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ABSTRACT
Among themodels applied to analyze survival data, a standout is the
inverse Gaussian distribution, which belongs to the class of models
to analyze positive asymmetric data. However, the variance of this
distribution depends on two parameters, which prevents establish-
ing a functional relation with a linear predictor when the assump-
tion of constant variance does not hold. In this context, the aim
of this paper is to re-parameterize the inverse Gaussian distribu-
tion to enable establishing an association between a linear predic-
tor and the variance. We propose deviance residuals to verify the
model assumptions. Some simulations indicate that the distribution
of these residuals approaches the standard normal distribution and
themean squared errors of the estimators are small for large samples.
Further, we fit the new model to hospitalization times of COVID-
19 patients in Piracicaba (Brazil) which indicates that men spend
more time hospitalized than women, and this pattern is more pro-
nounced for individuals older than 60 years. The re-parameterized
inverse Gaussian model proved to be a good alternative to analyze
censored data with non-constant variance.

ARTICLE HISTORY
Received 14 June 2021
Accepted 27 January 2022

KEYWORDS
Censored data; inverse
Gaussian distribution;
regression; SARS-COV-2; SUS

MATHEMATICS SUBJECT
CLASSIFICATIONS
62J05; 62J20

1. Introduction

The advantage of associating a distribution to the survival time is that itmakes the statistical
analysis more precise. However, the literature contains a large range of lifetime continu-
ous distributions [16]. The exponential, Weibull, log-logistic, log-normal, and generalized
gamma, are the most often used models in survival analysis [17,18].

On the other hand, the inverse Gaussian (IG) [32] distribution has not been used so
often to analyze survival data. This distribution belongs to the class of models to analyze
positive asymmetric data [24]. If the parameters of the IG distribution increase, it approx-
imates to the normal distribution, thus making it attractive to analyze asymmetric as well
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as symmetric random variables. For example, Whitmore [36] presented the adjustment of
the IG model to analyze data on the failure of aluminum reduction cells, while Gupta and
Kundu [14] adopted the EM algorithm to estimate its parameters. Basak and Balakrish-
nan [3] showed that the Newton-Raphsonmethod and the EM algorithm provided similar
results to estimate the parameters of this distribution. Hanagal and Bhambure [15] ana-
lyzed a bivariate dataset utilizing the IG distribution as the frailty model. Suzuki et al. [30]
proposed a time-promotion model based on the IG distribution to estimate the propor-
tion of cured individuals. Salha and Rasheed [26] showed that the IG kernel estimator
presented a smaller mean squared error in comparison with a Gaussian kernel estimator.
Finally, Songhua et al. [29] proposed an IG model with normal random effects, Punzo
[25] defined a re-parametrization based on the mode of this distribution, and Vasconce-
los [35] introduced the odd log-logistic generalized inverse Gaussian regression in some
applications.

However, the variance of the IG distribution does not allow establishing a direct func-
tional relationship with a linear predictor via a link function. In the literature, Ferrari and
Cribari-Neto [11] proposed a re-parametrization of the beta distribution to establish a rela-
tion between its mean and a linear predictor, while Nelson [22] utilized a re-parameterized
generalized normal distribution so that its expectation is zero and the variance is one.
Achim et al. [1] showed that the generalized normal distribution, as re-parameterized in
Nelson [22], can be obtained from a distribution rewritten in terms of the standard devia-
tion. In view of this, we can add more information to the models, thus allowing that both
the variability and the mean be explained by covariates.

In this context, the aim of the present study is to construct a re-parameterized inverse
Gaussian (RIG) distribution to enable establishment of a functional relationship between
a linear predictor and the variance of this distribution, specifically for the analysis of
censored data.

The paper is organized as follows. In Section 2, we present the RIG distribution, and
some of its structural properties. In Section 3, we define a regression with two systematic
components based on the RIG distribution. In Section 4, the diagnostic measures for the
new regression are reported to assess its adequacy. In Section 5, a Monte Carlo simulation
study is performed to evaluate the maximum likelihood estimates (MLEs) of the parame-
ters, and compare the empirical distribution of the residuals with the standard normal. In
Section 6, the new regression is applied to explain the length of hospital stay of COVID-19
patients in the Unified Health System in the City of Piracicaba, Brazil. Finally, we provide
the main conclusions of the study about the fitted RIG regression in Section 7.

2. The RIG distribution

A non-negative random variable T ∼ IG(μ, λ) follows an IG distribution with parameters
μ > 0 and λ > 0, if its probability density function (pdf) is

f (t) =
(

λ

2π t3

)1/2
exp
{
−λ(t − μ)2

2μ2 t

}
, t > 0. (1)

Equation (1) was pioneered by Schrodinger [27] to describe the time of the first passage
in Brownian motion. Subsequently, it was called the IG distribution by Tweedie [32] due
to the inverse relationship between the cumulative generating function of the first pass
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time distribution and the normal distribution [13]. Tweedie [33,34] presented some prop-
erties of this distribution as well as the density curves for some parameter values. Among
the basic characteristics, Tweedie [33] showed that the mean and variance of T are given,
respectively, by

E(T) = μ and Var(T) = μ3

λ
.

