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Abstract

New geochronological, isotopic and geochemical data were obtained from the late
Paleoproterozoic and Mesoproterozoic magmatic units of the Nico Pérez Terrane
(Uruguay). A U-Pb LA-ICP-MS zircon age of 1768 £ 11 Ma confirms the Statherian age
for the Illescas rapakivi intrusion, being thus comparable with the age of the Campanero
Unit felsic orthogneisses. Though both the Illescas and Campanero intrusions exhibit
dominantly granitic, meta- to peraluminous compositions, the first shows a dominant
shoshonitic and ferroan composition, whereas high-K calc-alkaline and magnesian to
ferroan compositions characterize orthogneisses of the Campanero Unit. Additionally,
Sm/Yb and Lan/Yby ratios indicate that both suites were emplaced in a thickened crust,
whereas Lu-Hf zircon data of the Illescas granite together with available Sm-Nd data of the
Campanero Unit point to significant recycling of an older, Archean and/or Paleoproterozoic
crust of the Nico Pérez Terrane. Results suggest a common origin for both the Illescas and



Campanero magmatism, probably related to a post-collisional/post-orogenic setting. On the
other hand, metagabbros of the Zanja del Tigre Complex present U-Pb LA-ICP-MS zircon
ages of 1479 £ 4 and 1482 = 6 Ma and tholeiitic gabbroic compositions. Geochemical and
Sm-Nd isotopic data show similarities with LIP-related intracontinental mafic magmatism,
suggesting a mixed magma source derived from depleted asthenosphere and fertile
subcontinental lithospheric mantle contributions. Emplacement of the metagabbros was
related to lithospheric extension in a continental rifting setting and, therefore, fertilization
of the lithospheric mantle probably took place during older Paleoproterozoic subduction-
related events. Coeval late Paleoproterozoic and early Mesoproterozoic magmatism is also
recorded in the northern Nico Pérez Terrane of southernmost Brazil, and in basement inliers
of the Kaoko Belt and the Angolan Shield (southwestern Congo Craton), thus suggesting a
common evolution of these blocks prior to the Neoproterozoic.

Keywords: rapakivi granites, shoshonitic to high-K calc-alkaline magmatism, juvenile
magmatism, Mesoproterozoic extension, Nuna supercontinent, coupled U-Pb & Lu-Hf
zircon data

1. Introduction

In last years, correlations of the Precambrian basement across the South Atlantic
Ocean have been significantly tightened up, mostly based on similarities in the Archean,
early Paleoproterozoic and Neoproterozoic record (e.g., Basei et al., 2005, 2008, 2011;
Goscombe and Gray, 2007, 2008; Oyhantcabal et al., 2009, 2011a; Konopések et al., 2014,
2016, 2017, 2018; Oriolo et al., 2016a, 2016b). However, two distinct magmatic events are
recorded in the African Congo Craton at ca. 1.77-1.75 and 1.53-1.45 Ga, which so far have
not been clearly documented in the South American counterpart (Kroner et al., 2003),
challenging the validity of these correlations.

The Nico Pérez Terrane of Uruguay and Brazil, South America, is one of the main
basement inliers of the Dom Feliciano Belt, which underwent significant crustal recycling
processes during the late Neoproterozoic Brasiliano Orogeny, related to the assembly of
southwestern Gondwana (Oriolo et al., 2016a, 2017; Basei et al., 2018; Oyhantcabal et al.,
2018a). This block is essentially made up of an Archean and Rhyacian basement, which
was strongly reworked by late Neoproterozoic metamorphism, deformation and granitic
magmatism (Oyhantcabal et al., 2011b, 2012, 2018a; Oriolo et al., 2016a, 2016¢; Hueck et
al., 2017; Lara et al., 2017; Masquelin et al., 2017). Subordinate late Paleoproterozoic and



Mesoproterozoic magmatism is recorded as well (Bossi and Campal, 1992; Mallmann et
al., 2007; Gaucher et al., 2011), though its petrogenesis and tectonic setting still remain
uncertain. Furthermore, the late Paleoproterozoic-Mesoproterozoic paleogeography of the
Nico Pérez Terrane in the global context of supercontinent assembly and break-up is still
unknown (e.g., Evans and Mitchell, 2011; Zhang et al., 2012; Pisarevsky et al., 2014).

In this contribution, new U-Pb LA-ICP-MS and Lu-Hf zircon, and whole-rock Sm-
Nd and geochemical data of so far poorly studied late Paleoproterozoic and
Mesoproterozoic magmatic units of the Nico Pérez Terrane are presented, in order to
determine the timing, petrogenesis and tectonic setting of both suites. Additionally, these
units are compared with contemporaneous magmatism in other ‘regions of South America
and southern Africa, providing insights into the late Paleoproterozoic-Mesoproterozoic

tectonic and paleogeographic evolution of southwestern Gondwana blocks.

2. Geological setting

The Nico Pérez Terrane (Bossi and Campal, 1992) is exposed in Uruguay and
southeastern Brazil and is separated from the Rio de la Plata Craton by the Sarandi del Yi
Shear Zone (Fig. 1; Oriolo et al., 2015, 2016b). In contrast to the Rio de la Plata Craton,
which is made up of Paleoproterozoic rocks and underwent cratonization during the late
Paleoproterozoic (Cingolani, 2011; Oyhantcabal et al., 2011b, 2018b), the Nico Pérez
Terrane comprises a protracted Archean to Ediacaran geological record, supporting its
allochthony with respect to the former (Oyhantcabal et al., 2011b, 2018a; Oriolo et al.,
2016a). Furthermore, both blocks were amalgamated along the Sarandi del Yi Shear Zone
during the late Neoproterozoic Brasiliano Orogeny, giving rise to crustal reworking and
metacratonization of the Nico Pérez Terrane (Oriolo et al., 2015, 2016b, 2017; Oyhantcgabal
etal., 2018a).

The basement of the Nico Pérez Terrane essentially consists of Archean and
Paleoproterozoic rocks, intruded by several late Neoproterozoic granitoids (Santos et al.,
2003; Oyhantcabal et al., 2011b, 2012, 2018a; Oriolo et al., 2016a; Lara et al., 2017). In
Uruguay, two main domains were defined for the Nico Pérez Terrane, namely the Cerro



Chato and Pavas blocks, though some relics are also observed as basement inliers within

the Neoproterozoic rocks of the Dom Feliciano Belt (Fig. 1; Oyhantcabal et al., 2018a).

The Cerro Chato Block is made up of Rhyacian high-grade orthogneisses of the
Valentines-Rivera Granulitic Complex, and supracrustal rocks of the Vichadero and
Valentines formations (Ellis, 1998; Santos et al., 2003; Oyhantcabal et al., 2011b, 2012,
2018a; Oriolo et al., 2016a; Rosiére et al., 2018). The Valentines-Rivera <Granulitic
Complex is intruded by the lllescas rapakivi granite (Fig. 2a), which yielded a Rb-Sr
whole-rock age of 1760 + 32 Ma (Bossi and Campal, 1992) and a comparable conventional
2Tpp/2%ph zircon age of ca. 1.75 Ga (Campal and Schipilov, 1995). Based on scarce
geochemical data, Gaucher and Blanco (2014) indicated an ‘intraplate setting for this

intrusion.

To the southeast, the Cerro Chato Block is bounded by the Sierra de Sosa Shear
Zone (Oriolo et al., 2016c), which separates (it from the Pavas Block. The latter is
constituted by Archean felsic orthogneisses, migmatites and metamafic rocks of the La
China Complex and metasedimentary rocks of the Las Tetas Complex (Oyhantcabal and
Vaz, 1990; Hartmann et al., 2001; Gaucher et al., 2011; Oyhantcabal et al., 2011b, 2018a).
Though the latter is assumed to be Neoarchean (Hartmann et al., 2001), its age is poorly
constrained between a maximum sedimentation age of ca. 2.7 Ga indicated by detrital
zircons (Hartmann et al., 2001) and a ca. 630-600 Ma metamorphic overprint constrained

by Ar/Ar phlogopite and muscovite data (Oriolo et al., 2016c¢).

