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ABSTRACT ARTICLE HISTORY
Among the models applied to analyze survival data, a standout is the Received 14 June 2021
inverse Gaussian distribution, which belongs to the class of models Accepted 27 January 2022
to analyze positive asymmetric data. However, the variance of this KEYWORDS
distribution depends on two parameters, which prevents establish- Censored data; inverse
ing a functional relation with a linear predictor when the assump- Gaussian distribution;
tion of constant variance does not hold. In this context, the aim regression; SARS-COV-2; SUS
of this paper is to re-parameterize the inverse Gaussian distribu-

tion to enable establishing an association between a linear predic- ~ MATHEMATICS SUBJECT
tor and the variance. We propose deviance residuals to verify the gjl(\)z.Sé;gOATIONS
model assumptions. Some simulations indicate that the distribution !

of these residuals approaches the standard normal distribution and

the mean squared errors of the estimators are small for large samples.

Further, we fit the new model to hospitalization times of COVID-

19 patients in Piracicaba (Brazil) which indicates that men spend

more time hospitalized than women, and this pattern is more pro-

nounced for individuals older than 60 years. The re-parameterized

inverse Gaussian model proved to be a good alternative to analyze

censored data with non-constant variance.

1. Introduction

The advantage of associating a distribution to the survival time is that it makes the statistical
analysis more precise. However, the literature contains a large range of lifetime continu-
ous distributions [16]. The exponential, Weibull, log-logistic, log-normal, and generalized
gamma, are the most often used models in survival analysis [17,18].

On the other hand, the inverse Gaussian (IG) [32] distribution has not been used so
often to analyze survival data. This distribution belongs to the class of models to analyze
positive asymmetric data [24]. If the parameters of the IG distribution increase, it approx-
imates to the normal distribution, thus making it attractive to analyze asymmetric as well
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as symmetric random variables. For example, Whitmore [36] presented the adjustment of
the IG model to analyze data on the failure of aluminum reduction cells, while Gupta and
Kundu [14] adopted the EM algorithm to estimate its parameters. Basak and Balakrish-
nan [3] showed that the Newton-Raphson method and the EM algorithm provided similar
results to estimate the parameters of this distribution. Hanagal and Bhambure [15] ana-
lyzed a bivariate dataset utilizing the IG distribution as the frailty model. Suzuki et al. [30]
proposed a time-promotion model based on the IG distribution to estimate the propor-
tion of cured individuals. Salha and Rasheed [26] showed that the IG kernel estimator
presented a smaller mean squared error in comparison with a Gaussian kernel estimator.
Finally, Songhua et al. [29] proposed an IG model with normal random effects, Punzo
[25] defined a re-parametrization based on the mode of this distribution, and Vasconce-
los [35] introduced the odd log-logistic generalized inverse Gaussian regression in some
applications.

However, the variance of the IG distribution does not allow establishing a direct func-
tional relationship with a linear predictor via a link function. In the literature, Ferrari and
Cribari-Neto [11] proposed a re-parametrization of the beta distribution to establish a rela-
tion between its mean and a linear predictor, while Nelson [22] utilized a re-parameterized
generalized normal distribution so that its expectation is zero and the variance is one.
Achim et al. [1] showed that the generalized normal distribution, as re-parameterized in
Nelson [22], can be obtained from a distribution rewritten in terms of the standard devia-
tion. In view of this, we can add more information to the models, thus allowing that both
the variability and the mean be explained by covariates.

In this context, the aim of the present study is to construct a re-parameterized inverse
Gaussian (RIG) distribution to enable establishment of a functional relationship between
a linear predictor and the variance of this distribution, specifically for the analysis of
censored data.

The paper is organized as follows. In Section 2, we present the RIG distribution, and
some of its structural properties. In Section 3, we define a regression with two systematic
components based on the RIG distribution. In Section 4, the diagnostic measures for the
new regression are reported to assess its adequacy. In Section 5, a Monte Carlo simulation
study is performed to evaluate the maximum likelihood estimates (MLEs) of the parame-
ters, and compare the empirical distribution of the residuals with the standard normal. In
Section 6, the new regression is applied to explain the length of hospital stay of COVID-19
patients in the Unified Health System in the City of Piracicaba, Brazil. Finally, we provide
the main conclusions of the study about the fitted RIG regression in Section 7.