In addition, the IG distribution belongs to the exponential family and therefore, a func-
tional relationship can be considered for the mean of T and a linear predictor by means of
a link function [13,20,24]. However, it is not possible to establish a functional relationship
between the variance of T and a linear predictor, since it depends on two parameters. For
example, Ferrari and Cribari-Neto [11] proposed a re-parametrization in the beta distribu-
tion to establish a relationship between its mean and a linear predictor. On the other hand,
Achim et al. [1] considered a re-parametrization in the generalized normal distribution in
terms of the standard deviation.

Then,motivated by these twoworks, we propose a re-parametrization of the distribution
of T in terms of its variance σ 2 > 0

Var(T) = μ3

λ
= σ 2 ⇒ λ = μ3

σ 2 . (2)

By replacing the parameter λ in Equation (1), the RIG density of T takes the form

f (t) =
(

μ3

2π σ 2 t3

)1/2
exp
{
−μ(t − μ)2

2 σ 2 t

}
, t > 0, (3)

where E(T) = μ and Var(T) = σ 2.
In this way, the RIG distribution allows a linear predictor both in the mean and in the

variance through a link function. Henceforth, a random variable T ∼ RIG(μ, σ 2) has the
pdf (3), its cumulative distribution function (cdf) has the form

F(t) = �

⎛⎝√ μ3

σ 2 t

(
t
μ

− 1
)⎞⎠+ exp

(
2μ2

σ 2

)
�

⎛⎝−
√

μ3

σ 2 t

(
t
μ

+ 1
)⎞⎠ , (4)

and its survival function is S(t) = 1 − F(t), where �(·) is the standard normal cdf.
Some mathematical properties of T are well-known in the literature. For example, the

generating function of T can be expressed as

M(s) = E[es T] = exp

⎧⎨⎩μ2

σ 2

⎛⎝1 −
√
1 − 2σ 2s

μ

⎞⎠⎫⎬⎭ ,

from which follows the coefficients of skewness and kurtosis.

3. The RIG regression

Let T1, . . . ,Tn be a random sample from the RIG distribution (3) such that Ti ∼
RIG(μi, σ 2) for i = 1, . . . , n. It is assumed that the random variables have different means
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and the same variance σ 2. So, assuming that (t1, xi), . . . , (tn, xn) is the observed sample, a
regression can be defined for the mean of Ti as (for i = 1, . . . , n)

μi = exp
(
x�
i β
)
, (5)

where x�
i = (1, xi1, . . . , xip) is the vector of the values of p explanatory variables and β =

(β0,β1, . . . ,βp)
� is the vector of unknown parameters.

On the other hand, assuming that the variances are also different, that is, Ti ∼
RIG(μi, σ 2

i ) (for i = 1, . . . , n), the RIG regression with multiplicative heteroscedastic
structure is defined by

σ 2
i = exp

(
z�
i γ
)
, (6)

where z�
i = (1, zi1, . . . , ziq) is the vector of the values of q explanatory variables, and γ =

(γ0, γ1, . . . , γq)� is the vector of unknown parameters. In general, it is very common to
choose zi as a subset of xi.

Let θ = (β�, γ �)� be the parameter vector. The systematic components (5) and (6)
define the heteroscedastic RIG regression, and then the density ofT | xi, zi can be expressed
as

f (ti; θ) =
{

exp[2(x�
i β)]

2π t3i exp(z
�
i γ )

}1/2
exp

{
−exp(x�

i β)[ti − exp(x�
i β)]2

2ti exp(z�
i γ )

}
. (7)

Consequently, the survival function of T | xi, zi follows from (4) as

S(ti; θ) = 1 − �

[
κi

(
ti

exp(x�
i β)

− 1

)]
− exp

(
2 exp[2(x�

i β)]
exp(z�

i γ )

)

× �

[
−κi

(
ti

exp(x�
i β)

+ 1

)]
, (8)

where

κi =
√
exp[3(x�

i β)]
ti exp(z�

i γ )
.