Further basement relics occur as inliers in metasedimentary rocks of the Dom
Feliciano Belt. The Campanero Unit is one of the largest basement inliers and comprises
felsic orthogneisses (Fig. 2b), with scattered slivers of supracrustal rocks including
amphibolites, micaschists, BIFs and migmatites (Sanchez-Bettucci, 1998; Sanchez-Bettucci
et al., 2003; Oyhantcabal, 2005) that are interpreted as relics of the Las Tetas Complex. A
U-Pb conventional zircon age of 1735 + 32 Ma (Sanchez-Bettucci et al., 2004) and a U-Pb
SHRIMP zircon age of 1754 = 7 Ma (Mallmann et al., 2007) were obtained for felsic
orthogneisses of the Campanero Unit, both interpreted as the crystallization age of the

protolith. Likewise, an Ar/Ar hornblende age of 564.0 + 4.1 Ma reported for an amphibolite



provides a minimum Ediacaran age for metamorphism and cooling (Oyhantcabal et al.,
2009).

In addition, a Mesoproterozoic low- to medium-grade metavolcano-sedimentary
sequence, namely the Zanja del Tigre Complex, is present within the schist belt of the Dom
Feliciano Belt (Sanchez Bettucci and Ramos, 1999; Sanchez Bettucci et al.,2001;
Oyhantcabal et al., 2005, 2018; Basei et al., 2008; Hueck et al., 2018). This unit.comprises
metapelites, dolomitic marbles, marls, metatuffs, metagabbros and metarhyolites, which
were partially assigned to the Parque UTE and Mina Verdun groups (Poiré et al., 2003,
2005; Chiglino et al., 2008, 2010). However, due to the lack of well-exposed outcrops,
penetrative deformation and metamorphism (Rossini and Legrand, 2003; Oyhantcabal et
al., 2005), the term “Zanja del Tigre Complex” is preferred here. Besides, the Zanja del
Tigre Complex is separated by a tectonic contact from the Campanero Unit (Rossini and
Legrand, 2003). Oyhantcabal et al. (2005) reported U-Pb. ID-TIMS zircon ages of 1492 + 4
Ma from an intrusive metagabbro and 1429 + 21 Ma from a metavolcanoclastic rock,
whereas Gaucher et al. (2014) presented a U-Pb SIMS zircon age of 1461.8 = 3.9 Ma from
a metatuff (Oyhantcabal et al., 2018a). In addition, a U-Pb LA-ICP-MS zircon age of 1433
+ 6 Ma was obtained from a metarhyolite (Gaucher et al., 2011).

3. Methodology

Samples of late Paleoproterozoic and Mesoproterozoic igneous rocks were collected
in the field, in order to carry out a systematic geochemical, isotopic and geochronological
analysis (Electronic Appendix 1). Samples of metagabbros of the Zanja del Tigre Complex
and Campanero orthogneisses were analysed at Activation Labs, using the package 4E
Research INAA, Total Digestion - ICP, Lithium Metaborate/Tetraborate Fusion - ICP. In
the case of the lIllescas granite samples, major elements were measured with a
PANanalytical Axios Advanced wavelength dispersive XRF spectroscope at the
GeoForschungsZentrum Potsdam (GFZ). Crushed and dried samples were melted down to
tablets with lithium tetraborate metaborate (Fluxana FX-X65), with a sample to flux ratio of
1:6. The H,O and CO, contents were determined with a Vario EL Il (Elementar

Analysensysteme GmbH, Hanau). The determination of the sulfur content was carried out



by an ELTRA CS 200 (ELTRA GmbH, Neuss). Trace element analyses were performed at
the Geoscience Center of the Georg-August-Universitat Gottingen with a Perkin Elmer
DRC Il Inductively Coupled Mass Spectrometer (ICP-MS). Analyses were validated by
repeated independent sample preparation, blanks and analyses of two different international
reference standards. Results were analysed using the GCDKkit 4.1 software (Janousek et al.,
2006, 2016). Analytical data are presented in the Electronic Appendix 1.

Dating of zircon was carried out by the Laser Ablation Inductively Coupled Plasma
Mass Spectrometry (LA-ICP-MS) in the laboratories of the University of S&o Paulo in
Brazil (sample BUY 80-11), University of Bergen in Norway (sample UC-11) and at the
Geological Institute of the Czech Academy of Sciences in Prague (sample UC-10).
Description of zircon separation and particular analytical methods are provided in the
Appendix 1. All isotopic data are reported in the Electronic Appendix 2. In the case of the
sample BUY 80-11, Lu-Hf isotopic data were obtained as well (Appendix 1, Electronic
Appendix 3).

Ten samples of metamafic rocks ‘were selected for Sm-Nd isotopic analyses at the
Department of Geosciences and Natural Resource Management, University of Copenhagen,
Denmark. Rock powders were. repeatedly dissolved in 15 mL Savillex Teflon containers
using a 1:1 mixture of concentrated aqua regia and concentrated HF on a hotplate at 130 °C
for 72 h. During the acid exposure period, samples were repetitively treated in an ultrasonic
bath for a couple of minutes. Rock powders were spiked with a ***Sm-"°Nd mixed spike,
and the bulk REEs were separated over 15 mL glass stem columns charged with AG 50 W
cation resin. REEs were further separated over 1.8 mL Ln resin (Eichrom™ LN-B25-S)
loaded in 0.8 x 4 cm Poly-Prep® chromatography columns (BioRad™) using 0.2 and 0.5
mol L* HCI. Sm-Nd isotope measurements were made on a VG Sector 54 IT thermal
ionization mass spectrometer (TIMS). These isotopes were measured in a triple Ta-Re-Ta
filament setting at center filament temperatures of 1750-1820 °C, applying both static (Sm)
and multidynamic (Nd) routines for the collection of the isotopic ratios. Nd isotope ratios
were normalized to “*Nd/***Nd = 0.7219. The mean value of **Nd/***Nd for the JNdi-1
standard (Tanaka et al., 2000) during the measuring period was 0.512106 + 0.000010 (n =



4; 20). For further analytical details, see Frei and Polat (2013). Analytical results are
presented in the Electronic Appendix 4.

4. Results
4.1. Geochemistry
4.1.1. Late Paleoproterozoic magmatism

The composition of samples of both the Illescas intrusion and the Campanero Unit
correspond mostly to granites, though some samples of the latter plot in the granodiorite,
quartz-monzonite and foid-syenite field (Fig. 3a; Middlemost, 1994), and show
metaluminous to peraluminous and calc-alkaline compasitions (Figs. 3b, ¢; Shand, 1943;
Irvine and Baragar, 1971). On the other hand, shoshonitic and high-K calc-alkaline
compositions are dominant for samples of the Illescas granite and Campanero Unit,
respectively (Fig. 3d, Peccerillo and Taylor, 1976). In the classification scheme for granitic
rocks of Frost et al. (2001), the Illescas granite and Campanero Unit show ferroan and
dominantly magnesian to ferroan compositions, respectively (Fig. 4a), whereas both sets of
samples present calc-alkalic to alkali-calcic compositions (Fig. 4b). However, it is
important to outline to some samples of both suites record partial mobility of K,O and
Na,O, e.g., as recorded by the large dispersion of K,O for a given SiO, value (Fig. 3d).
Partial K,O, Na,Q and possibly CaO mobility is further supported by the W index (Ohta
and Arai, 2007), which indicates moderate weathering of some samples. For this reason,
petrogenetic inferences based on these elements must be considered with caution.

Trace elements normalized to primitive mantle (McDonough and Sun, 1995) of both
Illescas and Campanero samples show a similar pattern with a moderately negative slope
(Figs. 5a, b), though the former are generally more enriched in most elements than the
latter. LILE are typically enriched with respect to HFSE, and marked negative anomalies of
Nb, Ta, P and Ti are observed as well. Chondrite-normalized REE patterns (Boynton, 1989)
are also comparable for both sets of samples, showing enrichment of LREE with respect to
HREE (Figs. 6a, b) and moderate REE fractionation (lllescas granite, Lan/Ybn=7.61 to
33.87; Campanero Unit, Lan/Ybn=4.83 to 85.20). Additionally, negligible to slightly



negative Eu anomalies are observed (lllescas granite, Eu/Eu*=0.42 to 1.19; Campanero
Unit, Eu/Eu*=0.64 to 1.08). There are, however, some variations in the REE patterns of
both sets of samples, particularly in the case of the Campanero Unit. Ce/Yb of the Illescas
granite mostly varies between ca. 36 and 49, though two samples record values of ca. 20
and 90. In the case of the Campanero Unit, Ce/Yb values are scattered between ca. 31 and
196.