2. The RIG distribution

A non-negative random variable T ~ IG(u, A) follows an IG distribution with parameters
1 > 0and A > 0, if its probability density function (pdf) is

a2 At — p)?
f(t):<2nt3> exp{—%}, t>0. (1)

Equation (1) was pioneered by Schrodinger [27] to describe the time of the first passage
in Brownian motion. Subsequently, it was called the IG distribution by Tweedie [32] due
to the inverse relationship between the cumulative generating function of the first pass
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time distribution and the normal distribution [13]. Tweedie [33,34] presented some prop-
erties of this distribution as well as the density curves for some parameter values. Among
the basic characteristics, Tweedie [33] showed that the mean and variance of T are given,
respectively, by
3
E(T)=p and Var(T) = >

In addition, the IG distribution belongs to the exponential family and therefore, a func-
tional relationship can be considered for the mean of T and a linear predictor by means of
a link function [13,20,24]. However, it is not possible to establish a functional relationship
between the variance of T and a linear predictor, since it depends on two parameters. For
example, Ferrari and Cribari-Neto [11] proposed a re-parametrization in the beta distribu-
tion to establish a relationship between its mean and a linear predictor. On the other hand,
Achim et al. [1] considered a re-parametrization in the generalized normal distribution in
terms of the standard deviation.

Then, motivated by these two works, we propose a re-parametrization of the distribution
of T in terms of its variance 62 > 0

3 3

Var(T) = “7 —ol= = % @)

By replacing the parameter A in Equation (1), the RIG density of T takes the form

3 1/2 N2
f0=(5rs) ew{-2540 ] =0 ®

ol 202t

where E(T) = p and Var(T) = o2.

In this way, the RIG distribution allows a linear predictor both in the mean and in the
variance through a link function. Henceforth, a random variable T ~ RIG(u, 02) has the
pdf (3), its cumulative distribution function (cdf) has the form

3/t 212 3t
Fo=o | 2 (Z-1) ] vexp(E)o| -/ (L41)]. @
o2t \ o2 o2t \u

and its survival function is S(¢) = 1 — F(¢), where ®(-) is the standard normal cdf.
Some mathematical properties of T are well-known in the literature. For example, the
generating function of T can be expressed as

2 2
20°s
M(s) = E[e’T] = exp Eor- 1= ,
o 1

from which follows the coeflicients of skewness and kurtosis.

3. The RIG regression

Let Ty,...,T, be a random sample from the RIG distribution (3) such that T; ~
RIG(wi,0%) fori = 1,...,n. Itis assumed that the random variables have different means
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and the same variance o'2. So, assuming that (f1,X;),. . ., (ts, X,) is the observed sample, a
regression can be defined for the mean of Tj as (fori = 1,...,n)

wi=exp (x7 B), Q

where X =(1, x,l, ... Xip) is the vector of the values of p explanatory variables and 8 =
(Bo> B1>- - -» ,BP) is the vector of unknown parameters.

On the other hand, assuming that the variances are also different, that is, T; ~
RIG (i, ol-z) (for i=1,...,n), the RIG regression with multiplicative heteroscedastic
structure is defined by

of = exp (z,Ty) , (6)
wherez] = (1, Z,l, .. .»Zig) is the vector of the values of g explanatory variables, and y =
(Yo, Y15+ - +» yq) is the vector of unknown parameters. In general, it is very common to

choose z; as a subset of x;.

Let 6 = (BT, y )T be the parameter vector. The systematic components (5) and (6)
define the heteroscedastic RIG regression, and then the density of T' | x;, z; can be expressed
as

exp[2(x; B)] }1/2 exp {_exp(XiTﬁ)[ti —exp(x; B)]? } ‘ 7)

27 ex (z.Ty) 2t; ex (zTy)
1 p 1 p 1

f(ti;0) = {

Consequently, the survival function of T' | x;, z; follows from (4) as

1| Y 2expl2(x] B)]
S(ti;0) =1 ¢|:Kl<exp(x;rﬂ) 1)j| exp(—exp(z;—y) )

b | —k; L—I—l (8)
T e B) ’

exp[3(x;' B)]
tiexp(z]y)

where

3.1. Estimation

Let (t1,61,X1), ..., (tn, 0y, X,) be observed from T; ~ RIG(,u,-,aiz), where §; (1=failure,
O=censoring) is the censoring indicator (for i = 1,. .., n). The log-likelihood function for
the parameter vector @ in the RIG regression defined from Equations (5), (6) and (7) has
the form