3.1. Estimation

Let (t1, δ1, x1), . . . , (tn, δn, xn) be observed from Ti ∼ RIG(μi, σ 2
i ), where δi (1=failure,

0=censoring) is the censoring indicator (for i = 1, . . . , n). The log-likelihood function for
the parameter vector θ in the RIG regression defined from Equations (5), (6) and (7) has
the form

l(θ) = − r log(2π)

2
+ 3

2

n∑
i=1

δix�
i β − 1

2

n∑
i=1

δiz�
i γ − 3

2

n∑
i=1

δi log(ti)

−
n∑
i=1

δi
exp(x�

i β)[ti − exp(x�
i β)]2

2ti exp(z�
i γ )

+
n∑

i=1
(1 − δi)
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× log

{
1 − �

[
κi

(
ti

exp(x�
i β)

− 1

)]
− exp

{
2 exp[2(x�

i β)]
exp(z�

i γ )

}

× �

[
−κi

(
ti

exp(x�
i β)

+ 1

)]}
, (9)

where r is the number of failures and κi comes from (8). The MLE θ̂ of θ is determined by
maximizing the log-likelihood function (9) or as the solution of the system of nonlinear
equations

U(θ) = ∂ l(θ)

∂θ
= 0.

However, it is not possible to analytically solve the system of score equations above. So,
to maximize the log-likelihood function (9), and find the parameter estimates, we use the
MaxBFGS subroutine of the matrix programming language Ox version 8.00 [10].

The inference procedure for θ = (β�, γ �)� can be based on the asymptotic normal
approximation

θ̂
� ∼ Np+q+2

(
θ�, [L̈(θ)]−1

)
,

where L̈(θ) = − ∂2l(θ)

∂θ∂θ� is the observed information matrix.
So, the asymptotic confidence interval for θj (j = 1, . . . , p + q + 2) at a (1 − α)100%

confidence level is given by

θ̂j ± zα/2

√
Var(θ̂j),

where Var(θ̂j) is the jth diagonal element of [L̈(θ)]−1 estimated at θ̂ , and zα/2 is the value
of the standard normal distribution that probably exceeds α/2.

4. Diagnostics tools and residual analysis

In this section, we present diagnostic analysis (global and local influence) and residuals for
the heteroscedastic RIG regression.

4.1. Influencemeasures

Global influence
Let l(i)(θ) be the log-likelihood function for θ defined in (9) by excluding the ith observa-
tion and θ̂ (i) be the MLE of θ obtained by maximizing l(i)(θ). We can use the difference
between θ̂ (i) and θ̂ [37] as a measure to assess the influence of the ith case on the estimate
θ̂ . This measure is a generalization of Cook’s distance defined as a standardized form of
θ̂ (i) − θ̂ , namely

GDi(θ) = (θ̂ (i) − θ̂)�
[
L̈(θ̂)
]
(θ̂ (i) − θ̂), (10)

where L̈(θ̂) is defined in Section 3.1. Another measure to assess the influence of a case is
called the likelihood distance [6]

LDi(θ) = 2
[
l(θ̂) − l(θ̂ (i))

]
, (11)
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where l(θ) is the log-likelihood function of the complete sample. Therefore, the ith case is
an influential observation if θ̂ (i) is distant from θ̂ in (10) and/or (11).

Local influence
For measures of local influence [7] from small perturbations in the regression, let ω be the
perturbation vector, l(θ | ω) the log-likelihood function (9) of the disturbedmodel and θ̂ω

the MLE obtained by maximizing l(θ | ω). Cook [7] showed that the normal curvature of
the surface (

ω

2[l(θ̂) − l(θ̂ω)

)
in the direction of the vector d of unit norm is defined as

Cd(θ) = 2|d���L̈(θ)−1�d|, (12)

where� is the (p + q + 2) × nmatrix that depends on the perturbation schemewhose ele-
ments are
ji = ∂2l(θ | ω)/∂θj∂ωi (for i = 1, . . . , n and j = 1, . . . , p + q + 2) evaluated at
θ̂ and ω0, and ω0 is the no perturbation vector [7]. Thus, using Equation (12), it is possi-
ble to calculate the maximum curvature Cddmax in the corresponding direction, say dmax.
The quantity Cdmax corresponds to the largest eigenvalue of the matrix B = ��L̈(θ)−1�,
and dmax is the largest normalized eigenvector. Then, if θ̂ω and θ̂ are close estimates, they
indicate that the MLEs are robust with respect to the disturbance in the regression, while
relevant differences suggest that the estimates are sensitive to such disturbances.

On the other hand, Lesaffre and Verbeke [19] proposed the statistic Cdi(θ), where di
is a vector of zeros of length n with a value of one in the ith position. In this case, the
curvature in the direction di takes the form Ci = 2|��

i L̈(θ)−1�i|, where��
i is the ith row

of�. Therefore, the observations with values of Ci greater than 2C̄, where C̄ = 1
n
∑n

i=1 Ci,
indicate the possibility of influential points.