4.1.2. Mesoproterozoic magmatism

Metamafic rocks show gabbroic metaluminous compositions (Figs. 3a, b;
Middlemost, 1994; Shand, 1943). In both AFM and SiO, vs K,O diagrams (Irvine and
Baragar, 1971; Peccerillo and Taylor, 1976), they show a clear tholeiitic affinity (Figs. 3c,
d).

Trace elements show a relatively flat pattern and, though HFSE concentrations are
comparable to those expected for a N-MORB (Fig. 5¢; Sun and McDonough, 1989), there
is a significant enrichment in LILE (Cs, Rb, Ba, Pb) and a slight enrichment in Th, U and
Ta. On the other hand, a flat pattern with an enrichment of 5 to 20x regarding chondrite
composition is also observed in-REE (Boynton, 1989), revealing no significant REE
fractionation (Fig. 6¢; Lan/Ybn=0.85 to 1.54). Slightly positive or negative Eu anomalies

are present in some samples, despite being absent in most cases (Eu/Eu*=0.94 to 1.24).

4.2. Geochronology
4.2.1. Late Paleoproterozoic magmatism

Sample BUY 80-11 was collected from the lllescas granite. This porphyritic
intrusion is made up of K-feldspar, plagioclase, quartz and scarce biotite, with rapakivi
texture and bluish quartz as the most conspicuous features (Fig. 2a). Zircon crystals are
mostly prismatic and show oscillatory zoning (Fig. 7), which in some cases is observed in

both core and rim. A concordant age of 1768 + 11 Ma was obtained, considering 24 out of



26 zircon grains (Fig. 8a, Electronic Appendix), and interpreted as the age of

crystallization.

4.1.2. Mesoproterozoic magmatism

Two samples of metamorphosed gabbroic rocks were collected for geochronological
analysis. Sample UC 10 consists of a fine-grained matrix of recrystallized plagioclase,
epidote, chlorite and titanite surrounding large crystals of actinolite and an opaque mineral.
The rock also contains up to 2 mm large grains of quartz and it is not clear if the quartz was
a part of the primary igneous mineral association of the sample, or if it represents
dismembered quartz vein or even grains entrapped from the surrounding sedimentary rocks
during intrusion. Sample UC 11 has a very similar mineral content to the sample UC 10 but

lacks the large quartz grains.

Analyzed zircon grains from both samples are short prismatic crystals with
oscillatory zoning or their fragments (Figs. 7), supporting their magmatic origin. Out of
eighteen analyses of zircon grains from the sample UC 10, fifteen yielded similar isotopic
data that combine into a concordia U-Pb age of 1479 + 4 Ma, which is interpreted as the
crystallization age of the gabbroic melt. Three analyses yielded somewhat older dates that
cluster around an age of 1.55 Ga (Fig. 8b, Electronic Appendix). The LA-ICP-MS analysis
of twenty-four zircon crystals from the sample UC 11 provided a tight cluster in the
concordia diagram and the data combine in a U-Pb age of 1482 + 6 Ma (Fig. 8c, Electronic
Appendix), which is also interpreted as the time of crystallization of the magmatic

protolith.

4.3. Lu-Hf and Sm-Nd isotopic data

Lu-Hf data were also obtained for zircons of sample BUY 80-11 of the Illescas
granite. Statherian zircons yield enfy Vvalues scattered between -16.4 and -22.6 and
dominant Paleoarchean model ages between ca. 3.3 and 3.6 Ga (Fig. 9, Electronic
Appendix 3), pointing to a significant component of reworked older crust (see Section 5.1).

On the other hand, Sm-Nd data of the metagabbros show positive engq) values between



+3.46 and +5.99, together with dominant late Paleoproterozoic model ages, though values
scatter between ca. 1.6 and 2.5 Ga (Fig. 10, Electronic Appendix 4). These results indicate
a juvenile mantle-derived magma source, though the lowest engy Values and associated
early Paleoproterozoic to Neoarchean model ages suggest a subordinate crustal contribution

as well.

5. Discussion
5.1. Petrogenesis and tectonic setting of the late Paleoproterozoic magmatism

Scarce geochronological data for the Campanero Unit constrain the timing of
granitic magmatism at 1754 £ 7 Ma (U-Pb SHRIMP zircon; Mallmann et al., 2007),
whereas an age of 1760 + 32 Ma was indicated for the Illescas rapakivi granite based on
Rb-Sr whole-rock data (Bossi and Campal, 1992). Due to the lack of further
geochronological and geochemical data, the lllescas and Campanero magmatism was
tentatively interpreted as the result of .intraplate and arc magmatism, respectively
(Oyhantcabal, 2005; Gaucher and Blanco, 2014). Moreover, it is still unclear if there is a
link between these late Paleoproterozoic magmatic events and Rhyacian
tectonometamorphic processes recorded by the Valentines-Rivera Granulitic Complex,
implying multistage magmatism at ca. 2.18-2.10 Ga succeeded by high-grade
metamorphism and crustal anatexis at ca. 2.10-2.00 Ga (Santos et al., 2003; Oyhantcabal et
al., 2012; Oriolo et al., 2016a).

New geochronological data constrain the age of the Illescas rapakivi granite at 1768
+ 11 Ma (Fig. 8a), thus confirming the late Paleoproterozoic age suggested by Rb-Sr
whole-rock and conventional 2°’Pb/*®®Pb zircon data (Bossi and Campal, 1992; Campal and
Schipilov, 1995). On the other hand, geochemical data indicate that this intrusion
essentially comprises meta- to peraluminous granites with ferroan and calc-alkalic to alkali-
calcic compositions (Figs. 3, 4). Hence, the lllescas intrusion shows a clear affinity with
subalkaline A-type magmatism (Frost et al., 2001), similarly to other rapakivi granites
worldwide (e.g., Moore et al., 1993; Ramo and Haapala, 1995; Alviola et al., 1999; Costa et
al., 2016). Additionally, this intrusion plots in the late- to post-orogenic field of the R1-R;



tectonic discrimination diagram of Batchelor and Bowden (1985), further supported by
trace element compositions indicative of A,-type post-collisional magmatism (Fig. 11; Eby,
1992).

In the case of the Campanero Unit, felsic orthogneisses mostly correspond to meta-
to peraluminous calc-alkaline to high-K calc-alkaline granites (Fig. 3). Compositions are
dominantly magnesian to slightly ferroan, and calc-alkalic to alkali-calcic (Fig. 4; Frost et
al., 2001). Similarly to the Illescas granite (Fig. 11a), orthogneisses plot in the late- to post-
orogenic field of the R;-R, tectonic discrimination diagram of Batchelor and Bowden
(1985).

In spite of some differences (Section 4.1.1), the Illescas granite (1768 + 11 Ma) and
orthogneisses of the Campanero Unit (1754 + 7 Ma; Mallmann et al., 2007) exhibit strong
similarities in their geochemical fingerprint and show Statherian crystallization ages that
suggest a common tectonomagmatic setting. They present common aspects in their major
element geochemistry (Fig. 3), including also the potential tectonic setting (Fig. 11),
together with comparable trace element‘and REE patterns (Figs. 5, 6). Additionally, both
sets of samples present relatively -high Sm/Yb and Lan/Yby (Fig. 12), indicative of a
thickened crust (Mamani et al., 2010; Profeta et al., 2015; Hu et al., 2017). There are,
however, some variations_in these values, particularly in the Campanero Unit samples,
similarly to Ce/Yb (see Section 4.1.1). Such differences might result from differences in the
source, probably arising from heterogeneities related to the inherited crustal component
recorded by isotopic data (see below). Nevertheless, most geochemical proxies thus suggest
a common origin for the Illescas and Campanero intrusions, probably related a post-
collisional setting. Comparable associations of high-K calc-alkaline to shoshonitic
magmatism are common in post-collisional settings, as reported by Liégeois et al. (1998),
Oyhantcabal et al. (2007), Eyal et al. (2010) and Lan et al. (2012), among others.

