

Research Article

Renormalization Group Equation for Tsallis Statistics

Airton Deppman

Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr. 187, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

Correspondence should be addressed to Airton Deppman; deppman@if.usp.br

Received 22 November 2017; Revised 22 January 2018; Accepted 6 March 2018; Published 3 April 2018

Academic Editor: Edward Sarkisyan-Grinbaum

Copyright © 2018 Airton Deppman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOPA³.

The nonextensive statistics proposed by Tsallis has found wide applicability, being present even in the description of experimental data from high energy collisions. A system with a fractal structure in its energy-momentum space, named thermofractal, was shown to be described thermodynamically by the nonextensive statistics. Due to the many common features between thermofractals and Hagedorn's fireballs, this system offers the possibility of investigating the origins of nonextensivity in hadronic physics and in QCD. In this regard, the investigation of the scaling properties of thermofractals through the renormalization group equation, known as Callan-Symanzik equation, can be an interesting approach.

In the present work Tsallis statistics is analyzed in the context of renormalization theory. The relations between such nonextensive statistics and scaling properties are expressed in terms of a Callan-Symanzik equation [1–3], which represents the fundamental properties of a scale-free system.

The generalization of Boltzmann-Gibbs-Shannon (BGS) statistics by violation of entropy additivity mediated by the entropic index q leads to Tsallis statistics [4], which will lead to nonextensive thermodynamical quantities that were expected to be extensive in the context of BGS. Tsallis statistics is known to apply to a large number of systems in physics and in other fields, and one of its most distinguished features is the power-law distribution in contrast to the exponential behavior common to BGS distributions. One of the most interesting applications of the generalized thermodynamics lies in the description of distributions found in high energy collisions experiments [5–8]. A generalized version of Hagedorn's self-consistent thermodynamics [9] has allowed the prediction of a limiting temperature and a common entropic index, q , and a new hadron mass spectrum formula. The results found fair agreement with experiments [10–15].

The Callan-Symanzik equation was formulated in the context of renormalization theory of quantum gauge fields with scale invariance. The Yang-Mills theory, in particular, is scale-free and may satisfy that equation. In this regard, the

Callan-Symanzik equation was fundamental to determine the asymptotic freedom of QCD [16–19].

In [20–22] it was shown that a system with a particular fractal structure in the energy-momentum space should be described by the nonextensive statistics proposed by Tsallis. Such system, named thermofractal, presents three fundamental properties:

- (1) It has an internal structure formed by N' thermofractals.
- (2) The total energy of the thermofractal is the sum of the total kinetic energy, F , and the total internal energy, E , of the compound thermofractals. These energies are such that the ratio $E/F = \varepsilon/k\tau$ fluctuates according to the probability density $P(\varepsilon)$.
- (3) The internal energy decreases as deeper levels of the thermofractals are considered.

It is possible to show [20] that the probability density for such system is given by

$$P(\varepsilon) = \left[1 + (q-1) \frac{\varepsilon}{k\tau} \right]^{-1/(q-1)}, \quad (1)$$

where $\tau = (q-1)T$, with T being the temperature of the thermofractal. A consequence of such properties is that the

temperature of thermofractals at level n scales, on average, is as

$$\frac{T^{(n)}}{T} = \frac{E^{(n)}}{E}. \quad (2)$$

This system can be shown to have a fractal dimension in the energy-momentum space, so from now on it will be referred to as fractal. They are scale-free systems and present several characteristics that are interesting to investigate the origin of nonextensivity in hadron systems, as the similarities with Hagedorn's fireballs. With the introduction of this kind of fractal it was possible to understand that Hagedorn's theory, which is based on a self-referenced definition of fireballs or hadrons, should necessarily be described by Tsallis statistics. In the circumstances of hadron physics, it allows a new understanding on the intermittency effect [23–28] observed in high energy data, determines the related fractal dimension, and connects this effect to other features of high energy experimental data, such as self-similarity [29–31], long-tail distributions [8], and mass spectrum [12].

Intermittency effects, in particular, have been associated with fractal-like properties of the multiparticle production process [32–34] (see [35, 36] for a more complete account on the subject), and it was associated with gluon emission of high energy jets [37–39] that results from the QCD evolution equations [40]. These equations arise from the properties of the renormalization group for non-Abelian Yang–Mills gauge field theory [16–19].