Perturbation schemes
Thus, considering the log-likelihood function (9), the following perturbation schemes are
adopted:

(a) case-weight perturbation scheme
Let 0 ≤ ωi ≤ 1 (i = 1, . . . , n) and ω0 = (1, . . . , 1)� be the non-perturbation vector
of length n. The perturbed log-likelihood function reduces to

l(θ | ω) = − log(2π)

2

n∑
i=1

ωiδi + 3
2

n∑
i=1

ωiδix�
i β − 1

2

n∑
i=1

ωiδiz�
i γ

− 3
2

n∑
i=1

ωiδi log(ti) −
n∑

i=1
ωiδi

exp(x�
i β)[ti − exp(x�

i β)]2

2ti exp(z�
i γ )

+
n∑

i=1
ωi(1 − δi) log

{
1 − �

[
κi

(
ti

exp(x�
i β)

− 1

)]

− exp

(
2 exp[2(x�

i β)]
exp(z�

i γ )

)
�

[
−κi

(
ti

exp(x�
i β)

+ 1

)]}
.
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(b) Response perturbation
Let ωi ∈ R (i = 1, . . . , n) and ω0 = (0, . . . , 0)� be the non-perturbation vector of
length n. The response variable ti (i = 1, . . . , n) is subjected to an additive pertur-
bation scheme such that t∗i = ti + ωi Mt , where Mt it is a scale factor that can be
the standard deviation of the response variable [9,28]. In this case, the perturbed
log-likelihood function can be expressed as

l(θ | ω) = − r log(2π)

2
+ 3

2

n∑
i=1

δix�
i β − 1

2

n∑
i=1

δiz�
i γ − 3

2

n∑
i=1

δi log(t∗i )

−
n∑

i=1
δi
exp(x�

i β)[t∗i − exp(x�
i β)]2

2t∗i exp(z
�
i γ )

+
n∑

i=1
(1 − δi)

× log

{
1 − �

[
κi

(
t∗i

exp(x�
i β)

− 1

)]
− exp

(
2 exp[2(x�

i β)]
exp(z�

i γ )

)

× �

[
−κi

(
t∗i

exp(x�
i β)

+ 1

)]}
.

(c) Explanatory variable perturbation
Suppose that xj and zj denote continuous covariates subject to an additive perturbation
scheme such that x∗

ij = xij + ωiMt and z∗ij = zij + ωiMt , whereMt is a scale factor that
can be the standard deviation of the disturbed covariate [28]. Thus, the perturbed
log-likelihood function takes the form

l(θ | ω) = − r log(2π)

2
+ 3

2

n∑
i=1

δix∗�
i β − 1

2

n∑
i=1

δiz∗�
i γ − 3

2

n∑
i=1

δi log(ti)

−
n∑

i=1
δi
exp(x∗�

i β)[ti − exp(x∗�
i β)]2

2ti exp(z∗�
i γ )

+
n∑
i=1

(1 − δi)

× log

{
1 − �

[
κi

(
ti

exp(x∗�
i β)

− 1

)]
− exp

(
2 exp[2(x∗�

i β)]
exp(z∗�

i γ )

)

× �

[
−κi

(
ti

exp(x∗�
i β)

+ 1

)]}
,

where x∗�
i β = β0 + β1xi1 + · · · + βj[xij + ωiMt] + · · · + βpxip, z∗�

i γ = γ0 + γ1zi1
+ · · · + γj[zij + ωiMt] + · · · + γqziq and ω0 = (0, . . . , 0)� is the non-perturbation
vector of length n.

For the three perturbation schemes, the maximum curvature matrix, namely

� = (�vi)(p+q+2)×n =
[
∂2l(θ | ω)

∂θv∂ωi

]
(p+q+2)×n

, v = 1, . . . , p + q + 2, i = 1, . . . , n,

is calculated numerically, where ω = (ω1, . . . ,ωn)
� is the perturbation vector of the RIG

regression or the observations.



1672 E. M. HASHIMOTO ET AL.

4.2. Residual analysis

The residuals are used to identify the discrepancy between the fitted model and the data
set and the presence of discrepant observations. Several types of residuals have been pro-
posed in the literature; for example, Collett [4], Cook and Weisberg [8], and Paula [24].
Specifically, the martingale residuals and deviance residuals have been the most used ones
in survival analysis as they take into account the information from censored times [28].

The martingale residuals (rMi) [12] are defined by

rMi = δi + log[S(ti; θ̂)], i = 1, . . . , n, (13)

where δi is the censoring indicator, and S(ti; θ̂) is the estimated survival function. By
replacing the survival function (8) in Equation (13), the martingale residuals for the RIG
regression take the forms

rMi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + log

{
1 − �

[
κ̂i

(
ti

exp(x�
i β̂)

− 1

)]

− exp

(
2 exp[2(x�

i β̂)]
exp(z�

i γ̂ )

)
�

[
−κ̂i

(
ti

exp(x�
i β̂)

+ 1

)]}
if δi = 1

log

{
1 − �

[
κ̂i

(
ti

exp(x�
i β̂)

− 1

)]

− exp

(
2 exp[2(x�

i β̂)]
exp(z�

i γ̂ )

)
�

[
−κ̂i

(
ti

exp(x�
i β̂)

+ 1

)]}
if δi = 0,

(14)

where

κ̂i =
√
exp[3(x�

i β̂)]
ti exp(z�

i γ̂ )
, for i = 1, . . . , n.