Ok ”‘)gﬂ —Za ﬂ—ézaiz?y—gzailog(m

exp(x B)[t; — exp(x; B)]*
— — 5
Z(S 2t; exp(z y) + Z(l )
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t 2expl2(x] B)]
xlog 1 =@ |ki| ——=>—1)| —expi ——=—
exp(x; B) exp(z; )

S Y L S 9)
“\expq B) ’

where r is the number of failures and k; comes from (8). The MLE 0 of  is determined by
maximizing the log-likelihood function (9) or as the solution of the system of nonlinear
equations

a1(0)
u@®) = 20 = 0.
However, it is not possible to analytically solve the system of score equations above. So,
to maximize the log-likelihood function (9), and find the parameter estimates, we use the
MaxBFGS subroutine of the matrix programming language Ox version 8 .00 [10].
The inference procedure for # = (8", T)T can be based on the asymptotic normal

approximation

/\T . _
0~ Npigsz (67, 1L@)17),
L _ 921(6) - . . .
where L(0) = — Saa0T 1S the observed information matrix.

So, the asymptotic confidence interval for 6; (j =1,...,p+q+2) ata (1 — «)100%

confidence level is given by
0) %+ zq )2\ Var(6)),

where Var(éj) is the jth diagonal element of [L(0)]"! estimated at 9, and Zq/2 is the value
of the standard normal distribution that probably exceeds ¢/2.

4. Diagnostics tools and residual analysis

In this section, we present diagnostic analysis (global and local influence) and residuals for
the heteroscedastic RIG regression.

4.1. Influence measures

Global influence
Let [; (@) be the log-likelihood function for @ defined in (9) by excluding the ith observa-

tion and é(i) be the MLE of # obtained by maximizing /(;(#). We can use the difference
between é(,-) and @ [37] as a measure to assess the influence of the ith case on the estimate
0. This measure is a generalization of Cook’s distance defined as a standardized form of
0 — 0, namely

GDi(0) = B — ) "[L®)] @0 —0), (10)

where L(6) is defined in Section 3.1. Another measure to assess the influence of a case is
called the likelihood distance [6]

LD;(0) = 2[1(9) _ l(é(,-))], (11)
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where /() is the log-likelihood function of the complete sample. Therefore, the ith case is
an influential observation if @ ;) is distant from  in (10) and/or (11).

Local influence

For measures of local influence [7] from small perturbations in the regression, let @ be the
perturbation vector, /(@ | ) the log-likelihood function (9) of the disturbed model and 0,
the MLE obtained by maximizing /(f | ®). Cook [7] showed that the normal curvature of

the surface
®
2[10) - 1(B.,)

in the direction of the vector d of unit norm is defined as
Cq(0) =2|d"ATL@O)'Ad], (12)

where A is the (p 4+ g + 2) x n matrix that depends on the perturbation scheme whose ele-
ments are Aj; = 3%1(0 | w)/08;0w; (fori=1,...,nandj=1,...,p + g + 2) evaluated at
6 and @0, and wy is the no perturbation vector [7]. Thus, using Equation (12), it is possi-
ble to calculate the maximum curvature Cq,__ in the corresponding direction, say dpax.
The quantity Cq,,, corresponds to the largest eigenvalue of the matrix B = ATL(0)7!A,
and dpax is the largest normalized eigenvector. Then, if 8., and  are close estimates, they
indicate that the MLEs are robust with respect to the disturbance in the regression, while
relevant differences suggest that the estimates are sensitive to such disturbances.

On the other hand, Lesaffre and Verbeke [19] proposed the statistic Cg,(#), where d;
is a vector of zeros of length n with a value of one in the ith position. In this case, the
curvature in the direction d; takes the form C; = 2| A;ri(O)_l A;|, where AlT is the ith row
of A. Therefore, the observations with values of C; greater than 2C, where C = 1 3" | C;,
indicate the possibility of influential points.