Lu-Hf data of the Illescas granite point to dominant reworked crust, as revealed by
enr() values between -16.4 and -22.6, and associated Archean model ages (Fig. 9, Electronic
Appendix 3). When compared with Lu-Hf data of the Rhyacian Valentines-Rivera
Granulitic Complex and Ediacaran magmatism of the Nico Pérez Terrane (Oriolo et al.,

2016a), all three pulses of magmatism are aligned along an apparent crustal array with



178 u/r"HE =0.015, typical for a crustal reservoir (e.g., Griffin et al., 2002). Orthogneisses
of the Valentines-Rivera Granulitic Complex constitute the wall rock of the Illescas granite
and host Archean zircon xenocrysts, similarly to Ediacaran intrusions (Oriolo et al., 2016a).
Though subordinated mantle sources cannot be discarded, it can thus be inferred that the
Illescas granite mostly resulted from melting of Archean rocks (e.g., Pavas Block;
Hartmann et al., 2001; Oyhantcabal et al., 2011b, 2018a) and/or Paleoproterozoic
orthogneisses of the Valentines-Rivera Granulitic Complex, being thus comparable with
reworked crustal sources inferred for other rapakivi and A,-type intrusions (e.g., Eby, 1992;
Heinonen et al., 2010, 2014; Peng et al., 2012; Scandolara et al., 2013). In addition,
orthogneisses of the Campanero Unit present engq) Values of -13.5 and -13.4, with Tpw of
2.84 and 3.05 Ga, respectively (Mallmann et al., 2007), further supporting a dominant
reworked crustal source for the Late Paleoproterozoic. magmatism of the Nico Pérez

Terrane.

5.2. Petrogenesis and tectonic setting of the Mesoproterozoic magmatism

If compared with the Paleo- and Neoproterozoic, the Mesoproterozoic record of the
Nico Pérez Terrane is relatively scarce, being restricted to metavolcano-sedimentary rocks
of the Zanja del Tigre Complex (S&nchez Bettucci and Ramos, 1999; Sanchez Bettucci et
al., 2001; Oyhantcabal et al., 2005, 2018; Basei et al., 2008). Zircons yield U-Pb ID-TIMS
multigrain crystallization ages of 1492 + 4 and 1429 + 21 Ma for gabbroic and rhyolitic
intercalations (Oyhantcabal et al., 2005), respectively. In addition, a U-Pb SIMS zircon age
of 1461.8 £ 3.9 Ma and a U-Pb LA-ICP-MS zircon age of 1433 + 6 Ma were reported for
metattufs (Gaucher et al., 2011, 2014). Due to the lack of further geological, geochemical
and isotopic data, the tectonic setting of this early Mesoproterozoic volcano-sedimentary
unit still remains speculative, and was alternatively interpreted as the result of collisional
tectonics related to a Grenvillian tectonometamorphic event (Campal and Schipilov, 1999;
Gaucher et al., 2011) or extensional tectonics (Oriolo et al., 2016a; Oyhantcabal et al.,
2018a).

U-Pb LA-ICP-MS zircon ages of 1479 + 4 and 1482 + 6 Ma obtained for
metagabbros of the Zanja del Tigre Complex confirm the middle Calymmian age for mafic



magmatism (Fig. 8), being slightly older than associated rhyolites and tuffs (Oyhantcabal et
al., 2005; Gaucher et al., 2011, 2014). Trace element and REE patterns present significant
similarities with dolerite dykes of the Etendeka province (Trumbull et al., 2007) and low-Ti
flood basalts of the Parana (Peate and Hawkesworth, 1996), Karoo (Ware et al., 2018) and
Morondava (Bardintzeff et al., 2010) provinces (Figs. 5, 6). Nb/Yb and Th/Yb ratios show
that most samples plot above the MORB-OIB array (Fig. 13a), reflecting Th addition due to
crustal contamination (Pearce, 2008). Together with Nb/Yb vs TiO,/Yb data (Fig. 13b),
metagabbros thus show compositions that are compatible with those recorded by
continental rifting rocks (Pearce, 2008). Low Sm/Yb and Lan/Yby contrast significantly
with those of the Late Paleoproterozoic intrusions (Fig. 12; Mamani et al., 2010; Profeta et
al., 2015; Hu et al., 2017), pointing to lithospheric thinning, as expected for an extensional

setting.

Geochemical and Sm-Nd data reveal mantle-derived magmas as the main source for
the metagabbros, though Th and LILE enrichment together with the Sm-Nd fingerprint
accounts for a crustal component to some extent, compatible with those reported for
continental rifting (Fig. 13; Pearce, 2008). For back-arc basin basalts, Pearce and Stern
(2006) summarized different mechanisms to explain crustal signatures in asthenosphere-
derived magmas (e.g., Davies and Stevenson, 1992; Elliott et al., 1997; Taylor and
Martinez, 2003; Pearce et al., 2005), which are based on different sources for the crustal
component and can be evaluated based on Nb/Ta, Th/Ta, Th/Nb, Ba/Th and Ba/Nb ratios
(Pearce et al., 2005; Pearce and Stern, 2006).

In_metamafic rocks of the Nico Pérez Terrane, most Nb/Ta ratios vary between 12
and 18, with relative homogeneous Th/Ta (0.6-2.7) and Th/Nb (0.11-0.21), and
significantly higher Ba/Nb ratios (>60) (Electronic Appendix 1). In the first place, low
Nb/Ta ratios allow ruling out contamination of asthenosphere-derived magmas by
incorporation of continental lithosphere as a possible source of the crustal signature, which
is recorded by highly fractionated Nb/Ta ratios (>20) (Pearce et al., 2005; Pearce and Stern,
2006). Low Th/Nb ratios suggest a negligible component of deep subduction, further
supported by Th/Ta and Nb/Ta ratios that are similar to those of MORB (Pearce et al.,

2005). In contrast, high Ba/Th ratios suggest a significant contribution of shallow



subduction (Fig. 14; Pearce et al., 2005; Pearce and Stern, 2006), though the subduction
component might alternatively be inherited from an earlier subduction event, as in the case
of the East Scotia Sea and the Manus Basin (Pearce and Stern, 2006).

In sum, geochemical and Sm-Nd data provide robust evidence that Mesoproterozoic
mafic rocks of the Nico Pérez derived from metasomatized asthenospheric magmas or,
more likely, from a mixture of depleted asthenospheric and fertile subcontinental
lithospheric mantle magmas, emplaced during lithospheric extension, similarly to LIP-
related mafic magmatism (e.g., Peate and Hawkesworth, 1996; Bardintzeff et al., 2010;
Ware et al., 2018). The most likely mechanism to explain its subduction fingerprint are
contemporaneous shallow subduction or inheritance of an older subduction component
(Pearce et al., 2005; Pearce and Stern, 2006), being thus compatible with both back-arc and
continental rifting extensional settings. So far, no arc magmatism has been reported for the
Nico Pérez Terrane and adjacent areas during the Mesoproterozoic (see also Section 5.3)
and, consequently, inheritance seems to be the most probable explanation for the
subduction component, which can be attributed to older, Paleoproterozoic tectonomagmatic
events (e.g., Oyhantcabal et al., 2012, 2018a; Oriolo et al., 2016) that might fertilize the

subcontinental lithospheric mantle.

5.3. Regional implications

Geochemical, geochronological and isotopic data indicate a common origin for the
Illescas granite and the Campanero Unit, probably linked to a Statherian post-collisional
setting and a thickened continental crust (Section 5.1). A priori, this granitic magmatism
might be interpreted as the result of the major tectonometamorphic event recorded by the
Valentines-Rivera Granulitic Complex, implying high-grade metamorphism and crustal
anatexis at ca. 2.1-2.0 Ga (Santos et al., 2003; Oyhantcabal et al., 2012; Oriolo et al.,
2016a). Retrograde metamorphism is constrained by Th-U-Pb CHIME-EPMA monazite
and U-Pb LA-ICP-MS zircon overgrowth ages at ca. 1.98-1.80 Ga (Oyhantcabal et al.,
2012; Oriolo et al., 2016). Though these latter ages fill the record between the ca. 2.2-20

and 1.8-1.7 Ga magmatism, this magmatic gap of ca. 200 my may suggest that both events



were not related and, consequently, Statherian magmatism might record a distinct event in

the evolution of the Nico Pérez Terrane.