However, the martingale residuals are not symmetrically distributed around zero, i.e.
rM ∈ (−∞, 1] [4], which makes difficult to interpret their plots. In order to overcome this
problem, Therneau et al. [31] introduced themodifiedmartingale residuals (also called the
deviance residuals) to make them symmetrically distributed around zero, namely

rDi = sgn(rMi)
{−2
[
rMi + δi log(δi − rMi)

]}
, i = 1, . . . , n, (15)

where sgn(·) is a sign function leading to +1 if the argument is positive and −1 if the
argument is negative. By replacing themartingale residuals (14) in Equation (15), we obtain
the deviance residuals for the RIG regression. The plot of the simulated envelope of the
deviance residuals and the residuals versus the adjusted values allow to verify the adequacy
of the regression.

5. Simulation study

Monte Carlo simulations are done for different scenarios to evaluate the behavior of the
empirical distribution of the deviance residuals for the RIG regression as well as to deter-
mine the mean square errors (MSEs) of the MLEs of the parameters. For the simulation
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Table 1. Averages of the MLEs and MSEs (in parentheses) of the parameters of the RIG regression.

Percentages of censoring

Sample size Parameter 0% 20% 40%

β0 2.7995 (0.0001) 2.7995 (0.0002) 2.7995 (0.0002)
50 β1 0.4005 (0.0002) 0.4005 (0.0003) 0.4004 (0.0004)

γ0 −20.0580 (3.9231) −21.3330 (5.9023) −21.5810 (7.9349)
γ1 6.1291 (0.2676) 6.1940 (0.3943) 6.2500 (0.5132)
β0 2.7999 (< 0.0001) 2.8004 (0.0001) 2.8002 (0.0001)

100 β1 0.4000 (< 0.0001) 0.3997 (0.0001) 0.4000 (0.0001)
γ0 −20.8250 (1.8892) −20.8470 (2.2419) −20.9670 (2.9623)
γ1 6.0763 (0.13061) 6.0791 (0.1542) 6.1062 (0.1975)
β0 2.8003 (< 0.0001) 2.8000 (< 0.0001) 2.8000 (< 0.0001)

300 β1 0.3998 (< 0.0001) 0.4000 (< 0.0001) 0.3998 (< 0.0001)
γ0 −20.6120 (0.5271) −20.5810 (0.6475) −20.6160 (0.8340)
γ1 6.0254 (0.0367) 6.0178 (0.0452) 6.0265 (0.0565)

study, the following conditions are considered according to the data set reported in the
application:

(a) Set sample sizes n = 50, 100 and 300 and censoring percentages equal to 0%, 20% and
40% for nine scenarios.

(b) The parameter values are fixed at β0 = 2.8, β1 = 0.4, γ0 = −20.5, γ1 = 6.0, so that
the two systematic components are

μi = exp (β0 + β1xi1) and σ 2
i = exp (γ0 + γ1zi1) ,

where x1 and z1 are generated from a binomial distribution with parameters n = 1
and p = 1/2 and a uniform distribution in the interval [3.0, 4.5], respectively.

(c) The random values t1, . . . , tn of the RIG distribution (3) are generated using the
method by Michael et al. [21] as described in Appendix. The censored data are
obtained from a uniform distribution in the interval [11.0, 33.8] for 40% censoring
and [11.0, 58.5] for 20% censoring.

(d) For each scenario, one thousand replicates are simulated.

Thus, the data are simulated according to the algorithm inAppendix. For each generated
sample, the MLEs of the parameters are determined and then, for each fitted regression,
we calculate the residuals rM in (14) and rD in (15).

The averages of 1000 MLEs and mean squared errors (MSEs) for the fitted regression
are reported in Table 1. We can note that the estimates of the parameters are close to the
true values, except if the sample size n is small and the censoring percentages are high.
The MSE values increase when the percentage of censoring increases and decrease when
n increases.

Figure 1 displays the plots of the deviance residuals versus the percentiles of the standard
normal distribution for some scenarios. The plots reveal the following findings:

(a) The empirical distribution of the deviance residuals converges to the standard normal
distribution when the percentage of censoring decreases.

(b) The empirical distribution also presents a better agreement with the standard normal
distribution when the sample size increases.
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Figure 1. Normal probability plots for the deviance residuals in the RIG regression.

In general, the deviance residuals appear to be consonant to assess the model ade-
quacy. Ortega et al. [23] showed that the deviance residuals were used in a data set with
approximately 90% censoring, thus indicating that they can be adoptedwith high censoring
percentages.