Perturbation schemes
Thus, considering the log-likelihood function (9), the following perturbation schemes are
adopted:

(a) case-weight perturbation scheme

Let0<w;j<1(i=1,...,n)and wo = (1,...,1) " be the non-perturbation vector
of length n. The perturbed log-likelihood function reduces to

log(27) ! 3 & T 1 & T
10| w)=— 5 ;wi&' + ngifsixi B — ngi&‘li Y

3 1 exp(xTﬂ)[tf - eXP(X-Tﬂ)]2
i 8; log(t;) — i : l
5 ;wl ilog(t;) ;wz i 21, exp(ley)

n t;

2exp[2(x] B)] - b
_eXp( exp(z] ) )q>[ K’(exp(x?ﬂ)“)”'
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(b) Response perturbation
Let w; e R (i=1,...,n) and @y = (0,...,0)" be the non-perturbation vector of
length n. The response variable t; (i =1, ...,n) is subjected to an additive pertur-
bation scheme such that 7 = t; + w; M;, where M; it is a scale factor that can be
the standard deviation of the response variable [9,28]. In this case, the perturbed
log-likelihood function can be expressed as

10| w) =— rlog% Z ﬂ——ZzSz y——Z(Slog(t)

" exp(xTﬂ)[t* — exp(x ﬂ)
- 8; — 5
Z 2t exp(z] y) + Z(l 2

' tf 3 3 2exp[2(xl~Tﬂ)]
x log {l - |:K, <—exp(x;r,3) 1>:| exp <—exp(ziTy) )
x & L +1

"\ expx B) '

(c) Explanatory variable perturbation
Suppose that x; and z; denote continuous covariates subject to an additive perturbation
scheme such that x}; = x;; + w;M; and z;-;- = zjj + w;M;, where M; is a scale factor that
can be the standard deviation of the disturbed covariate [28]. Thus, the perturbed
log-likelihood function takes the form

rlog(2m) " .
10 | @) = — gT Za Tﬂ——z&z Ty——ZSlog(t,
i=1

n T _ T
3 Rt A exp(x B +Z<1—3>

P 2t; exp (zi

(YL (2ee2eTA)]
Xlog{l_q)[“ (exp(xz“Tﬂ) 1)} eXp( xp(z] ) )
« & | —ie | — 4

exp(x*Tﬂ) ’

where xfT B = By + ﬂlxu + - Bjlxij + @iMy] + - 4 BpXip, ZF Y = v0 + N1z
+ -+ ¥jlzij + 0iMi] + - - + y4zig and @o = (0, . 0)—r is the non-perturbation
vector of length n.

For the three perturbation schemes, the maximum curvature matrix, namely
3210 | w)

, v=1..,p+q+2,i=1,...,n,
90,0 }(p+q+2>xn

A= (Avi)(p+q+2)xn = |:

is calculated numerically, where ® = (w1, . .. ,wy,) | is the perturbation vector of the RIG
regression or the observations.
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4.2. Residual analysis

The residuals are used to identify the discrepancy between the fitted model and the data

set and the presence of discrepant observations. Several types of residuals have been pro-

posed in the literature; for example, Collett [4], Cook and Weisberg [8], and Paula [24].

Specifically, the martingale residuals and deviance residuals have been the most used ones

in survival analysis as they take into account the information from censored times [28].
The martingale residuals (ry;) [12] are defined by

g, = 8 +log[S(t; )], i=1,...,n, (13)

where §; is the censoring indicator, and S(t;;0) is the estimated survival function. By
replacing the survival function (8) in Equation (13), the martingale residuals for the RIG
regression take the forms

. ti
1+10g{1—®|:/(z<m_1)i|
2000 B o | (6 if8; = 1
P\ e ) \expx/ B) |
o t (14)
1 — Ki —iA—
og{l CI>|:K (exp(X,T,B) 1>:|
e (2PN 8 =
exp( P @ ) )CD[ "’(exmxm“)“ et

. exp[3(x/ B)] .
Ki=,|——=—, fori=1,...,n
tiexp(z; ¥)
However, the martingale residuals are not symmetrically distributed around zero, i.e.
rm € (—00, 1] [4], which makes difficult to interpret their plots. In order to overcome this
problem, Therneau et al. [31] introduced the modified martingale residuals (also called the
deviance residuals) to make them symmetrically distributed around zero, namely

where

rp; = sgn(ry) {—2 [rm; + 8ilog(8i — rv) ]}, i=1,....m, (15)

where sgn(-) is a sign function leading to +1 if the argument is positive and —1 if the
argument is negative. By replacing the martingale residuals (14) in Equation (15), we obtain
the deviance residuals for the RIG regression. The plot of the simulated envelope of the
deviance residuals and the residuals versus the adjusted values allow to verify the adequacy
of the regression.

