude our characterization of pre-symplectic groupoids.

Proposition 5.4. Let w € ©2%(G) be a multiplicative closed two form. Then (G, w) is a

pre-symplectic groupoid if and only if the map o* : TG — T*G is a VB-Morita map.

In particular, pre-symplectic groupoids have quasi-isomorphic adjoint and

coadjoint representations up to homotopy.

Proof. We can identify » with the skew-symmetric VB-map o* : TG — T*G. The result

now follows as a corollary of the previous one. |

The previous proposition allows us to have a neat description of pre-symplectic
groupoids, and also clarifies considerably their relation with Dirac structures. In order
to do this, let us first revisit the very notion of Dirac structures. Given a Lie algebroid A
over M and given o : A — T*M, the induced map (p,0) : A - TM & T*M identifies with
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a Dirac structure if and only if rkA = dim M, (p, o) is injective, and for every a,b € I'(4)
the following hold:

i) o(@)(p®))+o(d)(p(a)) =0,
ii) ola, bl = Ep(a)b — £p(b)a —do(a)(p(b)).

A bundle map o : A — T*M satisfying i) and ii) is called an IM-2-form in [9]. It is
shown in [7, Thm 4.7] that an IM-2-form corresponds, via the construction A = —0*w,,,
to a two-form A € Q?(A) such that A* : TA — T*A is a VB-algebroid map. By abuse of
terminology, we also refer to such A as an IM-2-form on A. The conditions rkA = dim M
and (p,o) injective are easily seen to be equivalent to A* being a quasi-isomorphism
between the core complexes (same computation as in Lemma 5.3). Thus, we can rephrase

the notion of Dirac structure as follows:

Proposition 5.5. A Dirac structure over M is the same as a Lie algebroid A together with
a closed IM-2-form A € Q?(A) that induces a quasi-isomorphism between the tangent

and cotangent complexes.

The connection between pre-symplectic groupoids and Dirac structures becomes
quite evident now. Let L be a Dirac structure, and asssume that L, as a Lie algebroid,
integrates to a source-simply connected Lie groupoid G = M. Then, since Lie's 2nd
theorem holds for VB-algebroid morphisms [8, Prop 4.3.6], and since the base is source-
simply connected if and only if the total groupoid is [8, Rmk 3.1.1], the morphism A* :
TA — T*A integrates to a unique morphism of Lie groupoids o” : TG — T*G that is a VB-
map, necessarily induced by a closed two-form o € Q2(G). The VB-map o* : TG — T*G
is actually a VB-Morita map, since the induced map at the level of complexes (o, —c*) :
(A, > T,M) — (TfM — A}) is a quasi-isomorphism, and we easily recover (the non-

twisted versions of) the main results in [9].

Corollary 5.6 (cf. [9, Thms 2.2 and 2.4]). If a Dirac structure L C TM & T*M integrates,
as a Lie algebroid, to a source-simply connected Lie groupoid G = M, then G inherits
a unique structure of pre-symplectic groupoid. Differentiation yields a one-to-one

correspondence between pre-symplectic structures on G and Dirac structures on M.

Summarizing, integrable Dirac (resp. Poisson) structures provide a class of
examples of Lie groupoids having quasi-isomorphic (resp. isomorphic) adjoint and
coadjoint representations up to homotopy, and actually, this has to be the case if the

quasi-isomorphism (resp. isomorphism) is skew-symmetric. Our approach seems to
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unveil some connections between Dirac geometry and the pre-symplectic groupoids of
[9] on one side, and derived symplectic geometry and the quasi-symplectic groupoids of

[31] on the other side. We will further explore this elsewhere.

6 Two-Vector Bundles Over Stacks

We study here the category of VB-groupoids over G as an invariant of G. First we show
than any Morita map over G is a categorical equivalence. Even though VB-groupoids
with trivial core are the same as representations and hence a Morita invariant, we
show with a simple example that general VB-groupoids are not. Nevertheless, our main
theorem here shows that the derived category of VB-groupoids is so, solving an instance
of a problem posed in [1] about representations up to homotopy, and providing a notion

of two-vector bundles over stacks that includes the tangent construction.