A detailed analysis of thermofractals and their properties allows one to show that the density in (1) can be written in terms of F and E for a fractal at an arbitrary level n as

$$P(F, E) = N'^n \left(\frac{F^{(n)}}{kT^{(n)}} \right)^{3/2} \cdot e^{-U^{(n)}/(kT^{(n)})} \left[1 - (q-1) \frac{\varepsilon}{k\tau} \right]^{-1/(q-1)}, \quad (3)$$

with $U = E + F$. Introducing $M = kT$ for convenience and taking into account the fact that

$$\left(\frac{1}{N} \right)^{n/(1-D)} = \frac{T^{(n)}}{T} \quad (4)$$

results in the following:

$$P(F, E) = \left(\frac{M^{(n)}}{M} \right)^{-(1-D)} \left(\frac{F^{(n)}}{M^{(n)}} \right)^{3/2} \cdot e^{-U^{(n)}/M^{(n)}} \left[1 - (q-1) \frac{\varepsilon}{k\tau} \right]^{-1/(q-1)}, \quad (5)$$

where D is the Hausdorff fractal dimension [20].

Notice that for a fixed value of the scale M , at a fixed level n of the fractal structure, the equation above is a well-defined continuous function and a simple analysis would lead one to conclude that dimension D is not fractal but reflects the topology of the phase-space where the system is embedded. This is due to the fact that the anomalous dimension arises

from the fractal structure itself and not from the underlying distribution. In other words, it is necessary to take into account the fractal evolution with the scale variation, which leads to a tree-like diagram, to obtain the fractal dimension. A nice account on the subject, in general, can be found in [27, 41], and for a specific description of the system analyzed here, see [42].

In the present work, the scaling properties of the fractal structure will be investigated in the light of renormalization theory. In this sense, the scaling properties can be analyzed in two ways: (a) by varying E and F while keeping M fixed; (b) by varying M while keeping E and F constant. Both transformations are equivalent according to scaling properties and are related through the fundamental equation of renormalization theory, the Callan–Symanzik equation. The main objective here is to obtain such equation in the context of fractals. Before doing that, observe that since E and F are transformed by the same scale factor, ratio E/F remains constant and so remains the parameter $\varepsilon/(k\tau)$. In addition, the exponential factor in (5) amounts to the Boltzmann factor for thermal equilibrium and bears no relation to the fractal structure itself, so it must be dropped for the analysis. With these considerations, the invariance of the fractal structure by scale transformation can be expressed by the identity

$$\Gamma(F, M) = \left(\frac{M}{\Lambda} \right)^{-(1-D)} \left(\frac{F}{M} \right)^{3/2}, \quad (6)$$

with Λ being some reference scale.

The equation above is suitable for the scaling analysis in both ways described above. From method (a), where M is fixed and F varies, one gets

$$F \frac{\partial \Gamma}{\partial F} = \frac{3}{2} \Gamma. \quad (7)$$

From method (b), where F remains constant while scale M varies, one gets from (6)

$$M \frac{\partial \Gamma}{\partial M} = \left(-\frac{3}{2} - (1-D) \right) \Gamma. \quad (8)$$

The results above allow one to obtain the Callan–Symanzik equation for the fractals considered here; that is,

$$\left[M \frac{\partial}{\partial M} + F \frac{\partial}{\partial F} + d \right] \Gamma = 0, \quad (9)$$

where $d = 1 - D$ is the anomalous fractal dimension.

The fractal dimension D was determined in terms of the parameters that characterize thermofractals [20] and is given by

$$D = 1 + \frac{\log N'}{\log R}, \quad (10)$$

where

$$R = \frac{(q-1)N/N'}{3-2q+(q-1)N}, \quad (11)$$

with $N = N' + 2/3$.

Equation (9) represents the fundamental properties of the fractal structure under scale transformation. Since it is related to a system whose scaling properties are the main ingredient to obtain Tsallis statistics, one can recognize the equation above as the Callan–Symanzik equation for Tsallis statistics.

This result sets the ground for an interpretation of Tsallis statistics in association with renormalization group theory. In addition, it opens new possibilities of exploring the potential applicability of nonextensive statistics in the domain of hadronic physics and, hopefully, allows for a deeper understanding of the properties of QCD that make self-similarity and fractal structures emerge from the strong interaction in complex system. It can be also be associated with the nonthermal phase transition of hadronic matter associated with Quark–Gluon Plasma [35, 43].

In a thermodynamical approach, the application of the nonextensive self-consistent thermodynamics that arises from the fractal structure when applied to hadronic systems has gone already beyond the usual description of high energy distributions and has been extended to systems with finite chemical potential [44, 45], to extend the MIT Bag model by including a fractal structure [46] and to describe neutron star equilibrium [47].

In conclusion, the Callan–Symanzik equation associated with Tsallis statistics was derived here in association with the thermofractal scale-free structure, setting new grounds for the interpretation of nonextensive thermodynamics in terms of renormalization group theory and opening new possibilities of its application in QCD related problems.

Conflicts of Interest

The author declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq.

