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Abstract

We show there are no extremal metrics for the eigenvalues of the Neumann Lapla-
cian on any compact manifold. Nonetheless, we construct examples of conformally
extremal metrics for the eigenvalues of this operator in any annulus and characterise
these special metrics in the general case of a compact manifold of dimension n > 2.
As for the Dirichlet Laplacian, we prove non existence of extremal metrics on any
compact surface.
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1 Introduction

Let (M", g) be a closed Riemannian manifold of dimension n > 2. The Laplace-
Beltrami operator A, or just the Laplacian, acts on smooth functions as Ay f =
—div V f. In the case of compact manifolds, its spectrum is discrete and consists
entirely of eigenvalues, which we order and list counted with multiplicity:

0="20(M,8) < (M,g) <A (M,g) <--- / oo

When considered as a functional over the space of Riemannian metrics on M, Ay is
not scale invariant (in fact, Ay (M, cg) = %)\k(M , &) for any constant ¢ > 0). Consider
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then the normalised eigenvalues
(M, g) = (M, g) Vol(M, g)*"
One of the main problems in Spectral Geometry is to compute the exact values of

Ak(M) = sup (M, g),
8

and the corresponding maximising metrics. Here the supremum is taken over all
smooth Riemannian metrics g on M. When M has dimensionn > 3,then A (M) = oo
(see [1]; nonetheless, the supremum above is always finite when considered with
respect to a conformal class of metrics, as shown in [12]). In the case of surfaces,
many authors have contributed to this program by either calculating A (M) and the
maximising metrics for some surfaces or giving upper bounds for this quantity. We
recommend the excellent survey [9] for the interested reader to check the development
of the problem and the main open questions as of the publishing of this article.

A deep and surprising feature of maximising metrics for A in a surface was dis-
covered by Nadirashvili [17]: they are arise as induced by minimal immersions of the
surface into around sphere by first eigenfunctions. Later, El Soufi and Ilias [2, 4] gener-
alized this result for closed manifolds of arbitrary dimension using the related concept
of extremal metric (see Sect. 2 for details). Finally, Fraser and Schoen [5] showed that
maximising metrics for the first normalised Steklov eigenvalue on a compact bordered
surface are induced by free boundary minimal immersions of the surface into some
Euclidean ball. This result and related techniques have been used to construct many
examples of free boundary minimal surfaces in the 3-ball B3. Very recently, Karpukhin,
Kusner, McGrath and Stern [7] employed eigenvalue optimisation techniques to solve
the topological realisation problem for free boundary minimal surfaces in B>.

Remark 1.1 It is not obvious whether for a given surface M the supremum A (M)
is attained by a smooth Riemannian metric. This question was recently addressed by
Matthiesen and Siffert [16], where they claim that maximising metrics exist in any
closed surface and are smooth away of at most finitely many conical singularities.
However, these authors have informed those of [7] that the argument in [16] “contains
a nontrivial gap”.

In this paper we will address analogous problems in the case of a compact
Riemannian manifold with boundary (M", g). From now on, let us denote by

0<A(M,g) <i(M,g)<--<i(M,g)<-- / 00.
and by

0=puoM,g) <pui(M,g) <---<u(M,g) <--- /" oo.
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the spectra of the Laplacian on M with Dirichlet and Neumann boundary conditions,
respectively. Let us also write

M (M) = inf A (M., g) Vol(M, g)*"
8

and

1§ (M) = sup i (M, g) Vol(M, g)*/"
8

where, again, the infimum and the supremum are taken with respect to all smooth
Riemannian metrics g on M.

Li and Yau proved that, in the case of compact surfaces, ;ﬁf(M ) is always finite
(see Fact 1, Fact 5 and Theorem 1 in [13]). Our first theorem, shows, in particular, that
the supremum defining this quantity is never achieved.

Theorem A There are no extremal metrics for @t on any compact Riemannian mani-
fold with boundary of dimension n > 2, regardless of the value of k > 1. In particular,
/Lf(M ) is never attained by a smooth Riemannian metric on M.