6.1 VB-groupoids over a fixed base

Given ¢, ¥ : I = (I" = E’) > [ = (I' = E) VB-maps over G = (G = M), an isomorphism
o : ¢ = ¢ over G consists of a vector bundle map « : E' — I'|, covering id;,; such that
sa(e) = ¢(e), ta(e) = Y (e), and for every € L ein IV the equation ¥ (v)a(e) = a(e)¢(v)
holds. We say that a map ¢ is an equivalence if it admits a quasi-inverse, namely an
inverse up to isomorphisms.

We can realize an isomorphism o : ¢ = : I’ — I over G as a VB-map, by using
the arrow VB-groupoid EI, a variant of the construction in [20, 4.1]. Its objects are the
vertical arrows, L{) =T'|y = CHE, and its arrows are the commutative squares between

them, [6 =t*C® T & s*C. The structure maps can be witten as follows:
s(c',v,0) = (¢,s(v))  t(c,v,0)=(c,t(v)) i, v,c)=(ci(v)C)
u(c,e) = (c,u(e),c)  m((c",v,c), (c,v,0)= (" Vv,o).
The core sequence of I'! identifies canonically with C® C — C® E, (¢, c) — (c,3(c)).
There are two canonical projections o, 7 : I’ — I’ corresponding to the source

and target, and an inclusion u : I' — I'l corresponding to the unit. The maps o, 1 are

isomorphic through the identity map Fé — I', and this isomorphism is universal.

Lemma 6.1. There is a 1-1 correspondence between isomorphisms e : ¢ = ¢ : IV - T

over G and VB-maps « : I'" — I'! such that oo = ¢ and ta = .
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A VB-map ¢ : I’ — [ over G is a fibration if it yields an epimorphism between
the cores. This is an adaptation of the usual notion of fibration between Lie groupoids
(cf. [23, 25]). The following standard argument shows that every VB-map over G is a
fibration up to equivalence. Given ¢ as before, we build the fibered product I'" x r!

between ¢ and 7, and consider the canonical factorization (cf. [23, Rmk 6.2.6])

Z_(id,/ty %2

r' r.

Then 7 is an equivalence, with quasi-inverse the projection r;, and $ is a fibration.
When working with general Lie groupoids, every equivalence is a Morita map,
as it easily follows from characterization 3.1, but in general a Morita map need not to
be an equivalence. Examples of this are discussed in [20]. The next proposition shows
that within the VB framework these two notions agree. In light of Theorem 2.7, we can

think of this as a version of [1, Prop. 3.2.8], though our proof is completely independent.

Proposition 6.2. A VB-map ¢ : I’ — [ over G is Morita if and only if it is an

equivalence.

Proof. Given ¢ : I’ — I" a VB-Morita map, in the above canonical factorization ¢ = ¢1,
we have that 7 is an equivalence, and é is not only a fibration, but also VB-Morita, by
a two-out-of-three argument. It is enough to show that ¢ is an equivalence. Or in other
words, we may assume that the original ¢ is a VB-Morita fibration.

If ¢ is a VB-Morita fibration, it is fiberwise an epimorphism on the cores and an
isomorphism on the cohomologies, then by the fivelemma it must induce epimorphisms
E, — E, and also I’y — I',. The kernel K of ¢ is then a well-defined VB-groupoid.
Moreover, K must be acyclic, as it follows from Theorem 3.5 and the long exact sequence

in fiberwise cohomology induced by

0—-K—-TI'"—-T-—0.
Now let H, be any linear complement for K, C E’. Since (t,s) : ' — E' @ E' is
transverse to Hy ® H,, we have that H, = t~!(H,) N s~!(H,) is a vector bundle of twice the

corank of Hy, and H = (H; = H,) is a well-defined VB-groupoid. By counting dimensions
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we conclude that I = H ¢ K, then the restriction of ¢ to H is invertible, and that an

inverse for ¢|y is a quasi-inverse to ¢, concluding the proof. |

As a corollary of the proof of the previous proposition, we have the following

interesting consequence, reminiscent of the notion of stable isomorphism in K-theory:

Corollary 6.3. Two VB-groupoids I', I’ over G are equivalent if and only if there are
acyclic VB-groupoids 2, over G such that ' @ Q and I’ @ Q' are isomorphic.