References

- [1] C. G. Callan, “Broken scale invariance in scalar field theory,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 2, no. 8, pp. 1541–1547, 1970.
- [2] K. Symanzik, “Small distance behaviour in field theory and power counting,” *Communications in Mathematical Physics*, vol. 18, no. 3, pp. 227–246, 1970.
- [3] K. Symanzik, “Small-distance-behaviour analysis and Wilson expansions,” *Communications in Mathematical Physics*, vol. 23, no. 1, pp. 49–86, 1971.
- [4] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” *Journal of Statistical Physics*, vol. 52, no. 1–2, pp. 479–487, 1988.
- [5] I. Bediaga, E. M. F. Curado, and J. M. De Miranda, “Nonextensive thermodynamical equilibrium approach in $e^+e^- \rightarrow \text{hadrons}$,” *Physica A: Statistical Mechanics and its Applications*, vol. 286, no. 1–2, pp. 156–163, 2000.
- [6] C. Beck, “Non-extensive statistical mechanics and particle spectra in elementary interactions,” *Physica A: Statistical Mechanics and its Applications*, vol. 286, no. 1, pp. 164–180, 2000.
- [7] C. Wong, G. Wilk, L. J. Cirto, C. Tsallis, F. Fabbri, and P. Giacomelli, “From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy $p p$ and $p \bar{p}$ collisions,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 91, Article ID 114027, 2015.
- [8] C. Y. Wong and G. Wilk, “Tsallis fits to p_T spectra and multiple hard scattering in $p p$ collisions at the LHC,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 87, Article ID 114007, 2013.
- [9] A. Deppman, “Self-consistency in non-extensive thermodynamics of highly excited hadronic states,” *Physica A: Statistical Mechanics and its Applications*, vol. 391, no. 24, pp. 6380–6385, 2012.
- [10] I. Sena and A. Deppman, “Systematic analysis of p_T -distributions in $p + p$ collisions,” *The European Physical Journal A*, vol. 49, article 17, 2013.
- [11] J. Cleymans and D. Worku, “The Tsallis distribution in proton–proton collisions at $\sqrt{s} = 0.9$ TeV at the LHC,” *Journal of Physics G: Nuclear and Particle Physics*, vol. 39, no. 2, Article ID 025006, 2012.
- [12] L. Marques, E. Andrade-II, and A. Deppman, “Nonextensivity of hadronic systems,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 87, no. 11, 2013.
- [13] L. Marques, J. Cleymans, and A. Deppman, “Description of high-energy $p p$ collisions using Tsallis thermodynamics: transverse momentum and rapidity distributions,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 91, no. 5, Article ID 054025, 2015.
- [14] M. D. Azmi and J. Cleymans, “The Tsallis distribution at large transverse momenta,” *The European Physical Journal C*, vol. 75, article 430, 2015.
- [15] B. De, “Non-extensive statistics and understanding particle production and kinetic freeze-out process from p_T -spectra at 2.76 TeV,” *The European Physical Journal A*, vol. 50, article 138, 2014.
- [16] H. D. Politzer, “Asymptotic freedom: an approach to strong interactions,” *Physics Reports*, vol. 14, no. 4, pp. 129–180, 1974.
- [17] H. Georgi and H. D. Politzer, “Electroproduction scaling in an asymptotically free theory of strong interactions,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 9, no. 2, pp. 416–420, 1974.
- [18] D. J. Gross and F. Wilczek, “Asymptotically free gauge theories. I,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 8, no. 10, pp. 3633–3652, 1973.
- [19] D. J. Gross and F. Wilczek, “Asymptotically free gauge theories. II,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 9, no. 4, pp. 980–993, 1974.
- [20] A. Deppman, “Thermodynamics with fractal structure, Tsallis statistics, and hadrons,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 93, no. 5, Article ID 054001, 2016.
- [21] A. Deppman, E. Megías, and D. P. Menezes, “Nonextensive thermodynamics with finite chemical potential, hadronic matter and protoneutron stars,” *Journal of Physics: Conference Series*, vol. 607, no. 1, Article ID 012007, 2015.
- [22] A. Deppman and E. Megías, “Fractal aspects of hadrons,” *EPJ Web of Conferences*, vol. 141, Article ID 01011, 2017.