In another paper, Li and Yau also proved that if (M", g) is compact with boundary
and has nonnegative Ricci curvature, then px (M, g) Vol(M, 2)*/" is bounded above
by Ck?/", where C > 0 only depends on n. Thus, Theorem A implies that there are
no maximising metrics for the quantity 1z, (M, g) := ux (M, g) Vol(M, 2)*/" when g
varies on the set of positive Ricci smooth metrics on M.

Our second result, on the other hand, characterises conformally extremal metrics
for the Neumann eigenvalues. Together with the examples in Sect. 4, this shows that
the situation is entirely different when we restrict ourselves to fixed conformal classes.

Theorem B Let M" be a compact smooth manifold with boundary, n > 2. If a Rieman-
nian metric g is conformally extremal for [t;, k > 1, then there exist eigenfunctions
Ui, ..., Uun associated with ui(M, g) such that

: m 2 _ 1 .
@ Xi_u; = 0Ty
.. m
@) Y7L, IVui|* =1
Conversely, if there exist eigenfunctions uy, ..., u,, associated with (M, g) satis-

fying (i) and (ii), and either px(M, g) < pk+1(M, g) or ue(M, g) > pur—1(M, ),
then the metric g is conformally extremal for [,.

There is a beautiful connection between extremal metrics for the Laplacian in
conformal classes and the theory of harmonic maps into spheres, firstly explored in
[3, 5] and further developped in [8—10, 14]. Let us briefly recall some concepts.

Let (M", g) and (N, h) be smooth Riemannian manifolds. Amapu € WL-7(M, N)
is called p-harmonic if it is a critical point of the p-energy functional

EP(u) = / |du|? dV,,
M
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where |du|? is computed with respect to the metrics g and 4. When p = 2, we simply
say that # is harmonic.

We are only concerned with the case p = n, when (M, g) is compact and when
(N, h) is the unit round sphere S”~!. With these hypotheses, it is not difficult to show
that u : (M", g) — S"! is n-harmonic if and only if it is a weak solution of

—div(|Vu|""?Vu) = |Vu|"Vu.

Moreover, such maps are C'** for some o > 0 when n > 2 and they are smooth when
either n = 2 or u is nondegenerate, i.e., du 7# 0 (see [20] or [14]).
With this language, Theorem B can be rephrased in the following way.

Corollary C Let M" be a compact smooth manifold with boundary, n > 2. If a Rieman-
nian metric g is conformally extremal for [ty, k > 1, then there exists an n-harmonic
map u : (M, g) — S™ ! into the unit round sphere with |du|* = (M, g), all of
whose components satify the Neumann boundary condition.

Conversely, if there is a nondegenerate n-harmonic mapu : (M, g) — S™~! whose
components satisfy the Neumann boundary condition, then the metric g = |du|§ gis
conformally extremal for i, where k is the smallest positive integer index associated
to the eigenvalue 1.

As an application of Corollary C, in Sect. 4 we construct examples of confor-
mally extremal metrics in an annulus by considering appropriately chosen domains in
unduloids.

As for the eigenvalues of the Laplacian with Dirichlet boundary condition, we
show nonexistence of extremal metrics both globally and when restricted to conformal
classes.

Theorem D There are no extremal metrics for hx on any compact Riemannian surface
with boundary, irrespective of the value of k > 1. In particular, )\ﬁ (M) is never attained
by a smooth Riemannian metric on M?.

TheoremE There are no conformally extremal metrics for A on any compact
Riemannian surface with boundary, irrespective of the value of k > 1.

Regarding Theorems D and E, we don’t know what can be said for manifolds of
dimension n > 3. The arguments involved in the proofs can only handle the surface
case. In light of Theorems A and D, another relevant question is whether Af(M ) and
uf (M) can be attained by Riemannian metrics with finitely many singularities. This
problem seems to be open even in the case of closed surfaces and has been proved
only under the assumption of a certain spectral gap (see Theorem 2 in [18]).