6. Application: COVID-19 length of stay

The city of Piracicaba is one of the first cities in Brazil to industrialize with the opening of
factories in themetal-mechanical sector and to produce equipment for production of sugar,
and later alcohol as well. This contributed significantly to the industrial growth of this city
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Figure 2. Piracicaba, São Paulo, Brazil.

in the ensuing decades, thus making it attractive to large companies and, consequently,
moving the city with services and people. It is located 157 km from the capital of São Paulo
(Figure 2), which facilitates the passage of people between the two cities. This heavy cir-
culation of people might have facilitated the entry of the SARS-COV-2 virus in Piracicaba,
where the first case of infection was recorded at the end of March 2020. Therefore, we
analyze the profile of the patients who were hospitalized due to the new coronavirus.

The COVID-19 data for the city of Piracicaba were obtained from the database of the
Unified Health System (SUS), available from the platform of the Department of Infor-
matics of the Ministry of Health,1 considering the municipal code 353870. Patient data
regarding the principal diagnosis as COVID-19 were obtained from the same database
according to the International Classification of Diseases (ICD-10), corresponding to code
B34.2 (infection by coronavirus of unspecified location) and code B97.2 (coronavirus as
cause of diseases classified in other chapters)2,3 due to the absence of the category U07 in
the volumes of ICD-10 in Portuguese (Cidade de São Paulo Saúde, 2020). The sample con-
sists of 55 individuals admitted with COVID-19 to public hospitals (SUS), with censoring
of approximately 70%, covering the period from March to May 2020, and the following
variables (for i = 1, . . . , 55):

(i) ti: time (in days) from hospital admission until death.
(ii) δi: censoring indicator (0 = censored, 1 = failure).
(iii) xi1, zi1: gender (0 = Female, 1 = Male).
(iv) xi2, zi12: logarithm of age.

The Kaplan-Meier curves are displayed in Figure 3 to verify the behavior of the length
of stay data of these patients. The plots show that the median hospital stay of these patients
is 15 days (Figure 3(a)), and there is a more pronounced difference between genders up to
15 days (Figure 3(b)), thus indicating that men have greater chances of survival in the first
days of hospitalization.
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Figure 3. Estimated survival curves by the Kaplan-Meier method for the length of stay (a) and for
gender (b).

Table 2. MLEs of the parameters of the RIG distribution for the length of stay of
COVID-19 patients.

Parameter Estimate Standard error Interval confidence(95%)

μ 33.7630 6.6585 (20.7126, 46.8133)
σ 2 2762.6396 1674.9181 (0.0000, 6045.4188)

Figure 4. Plot of the hospital length of stay versus the logarithm of age for COVID-19 patients.

First, we fit the RIG density (3) to this data set. The MLEs, their standard errors (SEs)
and confidence intervals for its parameters obtained with the initial values μ = 0.5 and
σ 2 = 0.5 are given in Table 2.

It can be noted fromTable 2 that themean length of stay in the hospital is approximately
between 21 to 47 days. The variance estimate, indicates that there is a high variability in
the data which can also be noted in Figure 4. The observations are more dispersed when
the logarithm of the age increases and for this reason, the covariate logarithm of age is
candidate to be used in the systematic component of the variance parameter.
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Figure 5. Estimated RIG survival function and the Kaplan-Meier curve for the length of hospital stay of
COVID-19 patients.

In addition, the estimated survival function of the RIG distribution follows from (4)

Ŝ(t) = 1 − �

⎛⎝√ 33.76303

2762.6396 t

(
t

33.7630
− 1
)⎞⎠

− exp
(
2(33.76302)
2762.6396

)
�

⎛⎝−
√

33.76303

2762.6396 t

(
t

33.7630
+ 1
)⎞⎠ , (16)

where t denotes the COVID-19 length of stay (in days).
The estimated RIG survival function (16) and the Kaplan-Meier curve are displayed in

Figure 5. The estimated survival function reasonably superpose the empirical curve, which
indicates that the density (3) can be used for the analysis of the current data.

The variables of the systematic components (5) and (6) are selected using the method
described by Colosimo and Giolo [5]. The steps are as follows:

(a) Step 1: Estimate the RIG regression under a single variable:
• μ = exp(β0 + β1x1) and σ 2 = exp(γ0),
• μ = exp(β0 + β2x2) and σ 2 = exp(γ0),
• μ = exp(β0) and σ 2 = exp(γ0 + γ1z1),
• μ = exp(β0) and σ 2 = exp(γ0 + γ2z2).

(b) Step 2: The significant covariates in step 1 are estimated together:

μ = exp(β0 + β1x1 + β2x2) and σ 2 = exp(γ0 + γ1z1 + γ2z2).