- [23] A. Bialas and R. Peschanski, “Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions,” *Nuclear Physics B*, vol. 273, no. 3-4, pp. 703–718, 1986.
- [24] A. Bialas and R. Peschanski, “Intermittency in multiparticle production at high energy,” *Nuclear Physics B*, vol. 308, no. 4, pp. 857–867, 1988.
- [25] R. C. Hwa, “Fractal measures in multiparticle production,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 41, no. 5, pp. 1456–1462, 1990.
- [26] R. C. Hwa and J. Pan, “Fractal behavior of multiplicity fluctuations in high-energy collisions,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 45, no. 5, pp. 1476–1483, 1992.
- [27] E. K. G. Sarkisyan, “Description of local multiplicity fluctuations and genuine multiparticle correlations,” *Physics Letters B*, vol. 477, no. 1-3, pp. 1–12, 2000.
- [28] E. K. Sarkisyan, L. K. Gelovani, G. G. Taran, and G. I. Sakharov, “Fractal analysis of pseudorapidity fluctuations in 4.5 A GeV/c C-(Ne, Cu) central collisions,” *Physics Letters B*, vol. 318, no. 3, pp. 568–574, 1993.
- [29] G. Wilk and Z. Włodarczyk, “Self-similarity in jet events following from pp collisions at LHC,” *Physics Letters B*, vol. 727, no. 1-3, pp. 163–167, 2013.
- [30] M. Tokarev and I. Zborovsky, “Top-Quark p_T -Spectra at LHC and Flavor Independence of z -scaling,” *EPJ Web of Conferences*, vol. 141, Article ID 02006, 2017.
- [31] I. Zborovsk and M. V. Tokarev, “Generalized z -scaling in proton-proton collisions at high energies,” *Physical Review D: Particles, Fields, Gravitation and Cosmology*, vol. 75, no. 9, Article ID 094008, 2007.
- [32] P. Brax and R. Peschanski, “Multifractal analysis of intermittency and phase transitions in multiparticle dynamics,” *Nuclear Physics B*, vol. 346, no. 1, pp. 65–83, 1990.
- [33] J.-L. Meunier and R. Peschanski, “Intermittency, fragmentation, and the Smoluchowski equation,” *Nuclear Physics B*, vol. 374, no. 2, pp. 327–339, 1992.
- [34] A. Bialas and K. Zalewski, “Phase structure of self-similar multiparticle systems and experimental determination of intermittency parameters,” *Physics Letters B*, vol. 238, no. 2-4, pp. 413–416, 1990.
- [35] W. Kittel and E. A. de Wolf, *Soft Multihadron Dynamics*, World Scientific Publishers, Singapore, Singapore, 2005.
- [36] E. A. De Wolf, I. M. Dremin, and W. Kittel, “Scaling laws for density correlations and fluctuations in multiparticle dynamics,” *Physics Reports*, vol. 270, no. 1-2, pp. 1–141, 1996.
- [37] G. Veneziano, “Momentum and Colour Structure of Jets in QCD” in *Proceedings of the 3rd Workshop on Current Problems in High Energy Particle Theory*, Florence, Italy, 1979.
- [38] K. Konishi, A. Ukawa, and G. Veneziano, “A simple algorithm for QCD jets,” *Physics Letters B*, vol. 78, no. 2-3, pp. 243–248, 1978.
- [39] K. Konishi, A. Ukawa, and G. Veneziano, “On the transverse spread of QCD jets,” *Physics Letters B*, vol. 80, no. 3, pp. 259–264, 1979.
- [40] G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” *Nuclear Physics B*, vol. 126, no. 2, pp. 298–318, 1977.
- [41] R. K. Nayak, S. Dash, E. K. Sarkisyan-Grinbaum, and M. Tasevsky, “Describing dynamical fluctuations and genuine correlations by Weibull regularity,” 2017, <https://arxiv.org/abs/1704.08377>.
- [42] A. Deppman, E. Megias, D. P. Menezes, and T. Frederico, “Fractal structure and non extensive statistics,” 2017, <https://arxiv.org/abs/1801.01160>.
- [43] R. Peschanski, “On the existence of a non-thermal phase transition in multi-particle production,” *Nuclear Physics B*, vol. 327, no. 1, pp. 144–156, 1989.
- [44] E. Megías, D. P. Menezes, and A. Deppman, “Non extensive thermodynamics for hadronic matter with finite chemical potentials,” *Physica A: Statistical Mechanics and its Applications*, vol. 421, pp. 15–24, 2015.
- [45] E. Megías, D. P. Menezes, and A. Deppman, “Nonextensive thermodynamics with finite chemical potentials and protoneutron stars,” *EPJ Web of Conferences*, vol. 80, Article ID 00040, 2014.
- [46] P. H. G. Cardoso, T. Nunes da Silva, A. Deppman, and D. P. Menezes, “Quark matter revisited with non-extensive MIT bag model,” *The European Physical Journal A*, vol. 53, no. 10, article no. 191, 2017.
- [47] D. P. Menezes, A. Deppman, E. Megias, and L. B. Castro, “Non-extensive thermodynamics and neutron star properties,” *The European Physical Journal A*, vol. 51, article 155, 2015.

