Conexão

Orestes Gonçalves, professor titular da Epusp – Escola Politécnica da Universidade de São Paulo e diretor da Tesis – Tecnologia de Sistemas de Engenharia (*)

Desempenho de torneiras economizadoras de água: 10 anos de uso no campus da USP

A avaliação das torneiras automáticas quanto aos requisitos de tempo de fechamento, vazão e volume de água por ciclo depende da manutenção dos equipamentos instalados e da adequada capacitação do pessoal de manutenção, visto que em mais de 80% dos casos de performance insatisfatória, uma simples e rápida limpeza do arejador e regulagem de vazão permitiram um funcionamento de qualidade.

s primeiras torneiras economizadoras de água, com mecanismos hidromecânicos de fechamento automático, começaram sua produção e comercialização no Brasil, no início da década de 90.

Em 1996, a Associação Brasileira de Normas Técnicas publicou a Norma 13713/1996 - Aparelhos hidráulicos acionados manualmente e com ciclo de fechamento automático.

As perdas de água provocadas pelo mau desempenho das torneiras podem representar um percentual significativo do consumo diário de água. Uma pesquisa laboratorial estimou valores médios de perda de água em 6 a 10 L/dia em gotejamento lento, superior a 32 L/dia em gotejamento muito rápido, superior a 114 L/dia em filete de 2 mm e superior a 333 L/dia em filete de 4 mm [1].

São determinantes para o controle de consumo de água no uso de economizadores:

- controle de vazão: obtido de um registro regulador de vazão integrado ao equipamento ou externo a ele (instalado no engate flexível), que permita melhor ajuste da vazão segundo as necessidades e o conforto desejado pelo usuário e por suas atividades; e
- tempo de acionamento: que não deve ser muito curto, para evitar vários acionamentos em uma única operação, além de causar descon-

forto desnecessário; mas também não deve ser longo, para evitar que o usuário finalize sua atividade e o fluxo ainda esteja ocorrendo.

As seguintes reduções médias do consumo de água podem ser obtidas, quando aparelhos economizadores de água substituem os convencionais em banheiros e vestiários (em alta pressão):

- registro regulador de vazão: 40%;
- arejador para bica ou torneira: 24%; e
- torneira automática: 48%.

Em 2007, a Associação Brasileira dos Fabricantes de Materiais para Saneamento lançou o Programa Setorial da Qualidade (PSQ) para aparelhos economizadores de água, cujo principal objetivo é apoiar e promover a melhoria da qualidade dos aparelhos economizadores de água, garantindo o adequado desempenho dos produtos e a efetiva redução do consumo de água nos sistemas hidráulicos prediais.

Os requisitos e critérios de desempenho e os parâmetros técnicos estabelecidos pelo referido PSQ subsidiaram a revisão da NBR 13.713/1996 que foi, então, substituída pela NBR 13.713/2009 - Instalações hidráulicas prediais - Aparelhos automáticos acionados mecanicamente e por ciclo de fechamento automático - Requisitos e métodos de ensaio.

As principais inovações dessa revisão normativa foram:

- determinação de que os produtos devem funcionar adequadamente em qualquer condição de pressão (dentro dos limites da NBR 5626/1998);
- estabelecimento de uma curva de vazão (uma vez que os equipamentos não têm fluxo regular de água durante o ciclo de funcionamento), através da qual será avaliada a vazão mínima;
- definição de um volume máximo de água por ciclo; e
- alteração dos limites dos períodos de ciclo de funcionamento – o tempo máximo que o produto poderia permanecer aberto foi reduzido (o que garante economia) e foi definido um tempo mínimo (para conforto do usuário).

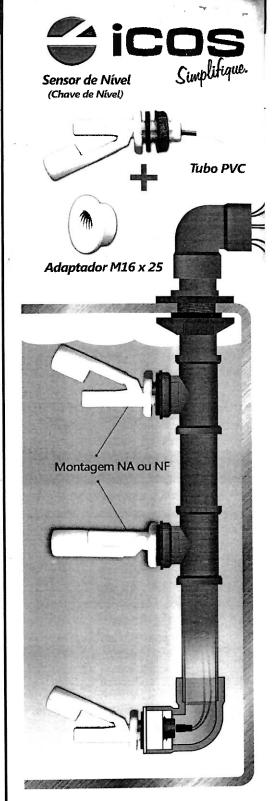
Em 1998, teve início o programa Pura-USP de caráter tecnológico, de mobilização e de gestão, que resultaram numa redução de 50% da demanda de água *per capita*, de 120 para 60 L/dia/pessoa, que tem se mantido na Cidade Universitária Armando de Salles Oliveira, desde 2004, em São Paulo.