2 Extremal Metrics and the Derivative of the Eigenvalues

In this section we introduce the definition of extremal metrics for the eigenvalues of the
Laplacian, inspired by the works of Nadirashvili [17] and Kapurkhin—-Métras [8]. Then,
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we compute the derivative of these eigenvalues and show that, in the case of extremal
metrics, a certain induced quadratic form cannot be definite on the corresponding
eigenspaces.

Let M" be a compact smooth manifold with boundary. We say that a Riemannian
metric g is F-extremal for some functional F' if for all 1-parameter smooth family of
Riemannian metrics g(¢) with g(0) = g, we have either

F(g(t)) = F(g) +o@) or F(t)=F(g)+o()

ast — 0. A metric g is F-conformally extremal if it is F-extremal in its conformal
class [g] (that is, we require g(¢) € [g] above).

To unify notation, let A (g) denote either A (M, g) or ur (M, g),fork > 1. Also, let
E(g) be the corresponding eigenspace in L?(M, g). The functional we are interested
in is

Ar(g) = Ax(g) Vol(M, g)*",
defined on the space of all smooth Riemannian metrics on M.
It is possible to prove that this functional is Lipschitz with respect to the C*° topol-

ogy in the space of Riemannian metrics (see [11], for instance). The next proposition
gives a formula for its derivative along any smooth family of metrics.

Proposition 2.1 Let (—¢, €) > t +> g(t) be a smooth 1-parameter family of Rieman-
nian metrics on M. Then the map t +— Ay (t) := Ak' (g(t)) is Lipschitz. Moreover, for
an open and dense set O C (—¢, ¢), iftg € O and Ay (ty) exists, then

Alio) = — fM (g, h) dV,

for any u € Er(g(tg)) with ||u||Lz(M’g(,0)) = 1. Here, h = %g(t)bzto, (-, -) is the
inner product induced by g(to) in the space S*(M) of smooth covariant 2-tensors,
dngO is the volume element of M induced by g(tp), and q : C°(M) — S*(M) is
given by

g =df @df — 5 (IV/1 ~ Axtao) 1) gtt0).
Proof For eachi > 2, let
Aj ={t € (=&, &) Ai(t) > Ai—1 (1)}
and let B; be the interior of (—¢, £)\A;, so that
(—e,6) = A; UB; U0JA;

is a disjoint union. Let O be the complement of Uf‘(:z dA; in (—e, &). Since each d A;
is closed and has empty interior, O is open and dense. It is not difficult to see that
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for any tp € O, there is 1 <[ < k such that A;(¢) = Ak(1) and A;_1(t) < Ai(t)
in a neighbourhood around fy. Fix any 7y € O where Ag(fy) exists and define on this
neighbourhood

~JUZ Eig@). i Arr) = i 0)
&) = -1 . .
UIZo Ei(g(0). i Ar(t) = i (1)

Then £(¢) has constant dimension / — 1 in the Dirichlet case, or [ in the Neumann
case. Moreover, £(¢) varies smoothly in 7 for small ¢. Let P; : L*(M, g(1)) — E(t) be
the orthogonal projection onto £(¢). Choose ug € Er(g(tp)) with luoll L2(m,g(t)) =1
and let u; = ug — P;(ug). Then, the functional

f(t)=/ |w,|2dvt—Az(r)f u? dv,
M M

satisfies f(#) > 0 on this neighbourhood of #y and f(zy) = 0, so that f (to) = 0. It
remains to compute this derivative. We have
d
dV,)
1=ty

i = [ (L 2 (4
fit0) = /M ( Tl (v w») dVe, + fM |Vito] ( o

. d d
A A — 2) dv,, +A —
+ Ag(to) + As(to) /M <dt t=t0M;) &, T Ai(10) /M up <dt

. 1
- /M [2(vu0, Vito) — h(Vug, Vi) + §|Vu0|2trg(m) h} Ve,

dV,)
1=ty

. . 1
+ A(t) + Az(to)/ <2Mouo + Eu(z) g (10) h) AV,
M
. 1
= / [2(Vu0, Vi) — (duog ® dug — EIVMOIZg(to), h):| dv,
M