5. Simulation study

Monte Carlo simulations are done for different scenarios to evaluate the behavior of the
empirical distribution of the deviance residuals for the RIG regression as well as to deter-
mine the mean square errors (MSEs) of the MLEs of the parameters. For the simulation
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Table 1. Averages of the MLEs and MSEs (in parentheses) of the parameters of the RIG regression.

Percentages of censoring

Sample size Parameter 0% 20% 40%
Bo 2.7995 (0.0001) 2.7995 (0.0002) 2.7995 (0.0002)
50 B 0.4005 (0.0002) 0.4005 (0.0003) 0.4004 (0.0004)
Y0 —20.0580 (3.9231) —21.3330(5.9023) —21.5810 (7.9349)
Y1 6.1291 (0.2676) 6.1940 (0.3943) 6.2500 (0.5132)
Bo 2.7999 ( < 0.0001) 2.8004 (0.0001) 2.8002 (0.0001)
100 B 0.4000 ( < 0.0001) 0.3997 (0.0001) 0.4000 (0.0001)
Y0 —20.8250 (1.8892) —20.8470 (2.2419) —20.9670 (2.9623)
2l 6.0763 (0.13061) 6.0791 (0.1542) 6.1062 (0.1975)
Bo 2.8003 ( < 0.0001) 2.8000 ( < 0.0001) 2.8000 ( < 0.0001)
300 B 0.3998 ( < 0.0001) 0.4000 ( < 0.0001) 0.3998 ( < 0.0001)
Y0 —20.6120 (0.5271) —20.5810 (0.6475) —20.6160 (0.8340)
2l 6.0254 (0.0367) 6.0178 (0.0452) 6.0265 (0.0565)

study, the following conditions are considered according to the data set reported in the
application:

(a) Setsample sizes n = 50, 100 and 300 and censoring percentages equal to 0%, 20% and
40% for nine scenarios.

(b) The parameter values are fixed at 8y = 2.8, 81 = 0.4, yp = —20.5, y; = 6.0, so that
the two systematic components are

i =exp (Bo + Bixi1) and of = exp (yo + n1zi1),
where x; and z; are generated from a binomial distribution with parameters n = 1
and p = 1/2 and a uniform distribution in the interval [3.0,4.5], respectively.

(c) The random values ty,...,t, of the RIG distribution (3) are generated using the
method by Michael et al. [21] as described in Appendix. The censored data are
obtained from a uniform distribution in the interval [11.0,33.8] for 40% censoring
and [11.0, 58.5] for 20% censoring.

(d) For each scenario, one thousand replicates are simulated.

Thus, the data are simulated according to the algorithm in Appendix. For each generated
sample, the MLEs of the parameters are determined and then, for each fitted regression,
we calculate the residuals rj in (14) and rp in (15).

The averages of 1000 MLEs and mean squared errors (MSEs) for the fitted regression
are reported in Table 1. We can note that the estimates of the parameters are close to the
true values, except if the sample size # is small and the censoring percentages are high.
The MSE values increase when the percentage of censoring increases and decrease when
n increases.

Figure 1 displays the plots of the deviance residuals versus the percentiles of the standard
normal distribution for some scenarios. The plots reveal the following findings:

(a) The empirical distribution of the deviance residuals converges to the standard normal
distribution when the percentage of censoring decreases.

(b) The empirical distribution also presents a better agreement with the standard normal
distribution when the sample size increases.
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Figure 1. Normal probability plots for the deviance residuals in the RIG regression.

In general, the deviance residuals appear to be consonant to assess the model ade-
quacy. Ortega et al. [23] showed that the deviance residuals were used in a data set with
approximately 90% censoring, thus indicating that they can be adopted with high censoring
percentages.

6. Application: COVID-19 length of stay

The city of Piracicaba is one of the first cities in Brazil to industrialize with the opening of
factories in the metal-mechanical sector and to produce equipment for production of sugar,
and later alcohol as well. This contributed significantly to the industrial growth of this city
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Figure 2. Piracicaba, Sdo Paulo, Brazil.

in the ensuing decades, thus making it attractive to large companies and, consequently,
moving the city with services and people. It is located 157 km from the capital of Sdo Paulo
(Figure 2), which facilitates the passage of people between the two cities. This heavy cir-
culation of people might have facilitated the entry of the SARS-COV-2 virus in Piracicaba,
where the first case of infection was recorded at the end of March 2020. Therefore, we
analyze the profile of the patients who were hospitalized due to the new coronavirus.