As atividades incluíram a eliminação de vazamentos em redes e reservatórios, a substituição de equipamentos sanitários por modelos economizadores e a minimização de desperdícios em processos. Durante a implementação do Pura, foram levantados 19181 equipamentos, sendo instaladas torneiras de fechamento automático, bacias sanitárias de volume de descarga reduzido (6L) e válvulas de fechamento automático para mictórios e duchas.

A instalação foi realizada em duas etapas:

- fase 1 (1998/1999): as sete unidades com maior consumo de água (responsáveis por 50% da demanda do campus); e
- fase 2 (2000/2001): as demais 21 unidades.

Metodologia


Considerando-se que 28% do total de equipamentos sanitários da Cidade Universitária eram torneiras de lavatório convencionais, este trabalho avaliou o desempenho das torneiras de fechamento automático quanto ao tempo de fechamento, vazão e volume de água por ciclo, após 10 anos de sua instalação.

Como espaço amostral, foram adotadas as torneiras instaladas durante a fase 1 das seguintes unidades: Escola Politécnica; Faculdade de Filosofia, Letras e Ciências Humanas; Faculdade de Ciências Farmacêuticas; Faculdade de Economia, Administração e Contabilidade; Instituto de Ciências Biomédicas; Instituto de Química; Hospital; e Centro de Computação Eletrônica.

O levantamento de campo foi realizado em duas etapas, conforme descrito a seguir.

Etapa I

Foram identificados 17 modelos diferentes de torneiras de fechamento automático, de sete fabricantes nacionais, totalizando 1525 unidades (além de oito unidades cuja identificação

Controle de Nível

Vendas Diretas
(15)3342-5399

Comércio Eletrônico

www.icos.com.br

Aproveitamento de Água de Chuva Tubolar

A Tubolar possui reservatórios de diversos tamanhos s e g u i n d o recomendações e procedimentos técnicos da NBR15.527/2007 da ABNT.

Caixas de Retenção
 Caixas de Descarte

· Cisternas

www.tubolaronline.com.br

Separação Óleo / Água Reúso de Água

Purificação de Água

Remoção de Microrganismos

nas Paulio Emidio Barbosa, 485 - Quadra 6A, Edificio MP, Módulo 1 Cidade Universitária , Ilha do Fundão, Rio de Janeiro Telefones: (21) 37331980 (27) 37331980 www.pam-membranas.com.ty

Conexão

não foi possível). Desse universo, cinco modelos foram efetivamente instalados pelo Pura-USP, totalizando 1293 torneiras (84% das 1525 unidades).

Embora haja especificação da universidade para aquisição somente de torneiras de empresas classificadas como qualificadas no PSQ de aparelhos economizadores de água do Programa Brasileiro da Qualidade e Produtividade do Hábitat (PBQP-h), as unidades da instituição de ensino têm adquirido outros modelos.

Para cada torneira, fez-se a verificação da existência de arejador e regulador de vazão, vazamentos, três determinações do tempo transcorrido entre o acionamento da torneira e o seu fechamento total, uma medição do volume de água liberado (concomitantemente à última determinação de tempo).

Utilizou-se um cronômetro digital de operação manual (com precisão de 0,1 s), disparado simultaneamente ao acionamento do botão da torneira. Um recipiente graduado de 1 L determinou o volume de água (com precisão de 25 mL). Foi calculada a média dos tempos e, com esse valor, a vazão média de cada torneira.

Como critério de avaliação, foram adotados os valores de 0,05 L/s para a vazão mínima e de 15 s para o tempo máximo de fechamento, prescritos pela norma técnica NBR 13713/1996, vigente na época de aquisição e instalação das torneiras.

Cada modelo de torneira instalado pelo Pura-USP (A, B, C, D e E), tem uma média e respectivos desvios dos valores de tempo de fechamento, volume e vazão.

Avaliou-se, ainda, o atendimento à NBR 13713/2009, atualmente vigente, cujos valores são de 0,04 L/s para a vazão mínima e de 4 a 10 s para o tempo de fechamento, além do volume máximo de 1,2 L por ciclo de operação.