. 1
+ Ay(to) + Az(to)/ <2M0b't0 + Eu(%(g(lo), h)) dVe,
M

Since ug € Ej(g(tp)), we also have
/ (Vug, Vo) dVgrO = A[(l‘())f ugllg dVgto.
M M
Thus, rearranging the formula for f (to), we obtain
. 1
Ailto) = - / (duo ® dug — = (Vo = Artto)u) go). h) Vi
M

as we wanted. O
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Remark 2.2 Since the map r — Ax(g(¢)) is Lipschitz, it is differentiable almost
everywhere, say, in a set D C (—¢, ¢) of total measure. Thus, the formula stated in
Proposition 2.1 for the derivative of this map is valid for all 7 in the dense set O N D.

Given a Riemannian metric g on M, let L*>(S*(M), g) denote the space of L>
symmetric covariant 2-tensors on M. For h € L2(S*(M), g), let Qj, : C*(M) - R
be the quadratic form defined by

On(u) = —/ (q(u), h)dVyg,
M

where ¢ is given in Proposition 2.1.

Proposition 2.3 If a metric g is Ay-extremal, k > 1, then for any h € L*(S*(M), g)
which satisfies fM (g, h)dVy = 0, there exists u € Ex(g) with |lullz2y,q) = 1 such
that Qp(u) = 0.

Proof Since S%(M) is dense in L%(S%(M), g), there exists a sequence h; €
C%(S*(M), g) such that [, (g,h;j)dV, = O forany j > 1 and h; — h in
L%(S2(M), g) as j — 0.

For each j > 1, let (—aj,a;) > t > g;(t) be the smooth 1-parameter family of
metrics defined by

Vol(M, g)*"
Vol(M, g + th;)/

gj() = (g +1h)),

for t € (—aj,aj). Then Vol(M, g;(t)) = Vol(M, g) for all ¢, g;(0) = g and
éj—l gj(®)i=0 = h;. Since g is ‘Aj-extremal, we can assume without loss of generality
that

Ar(gj(1) = Ak(g) +o(1)

as t — 0. In particular, taking the limit for negative ¢ yields

lim A (gj (1) — Ar(g) .
t—0~ t

0.

So, there exists a sequence of ¢; > 0 decreasing to 0 and §; € R with lim;_, ., §; =0
such that

_ Mulgie) — M) _ 1 /0

Ei i —&;

8i Ax(gj(1))dt < esssup{Ag(t) : t € [—&;, 0]}

We can thus find a sequence of #; < 0 increasing to 0 such that Ak(g j(t;)) exists and
is given by

Ar(gj (1) = Quy ) = 6,
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)

()
i U;

€ Ex(gj(t) with |u; = 1 (see

_ Lz(M,gj(ti))
Proposition 2.1). Passing to a subsequence if necessary, ul(] ) u(_j) in C2(M) as

i — 0o. Then u") € Ex(g;(0)) = Ex(g), |u"’ Pt = 1 and

d
where w;ij = 3 &)=, and u

On, ) = lim Qu, @) = lim & > 0.
1—> 00 ; 1—> 00

)

Again, taking a subsequence if necessary, u’’ — wu_ in C>(M) as j — oo, and

u- € Er(g), lu-liz2(m,q) = 1. Moreover,
On(u-) = lim Q@) = 0.
J—>00

The same argument starting with the limit for positive values of ¢ produces u; €
E(g) with |luy ||L2(M‘g) = 1. Since Qj, is continuous and takes both nonpositive and
nonnegative values on Ej(g), there must exist u € Ey(g) such that Q;(u) = 0, as
claimed. O

The next two results, which deal with deformations of a metric in a fixed conformal
class, can be proved in an analogous fashion.