Proof. A quasi-isomorphism ¢ : I'" — T factors as I'’ 4 I’ 2, I as before, with 7 an
injective quasi-isomorphism and ¢ a surjective quasi-isomorphism. It follows that ¢ has
a section, hence I = I' @ Q for Q = ker(¢). On the other hand, the inclusion ¢ always has

a retraction 7 : [’ — I’ and therefore I" = I’ @ ' with Q' = ker(x). [ |

6.2 Morita invariance of VB-groupoids

VB-groupoids over G, together with VB-maps over G, and isomorphisms of maps over
G, form a two category. For the sake of simplicity, we will restrict our attention to the
following one categories. The VB-groupoid category VB(G) has objects the VB-groupoids
and arrows the VB-maps, and the VB-groupoid derived category VB[G] has objects the
VB-groupoids and arrows the isomorphism classes of VB-maps.

As recalled before, the pullback of VB-groupoids induces a base-change functor
¢* : VB(G) — VB(G'), see for example, [8, Rmk 3.2.7].

Lemma 6.4. Given ¢ : G — G a map of Lie groupoids, the base-change functor
descends to the derived categories to give ¢* : VB[G] — VBI[G'].

Proof. One way to see this is by realizing isomorphisms of maps as VB-maps into the
arrow VB-groupoid I'/, and noting that there is a canonical isomorphism ¢*(I'Y) = ¢*(I')!
compatible with o, 7, 1, hence the base change of two isomorphic maps are isomorphic
through the pullback isomorphism. Other way is noting that, in light of Proposition
6.2, the category VB[G] is the localization of VB(G) by the VB-Morita maps, that the VB-
Morita maps over G are the fiberwise quasi-isomorphisms (Theorem 3.5), and that the

quasi-isomorphisms are stable under base change. |

It is well known that the category of representations Rep(G) of a Lie groupoid G

is a Morita invariant, it only depends on the orbit stack M//G. The question of whether
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the VB-groupoids, as a natural extension of representations, are a Morita invariant has
been open for a while, and admits two variants, depending on whether one works on the

derived category.
Problem 6.5. Are the categories VB(G) or VBI[G] a Morita invariant?

Regarding the Morita invariance of VB(G) we can easily find counterexamples.
Next we provide a simple example where the base-change functor along a Morita

fibration is neither essentially surjective nor fully faithful.

Example 6.6. Let G' = (S! x S! = S!) be the pair groupoid of the circle, G = (x = %)
be the one-point groupoid, and = : G’ — G the projection, that is a Morita fibration.
If E — S! is a nontrivial vector bundle, for example, the Mobius strip, then its pair
groupoid E x E = E is a VB-groupoid over G’ that is not isomorphic to a base-change
VB-groupoid. If I’ = (R x R = R) is the pair groupoid of the real line, viewed as an
acyclic VB-groupoid over G, then the VB-maps I’ — I" over G correspond to linear maps
R — R, whereas, a VB-map ¢*(I') — ¢*(I') over G’ correspond to a linear map Rg — Rg

that is the same as a function S! — R.

We address now the more refined question regarding the derived categories, and

present our main theorem, that establishes the Morita invariance of VB[GI.

Theorem 6.7. If ¢ : G — G is a Morita map, then the base-change functor ¢* : VBIG] —

VBIG] is an equivalence.

The particular case when ¢ is an equivalence can be derived from the result
on the previous subsection. Roughly speaking, we can push forward VB-groupoids and
VB-maps along ¢ by pulling back them along a quasi-inverse ¥ of ¢. The proof of the

general case is way more delicate and we postpone it to the next subsection.

Proposition 6.8. If ¢ : G — G is a categorical equivalence, then the base-change functor
¢* : VBIG] — VBIG] is an equivalence.