Etapa II

Nesta etapa foram selecionados os três modelos mais empregados entre os cinco instalados pelo Pura-USP (A, B e E), num total de 1076 torneiras (83% das 1293 unidades), sendo todos de mesa, A e B dotados de arejador convencional e B e E com regulador de vazão externo (em A, ele é integrado).

Dessas torneiras, 145 apresentavam desempenho inadequado. Para restaurá-las, foram consideradas duas linhas de ações corretivas: a limpeza dos arejadores e/ou regulagem de vazão (ação não onerosa) e a que demandava a aquisição e substituição de componentes (ação onerosa).

Dada a quantidade ainda elevada de torneiras, foi feita uma amostragem das torneiras que sofreriam ações corretivas. Foi adotado o nível geral de inspeção II, da NBR 13713/2009, Plano de amostragem simples e Regime de inspeção normal, resultando em 31 amostras (5, 13 e 13 unidades, respectivamente, dos modelos A, B e E), mais abrangente e ainda viável para a realização da pesquisa se comparado às oito unidades que seriam estipuladas pela adoção da NBR 13713/2009.

Para cada uma das 31 torneiras, foram feitas três determinações do tempo de fechamento e do respectivo volume de água, adotando o valor médio de ambos para o cálculo da vazão média. Assim, foi possível confirmar o não atendimento aos requisitos de desempenho em avaliação e prosseguir com as ações de manutenção corretiva.

Inicialmente, os arejadores foram removidos e limpos por meio de escovação sob jato d'água da própria torneira, com isso, a vazão foi regulada. Em seguida, calculou-se novamente o valor médio do tempo de fechamento, do volume e a vazão

Modelo	Atendimento simultâneo aos requisitos de tempo de fechamento (≤ 15 s) e vazão (≥ 0,05 s)					
	Atende	Não atende	Total			
Α	163	24	187			
В	541	69	610			
С	125	33	158			
D	49	10	59			
E	227	52	279			
Total	1105	188	1293			

Modelo	Tempo médio (s)		Volume médio (mL)		Vazão média (L/s)	
	Т	σT	V	σV	Q	σQ
Α	4,5	2,5	367	240	0,08	0,03
В	9	3	830	404	0,09	0,05
С	10,8	2,7	858	610	0,08	0,04
D	11,9	2,1	1081	358	0,09	0,03
E	10,2	2	824	497	0,08	0,05
Total	9	3,3	777	470	0,09	0,04

média. No caso do não atendimento simultâneo aos requisitos de tempo de fechamento de até 15 s e de vazão mínima de 0,05 L/s, a troca do reparo era realizada e os valores novamente obtidos e calculados.

Vale ressaltar que a metodologia empregada para a determinação do tempo de fechamento, volume de água por ciclo e vazão correspondente é expedida, sem o rigor estipulado pela norma NBR 13713/2009, desenvolvida para avaliação de lotes de aparelhos novos, em laboratório. Assim, dados importantes na avaliação laboratorial, como pressão estática e dinâmica e curva de vazão, não foram levantados. No entanto, considerou-se a metodologia adequada para avaliar as torneiras em utilização devido à sua simplicidade e rapidez, tendo

em vista os propósitos qualitativos e quantitativos da pesquisa.

Resultados

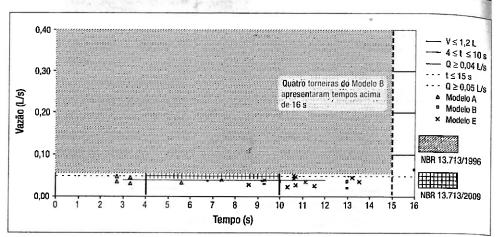
Etapa I

A maioria das 1525 torneiras era dotada de arejador e registro regulador de vazão. A quantidade de torneiras que apresentava vazamentos (quando não acionadas) era muito reduzida, inferior a 1%. Já 85% delas apresentavam desempenho adequado quanto aos requisitos de tempo de fechamento e vazão segundo a NBR 13713/1996, mesmo valor encontrado nas instaladas pelo Pura-USP (conforme a tabela I).

Ao avaliar as 1293 torneiras segundo a NBR 13713/2009, verificou-se que 572 (ou 44%) apresentavam desempenho adequado.

Entre esses cinco modelos, o tempo médio de fechamento e o volume médio de água variaram significativamente (tabela II).