The COVID-19 data for the city of Piracicaba were obtained from the database of the
Unified Health System (SUS), available from the platform of the Department of Infor-
matics of the Ministry of Health,! considering the municipal code 353870. Patient data
regarding the principal diagnosis as COVID-19 were obtained from the same database
according to the International Classification of Diseases (ICD-10), corresponding to code
B34.2 (infection by coronavirus of unspecified location) and code B97.2 (coronavirus as
cause of diseases classified in other chapters)>> due to the absence of the category U07 in
the volumes of ICD-10 in Portuguese (Cidade de Sao Paulo Satde, 2020). The sample con-
sists of 55 individuals admitted with COVID-19 to public hospitals (SUS), with censoring
of approximately 70%, covering the period from March to May 2020, and the following
variables (fori =1,...,55):

(i) t;: time (in days) from hospital admission until death.
(ii) &;: censoring indicator (0 = censored, 1 = failure).
(iii) xi1,zi1: gender (0 = Female, 1 = Male).
(iv) xi2, zi12: logarithm of age.

The Kaplan-Meier curves are displayed in Figure 3 to verify the behavior of the length
of stay data of these patients. The plots show that the median hospital stay of these patients
is 15 days (Figure 3(a)), and there is a more pronounced difference between genders up to
15 days (Figure 3(b)), thus indicating that men have greater chances of survival in the first
days of hospitalization.
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Figure 3. Estimated survival curves by the Kaplan-Meier method for the length of stay (a) and for
gender (b).

Table 2. MLEs of the parameters of the RIG distribution for the length of stay of
COVID-19 patients.

Parameter Estimate Standard error Interval confidence(95%)
" 33.7630 6.6585 (20.7126,46.8133)
o? 2762.6396 1674.9181 (0.0000, 6045.4188)
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Figure 4. Plot of the hospital length of stay versus the logarithm of age for COVID-19 patients.

First, we fit the RIG density (3) to this data set. The MLEs, their standard errors (SEs)
and confidence intervals for its parameters obtained with the initial values . = 0.5 and
0% = 0.5 are given in Table 2.

It can be noted from Table 2 that the mean length of stay in the hospital is approximately
between 21 to 47 days. The variance estimate, indicates that there is a high variability in
the data which can also be noted in Figure 4. The observations are more dispersed when
the logarithm of the age increases and for this reason, the covariate logarithm of age is
candidate to be used in the systematic component of the variance parameter.
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Figure 5. Estimated RIG survival function and the Kaplan-Meier curve for the length of hospital stay of
COVID-19 patients.

In addition, the estimated survival function of the RIG distribution follows from (4)

. 33.76303 t
SH=1-—d -1
2762.6396 ¢ \ 33.7630
2(33.7630%) 33.76303 t
—exp| —— D | - +1)1, (16)
2762.6396 2762.6396 t \ 33.7630

where t denotes the COVID-19 length of stay (in days).

The estimated RIG survival function (16) and the Kaplan-Meier curve are displayed in
Figure 5. The estimated survival function reasonably superpose the empirical curve, which
indicates that the density (3) can be used for the analysis of the current data.

The variables of the systematic components (5) and (6) are selected using the method
described by Colosimo and Giolo [5]. The steps are as follows:

(a) Step 1: Estimate the RIG regression under a single variable:
o 1 =exp(Bo+ B1x1) and 02 = exp(yo),
o 1 =exp(By+ Baxz) and 02 = exp(yo),
e 1 =exp(Boy) and 02 = exp(yo + 1121)s
e 1 =exp(By) and 02 = exp(yy + 1222).
(b) Step 2: The significant covariates in step 1 are estimated together:

2

wu = exp(Bo + B1x1 + P2x2) and o° =exp(yo + 1121 + V222).

We then estimate the reduced RIG regressions, excluding a single covariate:
o w=exp(Bo+ Prx2) and 0> = exp(yo + 1121 + 222),
o w=exp(Bo+ Pix1) and o? = exp(yo + 1121 + 222),
o w=exp(Bo+ fix1 + foxz) and 0? = exp(yy + 1222),
o w=exp(Bo+ fix1 + foxz) and 0 = exp(yo + n121).
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Table 3. Selection of covariates.