In the Brazilian counterpart of the Nico Pérez Terrane (Fig. 15; Oyhantcabal et al.,
2018a), U-Pb LA-ICP-MS zircon ages of 1785 + 42, 1768 + 24, 1764 + 29 and 1763 *+ 28
Ma were obtained for the Seival metagranite, which comprises granodioritic, monzogranitic
and leucogranitic intrusions with a post-collisional geochemical fingerprint (Camozzato et
al. 2013, 2017; Oyhantcabal et al., 2018a). Similarly, underformed granites of the
Taquarembd Block yield U-Pb LA-ICP-MS zircon ages of 1840 + 13.and 1766 + 14 Ma
(Girelli et al. 20164, b; Philipp et al. 2017). Further north, the Apiai Domain of the Ribeira
Belt hosts mylonitic granodiorites and syenogranites yielding U-Pb TIMS zircon multigrain
ages of 1772 £ 11 and 1752 + 9 Ma (Cury et al., 2002; Prazeres Filho, 2005), whereas a U-
Pb TIMS zircon multigrain age of 1790 + 22 Ma was obtained for associated metabasic
rocks (Siga Jr. et al., 2011a). Based on geochemical data, Cury et al. (2002) and Siga Jr et
al. (2011a) interpreted a post-orogenic or intraplate setting for this magmatism.

Along the southwestern Atlantic coast of Africa (Fig. 15), late Orosirian-Statherian
magmatism was also reported for the Kaoko Belt (Kroner et al., 2004; Luft et al., 2011). In
the Western and Central Kaoko Zones, several SHRIMP and conventional U-Pb TIMS
multigrain zircon ages of ca. 1.78-1.73 Ga were obtained for dominantly granitic and
granodioritic orthogneisses (Kroner et al., 2004; Luft et al., 2011), which present engg)
values between -2.05 and +4.30 (Luft et al., 2011). Additionally, felsic and subordinated
mafic orthogneisses show calc-alkaline and tholeiitic compositions, interpreted as the result

of island arc and oceanic island settings (Luft et al., 2011).

In-a similar way, the Angolan Shield, which comprises the southwestern part of the
Congo- Craton, records not only late Paleoproterozoic intrusive magmatism but also
deposition of volcano-sedimentary sequences (Fig. 15). An ignimbrite of the Humpata
Formation of the Chela Group constrains the timing of sedimentation at 1798 + 11 Ma (U-
Pb SHRIMP zircon; McCourt et al.,, 2013), whereas the crystallization of granitic,
granodioritic and subordinated gabbroic orthogneisses of the Epupa Complex is constrained
at ca. 1.86-1.75 Ga based on SHRIMP and conventional U-Pb TIMS multigrain zircon data

(Kroner et al., 2010, 2015). Geochemical data show typical calc-alkaline compositions for



these orthogneisses, whereas enqq) Values are largely variable, reaching the most negative
values between -10.2 and -6.3 in the southern Epupa Complex (Kroner et al., 2010;
Kleinhanns et al., 2013). Though unclear, the Epupa Complex together with the slightly
older Kamanjab Inlier (ca. 1.86-1.83 Ga) of the Angolan Shield are interpreted as the result
of continental arc magmatism (Kroner et al., 2010, 2015; Kleinhanns et al., 2013; McCourt
etal., 2013).

Correlations between the Dom Feliciano and Kaoko Belt are well-established,
mostly based on similarities in the Neoproterozoic geological record (Fig. 15; Goscombe
and Gray, 2007, 2008; Oyhantcabal et al., 2009; Basei et al., 2011; Konopasek et al., 2014,
2016, 2017, 2018; Oriolo et al., 2016a, 2016c). Additionally, the Nico Pérez Terrane
represents a basement inlier of the Dom Feliciano Belt and has an African affinity,
probably linked to the southwestern Congo Craton (Oriolo et al., 2016a; Oyhantcabal et al.,
2018a). Hence, a common late Paleoproterozoic evolution of the Nico Pérez Terrane,
basement inliers of the Kaoko Belt and the Angolan Shield seem plausible, possibly related
to the evolution of a continental magmatic arc. Kroner et al. (2010) indicated ductile
deformation and metamorphism contemporaneous with the emplacement of most intrusions
of the Epupa Complex, culminating with crustal anatexis and post-kinematic granites at ca.
1.76-1.75 Ga. Within this framework, intrusive rocks of the Illescas granite and the
Campanero Unit might be comparable to these late anatectic melts, thus recording a similar
post-orogenic scenario. Though the nature of this late event is uncertain, the accretion of an
island arc or comparable juvenile magmatic complexes along a convergent continental
margin would satisfactorily explain most data. If so, Lu-Hf and Sm-Nd data suggest that
the Nico Pérez Terrane and the southern Epupa Complex might represent relics of the

former continental margin.

In contrast, Statherian magmatism of the Nico Pérez Terrane was correlated with the
Florida mafic dyke swarm of the Piedra Alta Terrane (i.e., Rio de la Plata Craton, Fig. 1),
which yields a U-Pb ID-TIMS baddeleyite age of 1790 + 5 Ma (Halls et al., 2001),
suggesting a common evolution of both areas (Santos et al., 2019). However, the Florida
dyke swarm shows a tholeiitic geochemical signature linked to an extensional setting

(Bossi et al., 1993; Teixeira et al., 1999, 2013), showing a clear contrast with coeval rocks



of the Nico Pérez Terrane of Uruguay and southern Brazil. Thus, these differences further
support the allochthony of the Nico Pérez Terrane with regard to the Rio de la Plata Craton
(Oyhantcabal et al., 2011b, 2018a; Oriolo et al., 2015, 2016a, 2016b).

On the other hand, the Capivarita anorthosite, exposed in the Brazilian counterpart
of the Nico Pérez Terrane, yields a U-Pb LA-ICP-MS zircon age of 1573 + 21 Ma, with
variable ensr) Values between -5.64 and +6.42 that reflect both addition of juvenile material
and crustal reworking (Chemale et al., 2011). In this region, Camozzato et al. (2013, 2017)
obtained a U-Pb LA-ICP-MS zircon age of 1567 + 21 Ma for the Tupi Silveira amphibolite.
Similarly, amphibolitic xenoliths of Neoproterozoic intrusions exposed in the northern
Dom Feliciano Belt yield a U-Pb SHRIMP zircon age of 1563 £ 25 Ma and a dominantly
juvenile Lu-Hf signature recorded by positive ens(r) Values (Basei et al., 2013). In the Apiai
Domain of the Ribeira Belt, the Betara Formation hosts metabasic rocks with U-Pb TIMS
zircon multigrain ages of 1476 + 10 and 1489 = 11 Ma (Siga Jr. et al., 2011a), whereas the
Votuverava Group of the Ribeira Belt exhibits mafic magmatism yielding U-Pb SHRIMP
zircon ages of 1484 + 16 and 1488 + 4 Ma (Siga Jr. et al., 2011b; Campanha et al., 2015).
Metabasic rocks of the Apiai Domain are thus coeval with metagabbros of the Nico Pérez
Terrane of Uruguay, and also present a similar geochemical and Sm-Nd fingerprint,
suggesting a common origin in an extensional setting (Siga Jr. et al., 2011a, 2011b;
Campanha et al., 2015). Further north, in the S8o Francisco Craton, U-Pb LA-ICP-MS
zircon data indicate an age of ca. 1.43 Ga for volcaniclastic rocks of the Upper Tombador
Formation in the Espinhaco Supergroup, interpreted as the result of continental rifting
sedimentation and volcanism (Guadagnin et al., 2015a, 2015b), whereas U-Pb baddeleyite
ages of 1506.7 + 6.9 and 1501.0 + 9.1 Ma were reported for the Curaca and Chapada
Diamantina mafic dykes (Silveira et al., 2013). The latter are only slightly older than the
Zanja del Tigre Mesoproterozoic metagabbros and show a similar geochemical fingerprint.