Os resultados permitiram constatar que o volume de água liberado em cada ciclo tem sido determinado principalmente pelo tempo de fechamento de cada modelo e que há uma grande variação dos valores e até uma dispersão considerável.


Etapa II

A figura 1 ilustra a situação das 31 torneiras selecionadas para a avaliação antes das ações corretivas. É possível perceber alta discrepância nos valores dos tempos de fechamento

Conexão

Fig. 1 - Desempenho antes das ações corretivas

(de 2,7 a 20,7 s) e baixa vazão na maioria dos casos. O campo marcado delimita a área de atendimento à NBR 13713/1996, e o quadriculado, à NBR 13713/2009.

Após as ações corretivas, verificou--se que a limpeza e a regulagem pouco influíram sobre o tempo de fechamento.

Em 25 das 31 torneiras, a simples limpeza do arejador e a regulagem de vazão permitiram o atendimento à norma NBR 13713/1996, ao alterar a vazão para valores adequados, sem custo de material. Em nenhum caso, contudo, somente a limpeza possibilitou o atendimento.

Após as ações, 16 das 31 torneiras também atenderam à norma de 2009, sendo a maior restrição para o seu atendimento o tempo de fechamento, o que demonstra maior rigor da norma atual em relação à antiga (figura 2).

Embora as torneiras tenham atendido à NBR 13713/1996, o desempenho não era adequado em algumas, devido à vazão excessiva ou por tempo curto ou longo demais de fechamento, resultando em desperdício de água ou desconforto. Subjetivamente, uma vazão da ordem de 0,06 a 0,08 L/s e um tempo de fechamento entre 6 e 8 s seriam considerados adequados para as situações

encontradas. Uma vazão máxima de 0,15 L/s para a NBR 13713/2009 seria recomendável, visto que a vazão de projeto de uma torneira convencional de lavatório, estipulada pela NBR 5626/1998, é de 0,15 L/s (em nenhuma torneira foi observada vazão superior a esse valor, mesmo após as ações corretivas).

Após a troca de componentes para reparo – vendidos em kits completos (modelo A) ou específicos (modelos B e E), todas as torneiras atenderam à NBR 13713/1996 e somente uma torneira apresentou desempenho incompatível com a NBR 13713/2009.

Os custos (valores de 2011) dos reparos do modelo A (R\$ 42,90) e dos modelos B e E (R\$ 93,85), são significativamente inferiores aos das torneiras completas, respectivamente, da ordem de R\$ 370,00, R\$ 260,00 e R\$ 230,00. Considerando-se apenas os componentes mais sujeitos ao desgaste dos modelos B e E, o custo do reparo foi reduzido a R\$ 41,71, equivalente ao do modelo A.

Para a continuidade da pesquisa, numa etapa III, prevê-se a comparação das torneiras de fechamento automático com as de pressão convencionais para lavatório, com relação ao consumo de água, atendimento aos requisitos dos usuários e custos asso-

57

ciados, possibilitando uma avaliação econômica dos benefícios.

Conclusões

O desempenho das torneiras de fechamento automático, instaladas na Cidade Universitária, quanto aos requisitos de tempo de fechamento, vazão e volume de água por ciclo depende da manutenção dos equipamentos instalados (criação de rotinas e procedimentos de manutenção preventiva) e da adequada capacitação do pessoal de manutenção, visto que em mais de 80% dos casos de

torneira com desempenho insatisfatório, uma simples e rápida limpeza do arejador e regulagem de vazão permitiram o atendimento à norma NBR 13713/1996.

Com a substituição de componentes, mesmo tendo sido instaladas há mais de 10 anos, as torneiras têm

condições de atender à norma atualmente vigente. A efetividade do emprego dessas torneiras quanto à economia de água mostrou-se efetiva no caso do Pura-USP.

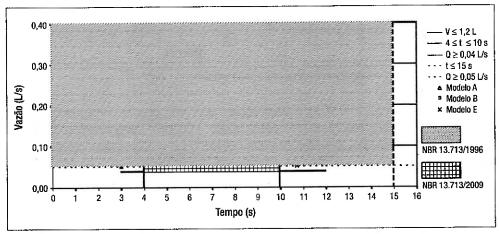


Fig. 2 - Desempenho após ações corretivas

Referência

[1] Oliveira, L.H.: Metodologia para implantação de programa de uso racional da água em edificios. São Paulo, 1999. 319 pág. Tese (Doutorado) — Escola Politécnica, USP.