Step Model —2/(()) LR Test p-value
Step 1 Null 130.6695 - -
X1 124.3520 6.3175 0.0120
X2 122.0522 8.6173 0.0033
z 124.4036 6.2659 0.0123
V4 119.1318 11.5377 0.0007
Step 2 X1 +xpandz1 + 2, 108.6696 - -
xyand z; + 2o 108.8340 0.1644 0.6852
xyandzy + 2o 109.8188 1.1492 0.2837
X1 +x2and 2, 109.0185 0.3489 0.5548
X1 + X2 and z; 116.2177 7.5481 0.0060
Step 3 b4 119.1318 - -
Xq and z, 112.8101 6.3217 0.0119
Xz and 2, 118.2537 0.8781 0.3487
Final xq and 2, - - -

Table 4. MLEs of the parameters of the RIG regression for the length of stay of COVID-19 patients.

Parameter Estimate Standard error p-value Confidence interval (95%)
Bo 2.7613 0.1602 0.0000 (2.4473,3.0753)

B 0.3972 0.1480 0.0081 (0.1033,0.6911)

Y0 —20.5155 10.1831 0.0439 (—40.4740,—0.5571)
Y2 6.1270 2.3440 0.0090 (1.5329,10.7210)

(c) Step 3: The covariates of the systematic component of the mean parameter excluded
in step 2 are returned to the model to confirm that they are not statistically significant.

The results of the variable selection procedure are reported in Table 3.
Finally, we consider the following systematic components:

pi =exp(Bo+ Bixn) and of =exp (yo + v22i2) -

The MLEs, their SEs, the confidence intervals and the significance of the parameters for
the RIG regression are given in Table 4. The estimates are obtained by choosing By =
5.82275, B1 = 0.36873 and )y = y, = 1 as initial values.

The figures in Table 4 at a significance level of 5% indicate that there is a significant
difference between genders in relation to the length of stay and that the mean length of
hospital stay of men is higher than women since f is positive.

Continuing the analysis, the results of such influence measure index plots (GD;(#) and
LD;(#)) are displayed in Figure 6. These plots reveal that the case 16 is a possible influential
observation.

The local influence plots, considering the case-weight perturbation, response perturba-
tion and explanatory variable perturbation, reveal that the cases §16, §19 and {24 can be
possible influential observations as shown in Figure 7(a—c).

To analyze the impact of these observations on the parameter estimates, the regression
is refitted by eliminating each observation individually. Thus, the figures in Table 5 provide
the relative changes (in percentages) of each estimated parameter defined by RCy, = [(éj -
éj(i))/éj] 100, where éj(i) is the jth MLE without the ith observation (i =1,...,55and j =
1L,...,3).
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Figure 6. Global influence measures plots for the RIG regression model. (a) GD;(@) (b) LD;(0).
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Figure 7. Local influence (dpax) plots of the RIG regression for the length of stay of COVID-19 patients.
(a) Case-weight perturbation, (b) Response perturbation and (c) Explanatory variable perturbation

log(age).

The possible influential observations correspond to patients with the following charac-
teristics:

(i) Patient #16: 31-year-old man (youngest in the adult age range in uncensored times)

with the longest failure time (23 days) in the uncensored times.

(ii) Patientf19: 57-year-old woman (older age in the censored age group) with the second
highest censored time (28 days). In relation to the group of women it is the longest.

(iii) Patient #124: 67-year-old woman with the failure time equal 3 days among the group
of women whose time is not censored.

(iv) Patient §31: 73-year-old woman with the first shortest failure time (2 days) among
the group of women whose time is not censored.

The results in Table 5 indicate that the MLEs of the parameters of the RIG regression are
not very robust in relation to the deletion of influential observations (high percentages of
CR). However, the significance of the estimated parameters do not change (at the 5% level
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Table 5. Relative changes [-RC- in %], MLEs of the parameters and the corresponding p-
values (in parentheses) by excluding the observations 116, 19, 124 and £31.

Exclusion }§0 }3A1 ];0 )72
None - - - -
2.7613 0.3972 —20.5155 6.1270
(0.0000) (0.0081) (0.0439) (0.0090)
116 [—19] [—16] [20] [9]
3.2877 0.4590 —16.3116 5.5745
(0.0000) (0.0103) (0.1393) (0.0263)
219 [5] [—27] [-52] [-39]
2.6312 0.5060 —31.1382 8.5020
(0.0000) (0.0004) (0.0121) (0.0030)
124 [-3] [26] [-38] [—29]
2.8481 0.2936 —28.2207 7.9082
(0.0000) (0.0542) (0.0117) (0.0024)
31 [-2] [17] [-5] [—4]
2.8216 0.3314 —21.6272 6.3734
(0.0000) (0.0261) (0.0300) (0.0056)
(a) (b) (c)
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Figure 8. Residual plots of the RIG regression for the length of stay of COVID-19 patients. (a) Index, (b)
Values adjusted for the mean and (c) Values adjusted for the variance.

of significance) after removing the cases, except for the parameter 8; in which the p-value
is very close to the significance level limit when 24 is removed. In general, it can be con-
sidered that there were no major inferential changes after the removal of the observations
considered influential in the diagnostic charts. As there were no inferential changes, the
observations were maintained, although the estimates are not robust.