Together with the late Paleoproterozoic intrusions, Mesoproterozoic granitic
gneisses yielding SHRIMP and conventional U-Pb TIMS multigrain zircon ages of ca. 1.55
and 1.45 Ga were identified by Seth et al. (1998), Kroner et al. (2004) and Luft et al. (2011)
in the Kaoko Belt. In the southwestern Angolan Shield, several undeformed intrusions

intruding the Epupa Complex yielded U-Pb SHRIMP zircon crystallization ages of 1.53-



1.42 Ga (Kroner and Rojas-Agramonte, 2017) and are coeval with UHT metamorphism of
Paleoproterozoic gneisses (Seth et al., 2003; Brandt et al., 2003). Likewise, a 1502 £ 5 Ma
U-Pb TIMS baddeleyite age was obtained for the Humpata dolerite sill, which corresponds
to widespread intraplate magmatism in the southwestern Angolan Shield (Ernst et al,,
2013). Early Ectasian intrusions are present as well (Kréner and Rojas-Agramonte, 2017),
being contemporaneous with the ca. 1.38-1.36 Ga Kunene Anorthosite Complex (Drippel
et al., 2007; McCourt et al., 2013), exposed immediately east.

In sum, several southwestern Gondwana regions, including the Nico Pérez Terrane,
basement inliers of the Kaoko Belt and the Congo-S&o Francisco Craton, record several
pulses of magmatism between ca. 1.56 and 1.36 Ga (Fig. 15), which imply local addition of
juvenile crust (Druppel et al., 2007; Chemale et al., 2011; Basei et al., 2013). Geochemical
and isotopic data, on the other hand, point to dominant extensional settings (Ernst et al.,
2013; Guadagnin et al., 2015a, 2015b; Kroner and Rojas-Agramonte, 2017), probably
linked to widespread continental rifting. Hence, both late Paleoproterozoic and early
Mesoprotezoic intrusions represent two distinct magmatic events in southeastern South
America, which, together with the Archean and Rhyacian record (Oriolo et al., 2016a;
Oyhantcabal et al., 2018a), further support correlations between the Nico Pérez Terrane and
the Angolan Shield.

Despite the lack of paleomagnetic data for the Nico Pérez Terrane, correlations
with the Angolan Shield may provide some hints to reconstruct its paleogeography during
the late Paleoproterozoic-Mesoproterozoic, which is so far unknown (e.g., Evans and
Mitchell, 2011; Zhang et al., 2012; Pisarevsky et al., 2014). Paleomagnetic data of the
Curacé mafic dykes (Fig. 15; Salminen et al., 2016) and similarities in the Calymmian-early
Ectasian magmatic record suggest that the Congo-S&o Francisco Craton was located at
moderate latitudes in the southern hemisphere, in a marginal position within the Nuna
supercontinent and relatively close to Siberia (e.g., Ernst et al., 2013; Pisarevsky et al.,
2014; Pehrsson et al., 2016). Within this framework, the late Paleoproterozoic
tectonomagmatic evolution of the Nico Pérez Terrane, basement inliers of the Kaoko Belt
and the Angolan Shield might be related to orogenic events related to Nuna assembly,

probably associated with an active margin along the western (present coordinates) Congo-



Sdo Francisco Craton (Evans and Mitchell, 2011; Pehrsson et al., 2016). Likewise,
extension-related intraplate Calymmian magmatism of the Nico Pérez Terrane might be
associated with Nuna break-up (Evans and Mitchell, 2011; Pisarevsky et al., 2014),
similarly to key Mesoproterozoic intraplate magmatic events recorded in the Congo-Séo
Francisco Craton and Siberia (Ernst et al., 2013), thus supporting a possible common

evolution of all these blocks.

6. Conclusions

The U-Pb LA-ICP-MS zircon age of 1768 £ 11 Ma confirms the Statherian age for
the Illescas rapakivi intrusion, being comparable within error with an age of the Campanero
Unit felsic orthogneisses. Both Illescas and Campanero intrusions exhibit essentially
granitic, meta- to peraluminous compositions. However, the Illescas granite show dominant
shoshonitic and ferroan compositions, whereas high-K calc-alkaline and magnesian to
ferroan compositions characterized orthogneisses of the Campanero Unit. Both units
present comparable trace element patterns, with enrichment of LILE with respect to HFSE
and marked negative anomalies of Nb, Ta, P and Ti. Additionally, Sm/Yb and Lan/Yby
ratios indicate that both suites were emplaced in a thickened crust. On the other hand, new
Lu-Hf data of the Illescas granite together with available Sm-Nd data of the Campanero
Unit point to dominant crustal reworking processes for this late Paleoproterozoic
magmatism, implying recycling of older Archean and/or Paleoproterozoic crust of the Nico

Pérez Terrane.

Geochemical, isotopic and geochronological data suggest a common origin for both
the lllescas and Campanero magmatism, probably related to a post-collisional/post-
orogenic setting. Coeval magmatism is also recorded by the Seival Metagranite (northern
Nico Pérez Terrane, Brazil), basement inliers of the Ribeira and Kaoko Belts, and the
Epupa Complex in the Angolan Shield (southwestern Congo Craton). Altogether,
geochemical and isotopic data of all these units can be interpreted as the result of late
Orosirian-early Statherian convergence along a continental margin, likely to be represented
by the Nico Pérez Terrane and the southern Epupa Complex. Along this margin, not only

reworked continental arc magmatism but also juvenile suites representing island arc and/or



ocean island magmatism were recorded. The latter were probably accreted along the
continental margin, triggering metamorphism and deformation mostly preserved in the
African complexes. Within this framework, the Illescas and Campanero magmatism might
be thus comparable with late anatectic melts of the Epupa Complex recorded at ca. 1.76-

1.75 Ga, probably succeeding accretional tectonic events.

On the other hand, metagabbros of the Zanja del Tigre Complex present'U-Pb LA-
ICP-MS zircon ages of 1479 £ 4 and 1482 + 6 Ma and tholeiitic gabbroic compositions.
Trace element and REE patterns are comparable to those recorded by LIP-related mafic
magmatism, such as low-Ti basalts and dolerites of the Parana-Etendeka-Karoo province.
In this sense, the most likely source might be a mixture of depleted asthenospheric and
fertile subcontinental lithospheric mantle magmas, with lithospheric mantle fertilization

resulting from Paleoproterozoic tectonomagmatic events.

The geochemical and isotopic signature of metagabbros suggests emplacement
during lithospheric extension in a continental rifting setting. Comparable extensional
magmatism and associated sedimentation is recorded between ca. 1.56 and 1.36 Ga in other
basement inliers of the Dom Feliciano and Ribeira Belts, the Sdo Francisco Craton,
basement remnants of the Kaoko Belt and the Angolan Shield. In contrast to
Paleoproterozoic and Neoproterozoic events, the Calymmian-early Ectasian evolution of
these southwestern Gondwanan regions is thus characterized by lithospheric extension,

implying local addition of juvenile crust.

Together with similarities in Rhyacian and Archean tectonomagmatic processes, the
late Paleoproterozoic-Mesoproterozoic record of the Nico Pérez Terrane allows tightening
up correlations across the South Atlantic between South America and Africa prior to the
Neoproterozoic. Based on similarities with coeval magmatism in the Angolan Shield and
the Congo-Sdo Francisco Craton, late Paleoproterozoic and Mesoproterozoic intrusions
might be associated with major orogenic and rifting events related to Nuna assembly and
break-up, respectively, indicating a common evolution of these blocks.
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Appendix 1 - Analytical techniques
U-Pb geochronology
Zircon separation techniques

Approximately 3 to 5 kg of rock material for each sample was crushed and
disintegrated using disc mill to obtain grain fraction between ca. 50-500 um in size. The
milled samples were sieved to obtain the size fraction <315 um and this fraction was
processed by using the Wilfley table in order to concentrate the heavy minerals. The heavy
fraction of the samples was loaded to sodium polytungstate (SPT) and subsequently to
diiodomethane (DIM) heavy liquids, followed by removal of the magnetic minerals from
the heavy fraction using the Frantz isodynamic separator.