Proof. We just need to show that isomorphic maps ¢ = ¢ : G — G induce isomorphic
base-change functors between the homotopy categories. Now, if « : ¢ = ¢ is a natural
isomorphism, and if " is a VB-groupoid over G, then with the aid of a cleavage X on I'
we can build amap & : ¢*I' — ¥*I of VB-groupoids over G = M, by &, = %, ,. Note that

o(x
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@ need not to be invertible, but it is a fiberwise quasi-isomorphism. The map & depends
on ¥ up to isomorphism, but when passing to the derived categories we get rid of this

dependence, and moreover @ becomes invertible by Theorem 3.5. |

Theorem 6.7 is already quite interesting in the simple case on which G = (M =
M) is just a manifold and G = (L1;; Uj; = 11, Uy is the Lie groupoid arising from an open
cover {U;} of M. We can then interpret a VB-groupoid I" over G as the data of a two-vector
bundle over each U; and a sort of cocycle up to homotopy. It follows from our result that
such a cocycle can always be strictified, allowing a descent construction, and yielding a
globally defined two-vector bundle over M.

We propose here an alternative viewpoint over our Theorem 6.7. In light of
Theorem 3.5, the localization of VB-groupoids by VB-Morita maps projects over the
localization of Lie groupoids by Morita maps, which is the category of differentiable
stacks. Then we could define the VB-stacks over a given stack X as the fiber of that
projection. This way it is rather unclear whether a VB-stack over the orbit stack of G
can be realized as a VB-groupoid over G. Our theorem ensures that this in fact the case,
that localizing and taking fibers commute.

Finally, by combining Theorem 2.7, Corollary 3.6, and Theorem 6.7, we can give
a positive answer to (an instance of) the Morita invariance of representations up to
homotopy (cf. [1, Ex. 3.18]).

Corollary 6.9. The derived category of the two-term representations up to homotopy of

a Lie groupoid is a Morita invariant.

In [22] we explore a geometric realization of higher representations up to
homotopy as simplicial vector bundles over the nerve of the Lie groupoid. We expect
this to be useful in extending some of the results obtained here, such as the Morita

invariance, from the two term to the general case.

6.3 Proof of the main theorem

We proceed as follows. First we show that, by a standard argument, we can suppose that
¢ is a Cech fibration, an equivalence given by an open cover of the unit manifold. Then
we show that ¢* is fully faithful. Even though a map between pullback VB-groupoids
may not descend a priori, we show that it does so after averaging with respect to a
partition of 1, and that this averaging does not change the isomorphism type. This

gives fullness, and also faithfulness, after realizing an isomorphism of VB-maps as a
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VB-map, in the same way a homotopy of maps is itself a map. Finally, we show that ¢*
is essentially surjective, starting with an arbitrary VB-groupoid and replacing it with
other equivalent one that admits a cleavage with flatness properties, again by using a

partition of 1.

Step 1: Restricting to Cech fibrations

Given a Lie groupoid G =% M, and given U/ = {U;}; an open cover of M, we can
build the pullback groupoid Gy = (]_[J-,i GU;, U) = L1; U;) corresponding to the surjective
submersion |[; U; — M. Its structure maps are induced by those of G. The canonical

projection
ﬂu . Gu —> g

is a Morita fibration, we call it a Cech fibration. The kernel is just L U = 1 Us
This type of fibrations are cofinal among the Morita fibrations over G. If ¢ : G —
G is any other Morita fibration, then a collection of local sections o; : U; — M canonically

induces a Lie groupoid map o : G; — G, and we get a refining Cech fibration as follows:

G
/ld)
Gy — G .
Uy

We want to show that the derived category VBI[G] is a Morita invariant of G.
Given ¢ : G — G a Morita map, we need to show that the pullback is an equivalence
of categories. In light of the canonical factorization of a Morita map as an equivalence
followed by a Morita fibration (cf. [23, Rmk 6.2.6]), and in light of the particular case
already proven (cf. Proposition 6.8), we can suppose that ¢ is a Morita fibration. And
since Cech fibrations are cofinal among the Morita fibrations, by the following standard

argument, we can restrict our attention to them.

Lemma 6.10. If ¢* is an equivalence of categories for every Cech fibration, then the

same holds for every Morita map.

Proof. As explained, we can assume ¢* to be a fibration. So start with an arbitrary

Morita fibration ¢ : G — G. Take a refining Cech fibration as above, and by using the
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induced open cover {f]i = ¢~ 1(U;)};, build the corresponding Cech fibration over G:

. Ta
y —— G
o
du ¢
U
Gy — G .