Proposition 2.4 Let (—¢, &) > t > g(t) = ¢*Dg be a smooth 1-parameter family
of Riemannian metrics on M, conformal to some fixed metric g. Then the map t +—
Ak (t) := Ay (g(t)) is Lipschitz. Moreover, for an open and dense set O C (—¢, ¢), if
to € O and Ay (to) exists, then

Ax(t0) = — /M pw)¢(to) Vg, ,

Jor any u € Ex(g(10)) with |ull 12,y = 1. Here, p : C®(M) — C®(M) is
given by

2 - nAg(to)

_C=n g 2
pPif)=—F—IVIIF+—F— /"

Given a Riemannian metric g on M and a function ¢ € L*(M, g), let Py
C°°(M) — R be the quadratic form defined by

Py (u) = — /M pu)y dvy,

where p is given in Proposition 2.4.

Proposition 2.5 If a metric g is conformally Ag-extremal, k > 1, then for any i €
L2(M, g) which satisfies fM Y dVy =0, there exists u € Ex(g) with Nullz2p,g) =1
such that Py (u) = 0.
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3 Proofs of the Theorems
In this section we present the proofs of the theorems stated in the Introduction.

Proof of Theorem A Let M" be a compact manifold with boundary and suppose g is a
smooth Riemannian metric which is extremal for 1 for some k£ > 1. Let K be the
convex hull in L>(S%(M), g) of the set {g(u) : u € Ex(g)}. We claim that g € K.
If not, then since K is a convex cone which lies in a finite dimensional subspace of
LZ(S2(M), g), the Hahn—Banach theorem furnishes / € LZ(SZ(M), g) such that

/ (¢.h)dV, >0 and / (q(u), hydV, <0 forallu € Ex(g) \ {0}.
M M

Let & be the projection of & onto the subspace of symmetric covariant 2-tensors whose
traces have zero mean. Explicitly, define

,;zh_<M)g,

nVol(M, g)

Then fM(g, h) dV, = 0 and for any u € E;(g) we have

- ,hydV,
Qg(u)=/ (q(u), h)dVg =/ (qu), h)dVy — (M>/ (q(u), g)dV,
M M M

nVol(M, g)
B Juls-h)dvg
= /M<q(u)’ h)dVe + (M)

/M [vur? = 5 (1vu? = woy?) | av,

_ [y(g. hydV, N
= /MW(“)a hydV, — <m) /M [Vul“dV, <0,

<0 >0 >0

which contradicts Proposition 2.3. Thus ¢ € K and there exist independent
eigenfunctions uy, ..., u, € Ei(g) such that

> [du,- ® du; — % (1Vuil? = pacoyu?) g] =g e

i=1

Taking the trace of this equation and rearranging, we obtain

1k (8) (n—2) <
Ui == Vil @)
i=1 i=1
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Let u=Wg,...,uy): M — R" If n =2, Eq. (2) immediately gives that lul> =
mg) and then Eq. (1) shows that g = Y7, du; ®du;. Ifn > 3, let f = |u|*> — RO
After some simple calculations we see that f satisfies the following boundary value

problem:

Bef =7 on
(Vf,v) =0, ondM’
where v is the outward unit normal along d M. Since the Neumann Laplacian is a
positive self-adjoint operator, it follows that f vanishes. So, |u|?> = As before,
Eq. (1) shows that g = "/ | du; ® du;.
In any case, u is an isometric immersion from (M, g) into the round sphere of radius

Mk (g)

n (g) around the origin of R”. But the normal derivative of u along the boundary

of M vanishes since all component of u satisfy a Neumann boundary condition. This
contradiction shows that g cannot be extremal for fiy. O

Proof of Theorem D The argument is similar to that of the proof of Theorem A. Exactly
as in that proof, we can show that g is a convex combination of Dirichlet eigenfunctions

U,y ..., Um € Ex(g):

m

Z[du,eadu, 5 (il = st }=g. 3)

i=1

Again, taking the trace we obtain

Ak(g = n=2) <~ 2
; 2n ;ww 4)

Letu = (ul, ceyUp) i M — R™ Asdim M = n = 2, Eq. (4) immediately yields
lu)? = " ( . This contradlcts the fact that u vanishes along the boundary of M since
all its components satisfy a Dirichlet boundary condition. O

Remark 3.1 If n > 3, some simple calculations show that the function f = |u|? in the
proof of Theorem D satisfies the following boundary problem:

Agf — 4)Lk(g)f + 4n on M
f=0, onoM

This problem has a unique solution in C*° (M) by the Fredholm alternative. Thus, there
is no contradiction in this case and nothing can be concluded from this argument.