The plots of the deviance residuals versus the index of the observations and the deviance
residuals versus the adjusted values are displayed in Figure 8. It can be noted in these plots
that the residuals are random around zero, which indicates that the regression is reasonably
adequate to analyze the current data. In addition, we do not note outliers for the range
(=3,3).

Finally, Figure 9 shows the normal probability plot for the deviance residuals with simu-
lated envelope [2] of the RIG regression. So, there is evidence of a good fit of the regression
for the length of hospitalization data, since the points are not outside the simulated enve-
lope. The findings presented by Ortega et al. [23] also corroborate the adjustment of the
model.
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The estimated survival function (8) for the length of stay data of COVID-19 patients is

S(t) =

where 119 = exp(2.7613), 1 = exp(3.1585), 52

+ 6. 12702,'2).

x P

x P

3
t
— _MTO(—-FI) ifx; =0,
o“t \ Mo
(17)
3 2
t .
_M—l ——1 — exp &
o2t \ o2
[ 3
t
— _MTI<_+1> ifx1=1,
ot \ 1

=437 6% and 67 = exp(—20.5155
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Figure 10(a) displays the estimated survival curves from (8) and the Kaplan-Meier
method stratified by the gender group. Figure 10(b,c) are obtained by separating patients
in an age group less than 60 and in an age group greater than or equal to 60 years, respec-
tively. These plots indicate that the RIG regression can be acceptable for estimating the
survival function of COVID-19 patients hospitalized since they follow the Kaplan-Meier
curve, except for the adult age group. The behavior noted in Figure 10(c) is due to the large
amount of censored times in this group.

7. Concluding remarks

We presented a re-parameterized inverse Gaussian (RIG) distribution in terms of the
variance parameter with the objective to incorporate a multiplicative heteroscedasticity
component in the regression. Based on this distribution, we can include the effects of
explanatory variables without using a location-scale model, thus allowing interpretation
about the mean without the need to transform the response variable. We defined the RIG
regression to analyze the hospitalization time of COVID-19 patients in the city of Piraci-
caba, Sdo Paulo, Brazil. The results indicated an average hospitalization time of 33 days,
and that men tend to remain hospitalized longer than women. Further, some individuals
were identified with characteristics outside the pattern of their group, which can help to
better understand the effects of the new coronavirus.

Notes

1. DATASUS. Available in: https://datasus.saude.gov.br/. Accessed on: July 20, 2020.
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in:  https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/saude/arquivos/mortalidade/
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Appendix. Algorithm

We present below the Algorithm 1 showing the steps to generate random values from the RIG
regression.

Algorithm 1: Simulation study with different percentages of censoring

Input: r - number of replications
n - sample size
Bo - parameter for the mean
B1 - parameter for the mean
Yo - parameter for the variance
1 - parameter for the variance
ji=1
while j < rdo
g_mX; ~ binomial(1, 0.5)
g mX, ~U(3,4.5)
g mD n x 2 matrix of ones
for i = 1ton do
u = exp(Bo + (B1 * g_mX1))
o? = exp(yo + (1 * g_mXa))
Vo ™~ X(1)

3
M
A=z

2
x| =p+ 50— [%\/(4/%10) + (MZVS)]

©
X1

— M
b= Jtxn

Y ~U(0,1)
ifY < P then
| g.ml =x
else
| g.mT =x;
end
g_mC ~ U(a, b), where a and b are chosen to obtain the censoring percentages
if g mT < g mC then
| g-mDy =g mT
else
g mDj; =g mC
‘ g_mD,-z =0
end

X =

end

Arrange side by side g mD, g mX, and g mX; ing_mY

Obtain the estimate parameters

if if the optimization method converges then

Save parameter estimates to an object

Determine residues (martingale and deviance) and store them in an object
update j

else
| notupdated j
end

end
Determine the average of the r estimates
Determine the mean squared error
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