We then estimate the reduced RIG regressions, excluding a single covariate:
• μ = exp(β0 + β2x2) and σ 2 = exp(γ0 + γ1z1 + γ2z2),
• μ = exp(β0 + β1x1) and σ 2 = exp(γ0 + γ1z1 + γ2z2),
• μ = exp(β0 + β1x1 + β2x2) and σ 2 = exp(γ0 + γ2z2),
• μ = exp(β0 + β1x1 + β2x2) and σ 2 = exp(γ0 + γ1z1).
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Table 3. Selection of covariates.

Step Model −2l(θ̂) LR Test p-value

Step 1 Null 130.6695 – –
x1 124.3520 6.3175 0.0120
x2 122.0522 8.6173 0.0033
z1 124.4036 6.2659 0.0123
z2 119.1318 11.5377 0.0007

Step 2 x1 + x2 and z1 + z2 108.6696 – –
x2 and z1 + z2 108.8340 0.1644 0.6852
x1 and z1 + z2 109.8188 1.1492 0.2837
x1 + x2 and z2 109.0185 0.3489 0.5548
x1 + x2 and z1 116.2177 7.5481 0.0060

Step 3 z2 119.1318 – –
x1 and z2 112.8101 6.3217 0.0119
x2 and z2 118.2537 0.8781 0.3487

Final x1 and z2 – – –

Table 4. MLEs of the parameters of the RIG regression for the length of stay of COVID-19 patients.

Parameter Estimate Standard error p-value Confidence interval (95%)

β0 2.7613 0.1602 0.0000 (2.4473, 3.0753)
β1 0.3972 0.1480 0.0081 (0.1033, 0.6911)
γ0 −20.5155 10.1831 0.0439 (−40.4740,−0.5571)
γ2 6.1270 2.3440 0.0090 (1.5329, 10.7210)

(c) Step 3: The covariates of the systematic component of the mean parameter excluded
in step 2 are returned to the model to confirm that they are not statistically significant.

The results of the variable selection procedure are reported in Table 3.
Finally, we consider the following systematic components:

μi = exp (β0 + β1xi1) and σ 2
i = exp (γ0 + γ2zi2) .

The MLEs, their SEs, the confidence intervals and the significance of the parameters for
the RIG regression are given in Table 4. The estimates are obtained by choosing β0 =
5.82275,β1 = 0.36873 and γ0 = γ2 = 1 as initial values.

The figures in Table 4 at a significance level of 5% indicate that there is a significant
difference between genders in relation to the length of stay and that the mean length of
hospital stay of men is higher than women since β̂1 is positive.

Continuing the analysis, the results of such influence measure index plots (GDi(θ) and
LDi(θ)) are displayed in Figure 6. These plots reveal that the case �16 is a possible influential
observation.

The local influence plots, considering the case-weight perturbation, response perturba-
tion and explanatory variable perturbation, reveal that the cases �16, �19 and �24 can be
possible influential observations as shown in Figure 7(a–c).

To analyze the impact of these observations on the parameter estimates, the regression
is refitted by eliminating each observation individually. Thus, the figures in Table 5 provide
the relative changes (in percentages) of each estimated parameter defined byRCθj = [(θ̂j −
θ̂j(i))/θ̂j]100, where θ̂j(i) is the jth MLE without the ith observation (i = 1, . . . , 55 and j =
1, . . . , 3).
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Figure 6. Global influence measures plots for the RIG regression model. (a) GDi(θ) (b) LDi(θ).

Figure 7. Local influence (dmax) plots of the RIG regression for the length of stay of COVID-19 patients.
(a) Case-weight perturbation, (b) Response perturbation and (c) Explanatory variable perturbation
log(age).

The possible influential observations correspond to patients with the following charac-
teristics:

(i) Patient �16: 31-year-old man (youngest in the adult age range in uncensored times)
with the longest failure time (23 days) in the uncensored times.

(ii) Patient �19: 57-year-oldwoman (older age in the censored age group)with the second
highest censored time (28 days). In relation to the group of women it is the longest.

(iii) Patient �24: 67-year-old woman with the failure time equal 3 days among the group
of women whose time is not censored.

(iv) Patient �31: 73-year-old woman with the first shortest failure time (2 days) among
the group of women whose time is not censored.

The results in Table 5 indicate that theMLEs of the parameters of the RIG regression are
not very robust in relation to the deletion of influential observations (high percentages of
CR). However, the significance of the estimated parameters do not change (at the 5% level
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Table 5. Relative changes [-RC- in %], MLEs of the parameters and the corresponding p-
values (in parentheses) by excluding the observations �16, �19, �24 and �31.