Zircon imaging and LA-ICP-MS techniques

1) Zircons were arranged in rows, cast into epoxy resin discs having a diameter of 2.54 cm,
and polished to reveal grain centers. Prior to analysis, cathodoluminescence and transmitted
Images were obtained so that the best sites for analysis could be chosen. Zircon analyses
were performed using a Neptune multicollector inductively coupled plasma mass
spectrometer (ICP-MS) and an Analyte G2 excimer laser ablation (LA) system. Table S1
provides the cup and ICP-MS configuration as well as the laser parameters used during the
analysis. The analyses were conducted by groups of 13 samples, each sample providing 40
sequential measurements (integration time ca. 1 s/cycle). The U-Pb analysis was done in
the following order: two blanks, two NIST standard glasses, three external standards, 13
unknown samples, two external standards and two blanks. An interpolation of the four
blank measurement sequences, two before and two after the samples (bracketing method),
was subtracted from each one of the seven measured masses (202, 204, 206, 207, 208, 232
and 238).

The #°U isotope was not measured but mathematically calculated using the relative
abundance #*U/?**U=137.88. The *®Hg interference for **/Pb was corrected thanks to the
202, assuming **Hg/?®?Hg = 4.350360. Using the partially corrected 2°’Pb/?®Pb ratio as
an estimative for the age and the formulas of Stacey and Kramers (1975), the 2°Pb/?**Pb,
20Tpp/20ph and 2%8ph/?*Pb relative abundances (variable with the geological age) were thus
calculated. The common Pb (non-radiogenic) fraction of the isotopes 2°°Pb, *’Pb and *®®pb
could then be discounted, by subtracting from each one the **Pb signal multiplied,
respectively, by the three relative abundances calculated before. Another bracketing of
measurements (two sequences before and after samples) from NIST-612 standards was also
used to convert the three -total signals (Pb="*‘Pb+°®°Pb+¥'Pb+?®ph; Th=>*’Th;
U="*U+%*®U) in ppm units.

A final bracketing (three before and two after samples) of the GJ-1 standard (Jackson et al.,
2004) was then used to correct the effect of the fractionation on the four ratios (**°Pb/?*U,
207ppy235y, 27pp2%pp  208ph/232TH) before they could be finally be extrapolated through
best line fits to t=0 and then used to calculate the respective ages. Errors in all simple
arithmetic  operations were algebraically propagated, e.g., d(A-B)=dA+dB and
d(A/B)/(A/B)=dA/A+dB/B. Least squares fitting was the choice for the best line fits and,
on.all final results and plots, it was adopted the error framework (at the 2c level) already
available in Isoplot 3.70 (Ludwig, 2008).

Cup configuration

IC3 IC4 L4 IC6 L3 Axial H2 H4
202Hg 204Pb 206Pb 207Pb ZOSPb ~219’59 232Th 238U
Instrument operating parameters
MC-ICP-MS Laser ablation
Model ThermoFinnigan Neptune Type 193 nm Ar—F excimer laser
Forward power 952 W Model Analyte G2 — Photon Machines
Mass resolution Low (400) Repetition rate 6 Hz
Laser fluence 8.55 J/m”




|Spot size [32 um

Gas flow - laser ablation Data reduction

Cool/plasma (Ar) 16 L/min Interference correction | “Hg/%Hg | 4.350360
Auxiliary (Ar) 0.80 L/min

Sample cell gas (He)  |~1 L/min

Table S1. Cup configuration and instrument operating parameters for U-Pb LA-ICP-MS
analyses.

2) Zircon was transferred in ethanol from the pool of separated grains to-a double-sided
tape using pipette and mounted in 1 inch epoxy-filled blocks and polished using SiC and
diamond paste to obtain even surfaces suitable for cathodoluminescence imaging and laser
ablation ICP-MS analysis. Cathodoluminescence images of zircon were obtained using the
Zeiss Supra 55 VP scanning electron microscope at the University of Bergen. Prior to U-Pb
analysis, the carbon coating was removed and the sample surfaces were cleaned with 2%
HNO3, DI water, and ethanol. The ICP-MS U-Pb analyses were performed using different
instrumental setups with minor variations across 3 years and multiple analytical sessions.
Sample UC 11 was analysed at the University of Bergen, Norway using Nu AttoM high
resolution ICP—MS coupled to a 193 nm ArF excimer laser (Resonetics RESOlution M-50
LR). The LA conditions were set to 26 m spot size, laser energy of ca 4.1 J/cm?, repetition
rate of 5 Hz, flow of the He carrier gas at 730 ml/min (+5 ml/min N,). The timing of the
individual analyses was set to 15 s of gas blank and 30 s of zircon ablation followed by 25 s
of cell wash-out.

3) Sample UC 10 was analysed at the Institute of Geology of the Czech Academy of
Sciences, Prague, Czech Republic using Thermo Scientific Element 2 sector field ICP-MS
coupled to a 193 nm ArF excimer laser (Teledyne Cetac Analyte Excite laser). The LA
conditions were set to. 25 m spot size, laser energy of ca 3.2 J/lcm?, repetition rate of 5 Hz,
flow of the He carrier gas at 730 ml/min (+ 4 ml/min N;). The timing of the individual
analyses was set to 15s of gas blank and 35 s of zircon ablation followed by 35 s of cell
wash-out.

The U and Pb signals from the ablated zircon grains were acquired in time resolved
- peak jumping - pulse counting / analogue mode with 1 point measured per peak for
masses 2*Pb + Hg, ®Pb, ?’Pb, °®ph, #2Th, #*U, and ***U. Due to a non-linear transition
between the counting and analogue (attenuated) acquisition modes of the ICP instruments,
the raw data were pre-processed using a purpose-made Excel macro. As a result, the
intensities of *®U were left unchanged if measured in a counting mode and recalculated
from 235U intensities if the *®U was acquired in analogue (attenuated) mode. Data
reduction was then carried out off-line using the lolite data reduction package version 3.0
with VizualAge utility (Petrus and Kamber 2012). Full details of the data reduction
methodology can be found in Paton et al. (2010). The data reduction included correction for
gas blank, laser-induced elemental fractionation of Pb and U and instrument mass bias. For
the data presented here, blank intensities and instrumental bias were interpolated using an



automatic spline function while down-hole inter-element fractionation was corrected using
an exponential function. No common Pb correction was applied to the data due to the high
Hg contamination of the commercially available He carrier gas, which precludes accurate
correction of the interfering ?>*Hg on the very small signal of ***Pb (common lead). Primary
concentrations of common Pb in zircon are considered very low and were controlled by
observing the 2°®Pb/***Pb (radiogenic/common lead) ratio. Analyses with low values were
examined (if present) in more detail.

Residual elemental fractionation and instrumental mass bias were corrected by
normalization to the natural zircon reference material GJ-1 (Jackson et al., 2004). Zircon
reference materials 91500 (Wiedenbeck et al., 1995) and PleSovice (Slama et al., 2008)
were periodically analysed during the measurements for quality .control. The mean
Concordia age values ranging from 1059 + 7 Ma (20) to 1077 + 16 Ma (20) for 91500 and
from 337 £ 5 Ma (20) to 338 = 3 Ma (20) for PleSovice obtained from analyses performed
over the courses of different analytical sessions correspond perfectly and are less than 1%
within the published reference values (91500: “°’Pb/*°Pb age of 1065.4 + 0.3 Ma,
Wiedenbeck et al., 1995; Plesovice: 2°°Pb/?2U age of 337.1 £ 0.4 Ma, Sldma et al., 2008).

Lu-Hf isotopes

All Lu-Hf zircon analyses were carried out at the Institute of Geosciences,
University of Sdo Paulo on a Neptune multicollector inductively coupled plasma mass
spectrometer equipped with an Analyte G2 excimer laser ablation system. Lu-Hf isotopic
analyses were performed in the same zircon grains that were previously dated by U-Pb. The
laser spot parameters were: 39 um in diameter; ablation time of 60 s; repetition rate of 7 Hz
and He was used as the carrier-gas. Cup configuration and instrument operating parameters
are presented in Table S2. The 9 isotopes: '“Yb, *®Yb, (Hf+Yb+Lu), "Lu,
YO(Hf+Yb+Lu), Y"Hf, T®Hf, "°Hf and '®'Ta were collected simultaneously, on Faraday
cups.