We now prove Theorems B and E.

Proof of Theorem E Let M? be a compact surface with boundary and suppose g is a
smooth Riemannian metric which is conformally extremal for A; for some £ > 1.
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By considering K the convex hull in L*(M, g) of the set {p(u) : u € Ex(g)} and
reasoning as in the proof of Theorem A, we can show that 1 € K. So, there exist

independent eigenfunctions uy, ..., u;, € Ei(g) such that
2—n) ¢ ni(g) -
5 Z|Vui|2+TZul~2:l. )
i=1 i=I
Since n = 2, this equation implies that ) ;" , “12 = #@, which contradicts the fact
that all u; vanish along 0 M. O

Proof of Theorem B Let M" be a compact manifold with boundary and suppose g is
a smooth Riemannian metric which is conformally extremal for 7z, for some k > 1.
By considering K the convex hull in L*(M, g) of the set {p(u) : u € Ex(g)} and
reasoning as in the proof of Theorem A, we can show that 1 € K. So, there exist

independent eigenfunctions uq, ..., u; € Er(g) such that
2—n) ¢ 2, nk(8) N o
> 2 Vil = Y =1 ©)
i=1 i=1
We claim that |u|> = m. This is clear if n = 2, so suppose n > 3. Notice that
Agluil® = 240 ()i > — 2|duy . @)
foranyi = 1, ..., m. Combining (7) and (6), we see that the map f = lu|> — Ml(g)
satisfies the following boundary value problem:
4k (g)
A, f = -5 fF, M
gf n—2 f on (8)

(Vf,v) =0, onoM

By the positivity of A, with Neumann boundary condition, we conclude that f
vanishes, i.e., [u|> = ——~.1In any case, (6) implies that |du|? = 1, as we wanted.
i (g) . . ..
Conversely, suppose that uy, ..., u, € Ei(g) satisfy hypotheses (i) and (ii) and
suppose i (g) > ur—1(g) (the other case is treated similarly). Let g(¢) = e‘/’(’)g be a
smooth 1-parameter family of Riemannian metrics with g(0) = 0 and Vol(M, g(¢)) =

Vol(M, g), so that [, ¢ dVy = 0. We have:
m m
ZP(;,(ui):—Z/ p(ui)¢ dVy
i=1 i=17M
n—2 < 2 k(@) s 2\
:/M< 5 §|w,-| - > ui)¢dv,

i=1
—2
:/ Lz D) gave=o.
w\ 2 2
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Thus, letting E = span{uy,...,u,}, we see that there exist uj,u_ € E
with £Py(u+) < 0. Since ux(g) > pr—1(g), Py(uy) < 0 gives that
lim,_, o+ 8OO < 0 and Py(uy) < 0 implies that lim,_, (- 81O > ¢
This proves that px(g(t)) < ux(g) + o(r) ast — 0. Since g(#) was arbitrary, we
conclude that g is conformally extremal for 1k, as desired. O

4 Examples

To conclude, we present examples of conformally extremal metrics for the Neumann
eigenvalues in an annulus. The idea is the following: we first find an appropriate domain
in the unduloid in R3 for which the normal derivative of the Gauss map vanishes
along the boundary. Since the unduloid has constant mean curvature (CMC), a well-
known theorem of Ruh—Vilms [19] guarantees that the Gauss map is (nondegenerate)
harmonic. We can thus apply Corollary C to conclude that there is a conformal factor
for which the corresponding metric is conformally extremal for the eigenvalue 1. Let
us proceed to the formalities.