Exclusion β̂0 β̂1 γ̂0 γ̂2

None – – – –
2.7613 0.3972 −20.5155 6.1270
(0.0000) (0.0081) (0.0439) (0.0090)

�16 [−19] [−16] [20] [9]
3.2877 0.4590 −16.3116 5.5745
(0.0000) (0.0103) (0.1393) (0.0263)

�19 [5] [−27] [−52] [−39]
2.6312 0.5060 −31.1382 8.5020
(0.0000) (0.0004) (0.0121) (0.0030)

�24 [−3] [26] [−38] [−29]
2.8481 0.2936 −28.2207 7.9082
(0.0000) (0.0542) (0.0117) (0.0024)

�31 [−2] [17] [−5] [−4]
2.8216 0.3314 −21.6272 6.3734
(0.0000) (0.0261) (0.0300) (0.0056)

Figure 8. Residual plots of the RIG regression for the length of stay of COVID-19 patients. (a) Index, (b)
Values adjusted for the mean and (c) Values adjusted for the variance.

of significance) after removing the cases, except for the parameter β1 in which the p-value
is very close to the significance level limit when �24 is removed. In general, it can be con-
sidered that there were no major inferential changes after the removal of the observations
considered influential in the diagnostic charts. As there were no inferential changes, the
observations were maintained, although the estimates are not robust.

The plots of the deviance residuals versus the index of the observations and the deviance
residuals versus the adjusted values are displayed in Figure 8. It can be noted in these plots
that the residuals are random around zero, which indicates that the regression is reasonably
adequate to analyze the current data. In addition, we do not note outliers for the range
(−3, 3).

Finally, Figure 9 shows the normal probability plot for the deviance residuals with simu-
lated envelope [2] of the RIG regression. So, there is evidence of a good fit of the regression
for the length of hospitalization data, since the points are not outside the simulated enve-
lope. The findings presented by Ortega et al. [23] also corroborate the adjustment of the
model.
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Figure 9. Normal probability plot of the RIG regression for COVID-19 data.

Figure 10. Survival curves estimated by the RIG distribution versus the survival curve estimated by the
Kaplan-Meier method for the length of stay of patients with COVID-19. (a) Average age logarithm, (b)
Logarithm of mean age greater than or equal to 60 years and (c) Logarithm of mean age less than 60
years.

The estimated survival function (8) for the length of stay data of COVID-19 patients is

Ŝ(t) =
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Figure 10(a) displays the estimated survival curves from (8) and the Kaplan-Meier
method stratified by the gender group. Figure 10(b,c) are obtained by separating patients
in an age group less than 60 and in an age group greater than or equal to 60 years, respec-
tively. These plots indicate that the RIG regression can be acceptable for estimating the
survival function of COVID-19 patients hospitalized since they follow the Kaplan-Meier
curve, except for the adult age group. The behavior noted in Figure 10(c) is due to the large
amount of censored times in this group.

7. Concluding remarks

We presented a re-parameterized inverse Gaussian (RIG) distribution in terms of the
variance parameter with the objective to incorporate a multiplicative heteroscedasticity
component in the regression. Based on this distribution, we can include the effects of
explanatory variables without using a location-scale model, thus allowing interpretation
about the mean without the need to transform the response variable. We defined the RIG
regression to analyze the hospitalization time of COVID-19 patients in the city of Piraci-
caba, São Paulo, Brazil. The results indicated an average hospitalization time of 33 days,
and that men tend to remain hospitalized longer than women. Further, some individuals
were identified with characteristics outside the pattern of their group, which can help to
better understand the effects of the new coronavirus.
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Appendix. Algorithm

We present below the Algorithm 1 showing the steps to generate random values from the RIG
regression.

Algorithm 1: Simulation study with different percentages of censoring
Input: r - number of replications

n - sample size
β0 - parameter for the mean
β1 - parameter for the mean
γ0 - parameter for the variance
γ1 - parameter for the variance

j = 1
while j ≤ r do

g_mX1 ∼ binomial(1, 0.5)
g_mX2 ∼ U(3, 4.5)
g_mD n × 2 matrix of ones
for i = 1ton do

μ = exp(β0 + (β1 ∗ g_mX1i))
σ 2 = exp(γ0 + (γ1 ∗ g_mX2i))
ν0 ∼ χ(1)

λ = μ3

σ 2

x1 = μ + mu2 ν0
2λ −

[
μ
2λ

√
(4μλν0) + (μ2ν20 )

]
x2 = μ2

x1

p1 = μ
μ+x1

Y ∼ U(0, 1)
if Y < p1 then

g_mT = x1
else

g_mT = x2
end
g_mC ∼ U(a, b), where a and b are chosen to obtain the censoring percentages
if g_mT < g_mC then

g_mDi1 = g_mT
else

g_mDi1 = g_mC
g_mDi2 = 0

end
end
Arrange side by side g_mD, g_mX1 and g_mX2 in g_mY
Obtain the estimate parameters
if if the optimization method converges then

Save parameter estimates to an object
Determine residues (martingale and deviance) and store them in an object
update j

else
not updated j

end
end
Determine the average of the r estimates
Determine the mean squared error
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