The map ¢ induces another ¢,, completing the diagram. By hypothesis, the base-change
functors frzil = o*¢;; and m; = ¢*o* are equivalences of categories. Then o* has to be
an equivalence of categories. Moreover, by a two-out-of-three argument, the original

base-change functor ¢* also is. |

Step 2: ¢;; is fully faithful

We start by showing that it is full. Given n;, : G;; — G a Cech fibration, I and I/
VB-groupoids over G, and ¢ : 7;3(I) — JTZ(E/ )a VB—mg over G;;, we want to show that
there is a map ¢ : [ — I'” such that n(¢) = . This is equiv_alent to build a VB-map
¢ : T — I such that the following square commutes up to homotopy, where the maps

7,7’ are the canonical projections.

s
7f([) — T

wl/

I
Il ¢
Y
n " ’
) — ",

We will cook up ¢ by using the following elementary property:

Lemma 6.11. Let ¢ : G — G be a Morita fibration with kernel K. Amap ¢ : G —» H
factors through ¢ as V¢ = v if and only if ¥ maps K into identities.

Proof. This is a straightforward consequence of the fact that a map constant over the

fibers of a surjective submersion descends to the base manifold. |

In our case, both 7, 7’ are Cech fibrations with kernel K = d1 E; = L1 E;), where
q: E — M is the projection. We will show that  is isomorphic to a map ¥ that preserves

the kernel, and therefore it descends to give a map ¢ as we want.
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Let us a review a general construction. Given ¢ : ' — I’ a VB-map over G and

a : E — C' alinear map, the twisting of ¢ by « is the map defined below:

p5(e) = go(e) +d(a(e)) @€ < e) = (a(e) + ugy(€)) o p(g) o (a(e) + ugy(e) .

This way we have an isomorphism « : ¢ = ¢%, and actually, for any isomorphism « : ¢ =
Y over the identity of G we have ¢ = ¢°.

Coming back, we seek for a vector bundle map « : [[; E; — [[;C; C [[T}, that
amounts to be the same as a collection {o; : E; — C;};. Writing ¥y = [[; ¥; : [ [, E; — LI E;
and ¥y = [[; vy « LTy — L FJ’.i for the induced maps on objects and arrows, we can

define a family ,Bﬁ : Eji -~ C.

Jir Bji = Vj; o u — wo ;. This is the vertical obstruction for y

to preserve the kernel K = {(e, j) M (e, 1)}

(Vje).J)

(Wji(u(e).ji)
(Bji(e)j.J) T \

Wie,)) <——— Wi(e), 0.
(u(i(e).ji

This B is a cocycle, in the sense that Brj(@) + Bji(e) = Byi(e) holds for any k&, j, i.
We now integrate the cocycle g, using a partition of 1 {A,}; subordinated to {U,};,
by defining «; : E; — C;, o;(e) = > 1;(x)p;;(e). Twisting the original ¢ by « we get the

desired isomorphic map that preserves the kernel and descends to the quotient

PO W), 1) = (@)(€) + uw;(e),].J) o (Wjs(w(e)), 1) o (a;(e) + upy(e),i, i)
= (Z M ()Byi(@) + Biy(e) — D )‘k(X)ﬂki(e):jrj) +¥*(ule),j. )
k Kk

= (0,7,)) + ¥v*(u(e),j, i) = ¥v“(u(e),j,i).

We have now completed the proof of fullness. As we said before, in order to show
that the base change is faithful, which means injective on isomorphism classes of maps,
we realize an isomorphism as a VB-map, and use the fullness we have just established.

Let ¥, ¢ : T — I/ over G, such that 7} (¢) and 7;;(¥) are isomorphic, namely
there is a homotopy h : =/ ,(I) — n&(L’)I = ni‘{(L’I) such that oh = n;(¢) and
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th = ”Z{(W/)- Then since the base-change functor is full we know there exists an
W :T — I'" such that 7}, (k') = h, and therefore, oh’ =  and th’ = ¢’

Step 3: ¢* essentially surjective

Given I' over G,;;, we want to find I’ over G and an equivalence I = nz’f{(i). To
do this we first charac_terize the VB-groupoids over G, that are a pullback through r;,.
They are those admitting an /-flat cleavage X, namfg one that restricted to the kernel
K of m, is flat.