Let x, z € C2(R), with x > 0, and consider the surface of revolution M obtained
by rotating the curve C : v — (x(v), z(v)) in the xz plane around the z axis. A
parametrization of M is given by ¢ : R x [0, 2], defined by

@(u, v) = (x(v) cosu, x(v) sinu, z(v)),
and the coefficients of the metric g on M induced by R? are:

0p

0
E(u,v) = <£(u, v), o

(u, v)> = x(v)?

F(u,v) = <g—z(u, v), g—(i(u, v)> =0

Gu,v) = <8—“’(u, 0. 2w, v>> =x'(0)? +7 ()%
ov v

A unit normal vector field N for M is

N, v) = ﬁ(z/(v) cosu, ' (v) sinu, —x’'(v)).

Given a < b, consider the domain
Yap ={p,v) :u€l0,2r],v € [a,b]} C M.

The outward unit normals for 9%, 5 are

) = _;(x’(a) cosu, x'(a) sinu, 7' (a))

VG (u,a)

Ve (u) =

dp
_«/G(u, a) %(u, “
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and

—8(p —; / / . ’
G D) b)a_v(”’b) = TCad (x'(b) cosu, x'(b) sinu, 7'(b))

vp(u) =

Recall that the signed curvature k of the curve C is given by the formula

x' ()" () — x" () (v)

/x/(v)z + Z/(v)z

After some straightforward computations, we see that the normal derivatives of N
along 0%,  are

k(v) =

_ 1 4N N O
vp(N)(u) = mﬁ(%b) = Wﬁ(u, b)

_ 1 IN _ k(a) ¢
{vauv)(u) =~ oo 5 @) = — 5=t (u. a)

Thus, if the curvature k(v) vanishes at v = @ and v = b, then the components of N
satisfy the Neumann boundary condition in X, p.

Let now M be an unduloid in R, whose generating curve C is obtained [6, 15] by
considering

x(v) = +/Bsin(uv) + 6

z(v):aF(%v—%,K)+)/E<M—v—z,/c),

where 0 < @ < y are parameters, F (¢, k) and E (g, k) are the elliptic integrals of the
first and second kind, respectively, and

) Kz:yz_az ﬂ:yz_az 5=y2+a2
a+y7 )/2 b b .

It is clear that C is periodic of a certain period T = T («, y) and its curvature k
vanishes twice in the interval [0, 7], say at v = v* and v = v** (see Fig. 1). Let
v = v* 4+ nT and v* = v** 4+ nT, n € Z, be all the vanishing points of k. By
what we have seen before, the components of the Gauss map N satisfy the Neumann

boundary condition in the domains

¥ =A{p,v) uel0,2x],ve v v}, n>1
T = {pu,v) 1u€[0,27],v e v, v*)}, n>0
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Fig. 1T Unduloid with parameters « = 0.8 and y = 2.4. The circles indicate where the curvature of the
generating curve vanishes (v &~ —4.22, —0.78, 5.81, 9.26). Any domain bounded by two of these circles
can be considered to construct a conformally extremal metric

Moreover, the expressions for the principal curvatures of the unduloid [6] are

(y —a) [y —a+ (a+y)sin<a%fy)]
(. +7y) [a2 +¥2+ (y?2 —a?)sin (ofT”)/)]
a+y+(y —a)sin(a%fy)

2 2 2 o 2yein ((20)
a4+ y2+(y oz)sm(a:y)

ki(v) =

ka(v) =

o

It is easy to see that kp (v) > el > (. In particular, dN # 0 everywhere. Thus, N :

X — S?and N : DI S? are nondegenerate harmonic maps whose components
satisfy the Neumann condition along the respective boundary. Applying Corollary
C, we conclude that the metric § = |[dN|?>g on the annuli [v*, vl x S'n =1
and [v*, v*] x S! (n > 0) are conformally extremal for the Neumann eigenvalue 1.
Varying n, we obtain infinitely many such metrics, no two of which are conformally
equivalent. O
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