Isobaric interferences of *®Yb and '"®Lu on "Hf constituted an analytical
challenge, particularly in the case of "®Yb, due to its abundance in zircons (Fisher et al.,
2014). For the *"®Yb mass fractionation corrections, two interference-free Yb masses were
measured (171Yb and 173Yb) and the exponential correction factor Py, was calculated,
following the approach of Woodhead et al. (2004). The same was done for the "°Hf,
whose correction factor By was obtained through the *"’Hf and *"°Hf measured masses.
YLy mass fractionation was corrected adopting Pry= pur, as this element only has one
interference-free isotope (*"°Lu). A decay constant for Y°Lu of 1.867 x10™* a* (Séderlund
et al, 2004), the present-day chondritic ratios of Y°Hf/"’Hf=0.282772 and
178 y/*""Hf=0.0332 (Blichert-Toft and Albaréde, 1997) and the depleted mantle values of
YoM Hf=0.283225 and *"°Lu/*""Hf=0.038512 (Vervoort and Blichert-Toft, 1999) were
adopted to calculate ey values. A two-stage continental model age was calculated
considering *°Lu/*""Hf=0.0150 for bulk earth (Griffin et al., 2002).



Between 4 and 10 spot measurements were carried out in the GJ-1 and Mud Tank
international standards in parallel with each measured sample, yielding values within
experimental error that are comparable to those measured in the Australian National
University (Table S3). These results are presented alongside the measured data, and attest
the external reproducibility of the new analyses. Furthermore, a comparison of both
YO uMTHE vs M OHEATHE and TOY b/ HE vs.PHE/MHE using the values measured for each
sample and for the standards show a random distribution (R2<0.1), indicating that the
interference corrections of 1®Yb and *®Lu on *"®Hf were correctly carried out (Fisher et al.
2014).

Cup configuration and interferences
L4 L3 L2 L1 Axial H1l H2 H3 H4
171Yb 173Yb 174Hf, 175Lu 176Hf, 177Hf 178Hf 179Hf lSl—I—a
174Yb, l76Yb,
174Lu 176Lu
Instrument operating parameters
MC-ICP-MS Laser ablation
Model ThermoFinnigan Neptune [Type 193 nm Ar—F excimer laser
Forward power (952 W Model Analyte G2 — Photon Machines
Mass resolution  [Low (400) Repetition rate 7 Hz
Laser fluence 8.55 J/m’
Spot size 47 pm
Gas flow - laser ablation Data reduction I
. . Yb/~"Yb 1.123456
Cool/plasma (Ar) 16 L/min Mass bias ey 0.7325
Auxiliary (Ar) 0.80 L/min ®Yb/MYb 0.786956
Sample cell gas (He) ~1 L/min . T uM™Lu 0.02655
Interference correction —r7zo. 173
Nitrogen 1.4 mL/min 178Yb/177Yb 1.973000
Hf/""Hf 1.46735

Table S2. Cup configuration and instrument operating parameters for Hf analyses,

following guidelines from Fisher et al. (2014).

Standard International Value Geochronological Research Center S&o Paulo
176Hf/177Hf 176Lu/l77Hf 176Hf/l77Hf 176Lu/177Hf
GJ-1 0.282015 0.282036+ 0.00017, n=36 0.000301+ 0.000010, n=3
Mud Tank | 0.282507 | 0.000042 | 0.282550 * 0.000071, n=3 0.000029 + 0.000003, n=3

Table S3. Comparison of standard international values (Elhlou et al., 2006; Woodhead and
Hergt, 2005) with values measured at the Geochronological Research Center of the
University of Sdo Paulo in this study.



Fig. 1. Geological map of the Nico Pérez Terrane (modified after Oyhantcabal et al.,
2011b, 2017; Masquelin et al., 2017; Spoturno et al., in press).

Fig. 2. a) Rapakivi texture of the Illescas granite. b) Felsic orthogneisses of the Campanero
Unit, affected by cataclastic deformation and cross-cut by Ediacaran mafic dykes (looking
down, top to SE).

Fig. 3. Major element results. Red: lllescas granite, blue: Campanero Unit, green:
metamafic rocks. Squares: this work, triangles: Sanchez Bettucci et al."(2001). a) TAS
classification diagram after Middlemost (1994). b) A/CNK vs A/NK plot after Shand
(1943). c) AFM diagram after Irvine and Baragar (1971). d) SiOz vs. K,O diagram after
Peccerillo and Taylor (1976).

Fig. 4. a) SiO, vs Fe* index = FeOy/(FeO; + MgO) after Frost et al. (2001). b) SiO; vs
MALI index = Na,O + K,0 - CaO after Frost et al. (2001). Red: Illescas granite, blue:
Campanero Unit, green: metamafic rocks. Squares: this work, triangles: Sdnchez Bettucci et
al. (2001).

Fig. 5. Multielement spider plots. Red: Illescas granite, blue: Campanero Unit, green:
metamafic rocks. Squares: this work, triangles: Sdnchez Bettucci et al. (2001). a) lllescas
granite (primitive mantle composition after McDonough and Sun, 1995). b) Campanero
Unit orthogneisses (primitive mantle composition after McDonough and Sun, 1995). c)
Metagabbros (N-MORB composition after Sun and McDonough, 1989).

Fig. 6. Chondrite-normalized REE plots (chondrite composition after Boynton, 1984). Red:
Illescas granite, blue: Campanero Unit, green: metamafic rocks. Squares: this work,
triangles: Sanchez Bettucci et al. (2001).

Fig. 7. Cathodoluminiscence images of representative zircons (scale: 100 pum).

Fig. 8. U-Pb diagrams (BUY 80-11: Illescas granite, UC-10: metagabbro, UC-11:
metagabbro). All errors depicted at 26 level.



Fig. 9. U-Pb vs. gy zircon data for the Illescas granite (red squares). Data of orthogneisses
of the Paleoproterozoic Valentines-Rivera Granulitic Complex and Neoproterozoic
granitoids of the Nico Pérez Terrane are also included (orange diamonds; recalculated after
Oriolo et al., 2016a). Data were recalculated considering a constant decay A
170 y=1.867x10"" year® (Soderlund et al., 2004) and CHUR values of
YO/ THf=0.282772 and *"°Lu/*"’Hf=0.0332 (Blichert-Toft and Albaréde, 1997). The
yellow area indicates a crustal array with *°Lu/*""Hf =0.015, typical for a crustal reservoir
(e.g., Griffin et al., 2002).

Fig. 10. U-Pb vs. eyg data for metagabbros. Depleted mantle (DM) evolution after
Goldstein et al. (1984).

Fig. 11. a) R; vs R, tectonic discrimination diagrams after Batchelor and Bowden (1985).
b) Ternary diagram for discrimination of A;- and A,-type granitoids after Eby (1992). Red:
Illescas granite, blue: Campanero Unit.

Fig. 12. SiO, vs crustal thickening proxies (Sm/Yb, Lan/Yby). Red: lllescas granite, blue:
Campanero Unit, green: metamafic rocks. Squares: this work, triangles: Sanchez Bettucci et
al. (2001).

Fig. 13. Discrimination diagrams for Mesoproterozoic basic rocks (after Pearce, 2008).
Squares: this work, triangles: Sanchez Bettucci et al. (2001).

Fig. 14. Th/Nb vs. Ba/Nb for Mesoproterozoic basic rocks (after Pearce and Stern, 2006).
Squares: thiswork, triangles: Sanchez Bettucci et al. (2001).

Fig. 15. Sketch map showing late Paleoproterozoic to early Neoproterozoic units along the
South Atlantic margin (modified after McCourt et al., 2013; Jelsma et al., 2018; Schmitt et
al., 2018). Phanerozoic volcano-sedimentary cover of the basement is not shown. NPT:
Nico Pérez Terrane, LAC: Luis Alves and Curitiba terranes, PB: Paranapanema Block, KC:
Kalahari Craton, DFB: Dom Feliciano Belt, RB: Ribeira Belt, BB: Brasilia Belt, WCB:
West Congo Belt, KB: Kaoko Belt, DB: Damara Belt. See Section 5.3 for details.
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Late Paleoproterozoic and Mesoproterozoic magmatism of the Nico Pérez Terrane
U-Pb LA-ICP-MS zircon age of 1768 + 11 Ma for the Illescas rapakivi intrusion
Illescas and Campanero intrusions related to post-collisional/post-orogenic setting
U-Pb LA-ICP-MS zircon ages of 1479 £+ 4 and 1482 + 6 Ma for tholeiitic
metagabbros

Metagabbros emplaced during lithospheric extension related to intracontinental rift