Lemma 6.12. A VB-groupoid I over Gy, is isomorphic to a pullback VB-groupoid I';; if
and only if it admits a cleavage X that is ¢/-flat.

Proof. Given a VB-groupoid I" over G, and given a cleavage X on it, there is an induced
cleavage on the base-change n;,*(I'), and this cleavage is I/-flat. Conversely, suppose that
I is a VB-groupoid over G and that is endowed with a ¢/-flat cleavage X. This cleavage
defines a free proper wide subgroupoid K C I', and therefore, a fibration with base
T/Kr (cf. [23, Prop. 6.2.4])

K- r L'/Kp
K Gy G

It is straightforward to check that I'/K — G is a VB-groupoid projection, and that
n;(L/Kr) is isomorphic to I. |

Consider now an arbitrary VB-groupoid I over G;,. First we will replace I'
by an equivalent VB-groupoid ' = ' @ Q, where Q is ;yclic, that does admit an
invertible cleavage ¥, in the sense that the associated pseudo-representation p is by
linear isomorphisms. Starting with a (unital) cleavage ¥, we regard it as a VB-map
p :o*T' — T over G! (cf. 2.8), and observe that this is a quasi-isomorphism, for it is
fiberwise invertible up to homotopy (cf. 2.5). Then by Theorem 3.5 p is a Morita map, and
by Corollary 6.3, we can find €/, 2" acyclic and an isomorphism ¢*I & Q' — *I' & Q".
We will further assume that our open cover U is good, in the sense that every finite
intersection is diffeomorphic to R™. The fact that these covers are cofinal is rather
standard. Then, since the unit bundle of any VB-groupoid over @ has to be trivial, we

conclude that Q' = Q" = ¢*(Q) = t*(R2), where Q is the unique acyclic VB-groupoid over
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G with unit bundle trivial of rank g (cf. Rmk 2.1). Since base-change preserves direct

sums, the resulting isomorphism
pliofCe) > " CoQ

correspond to an invertible cleavage X’ over I’ & Q (again by Lemma 2.8). For this we
need that the isomorphism p is trivial over the identities, namely u*p’ = id, but this can
be achieved by picking carefully a linear complement to the kernel when constructing
the quasi-inverse (cf. 6.2).

Now, starting with I a VB-groupoid over G;; and ¥ an invertible cleavage, we
can easily construct a new X that is symmetric, inﬁe sense that p;; = P !, p being the
induced pseudo-representation. This step is very easy. Just establish a total order on

the set indexing the open cover, and define a new cleavage ¥’ by setting

There is no ambiguity on the definition because ¥ is unital.

Finally, starting with I" and ¥ invertible and symmetric, we build a new cleavage
¥’ that is U-flat, by performing an averaging. Our cleavage X, invertible and satisfying
unital and symmetry, induces a ruth, with associated curvature tensor Yiji- We now
define

Biie) = D r(x)yj(e),

where 1, is a partition of 1 subordinated to the open cover. Our new cleavage is given by

Ti(9.€) = £;(g,€) + 0y iB;(e)

= %;i(9,€) +0g; D 7 (X)7jri(€)
r
=3;:(9,0) + > 2 ()0 ; jri(€)
r
=739+ Z)»r(X)(Eerri - %)
r

=> LET;5,
r
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It is easy to check now that the new cleavage ¥’ is U-flat:

R

= > LT T,y
r

= Z)‘rzkrzri = z:I/ci'
r

This completes the proof of our main theorem.

Remark 6.13. This proof has a cohomological nature. In step 2, when proving fully
faithfulness, we use the behavior of the map over the kernel to build a cocycle 8 €
CY(K,E — C') in the transformation complex, and in step 3, when proving essential
surjectivity, we build a cocycle y € C?>(K,E — C) measuring the failure of the cleavage
to be U/-flat. We show that the cohomology groups H!(K,E — C') and H*(K,E — C) =0

vanish, by building cochain integration to our cocycles, with the aid of a partition of 1.
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