
Research Article
Renormalization Group Equation for Tsallis Statistics

Airton Deppman

Instituto de Fı́sica, Universidade de São Paulo, Rua doMatão Travessa RNr. 187, Cidade Universitária, 05508-090 São Paulo, SP, Brazil
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The nonextensive statistics proposed by Tsallis has found wide applicability, being present even in the description of experimental
data fromhigh energy collisions. A systemwith a fractal structure in its energy-momentum space, named thermofractal, was shown
to be described thermodynamically by the nonextensive statistics. Due to the many common features between thermofractals and
Hagedorn’s fireballs, this system offers the possibility of investigating the origins of nonextensivity in hadronic physics and in QCD.
In this regard, the investigation of the scaling properties of thermofractals through the renormalization group equation, known as
Callan–Symanzik equation, can be an interesting approach.

In the present work Tsallis statistics is analyzed in the context
of renormalization theory.The relations between such nonex-
tensive statistics and scaling properties are expressed in terms
of a Callan–Symanzik equation [1–3], which represents the
fundamental properties of a scale-free system.

The generalization of Boltzmann-Gibbs-Shannon (BGS)
statistics by violation of entropy additivity mediated by the
entropic index 𝑞 leads to Tsallis statistics [4], which will
lead to nonextensive thermodynamical quantities that were
expected to be extensive in the context of BGS. Tsallis
statistics is known to apply to a large number of systems
in physics and in other fields, and one of its most distin-
guished features is the power-law distribution in contrast
to the exponential behavior common to BGS distributions.
One of the most interesting applications of the generalized
thermodynamics lies in the description of distributions found
in high energy collisions experiments [5–8]. A generalized
version of Hagedorn’s self-consistent thermodynamics [9]
has allowed the prediction of a limiting temperature and a
common entropic index, 𝑞, and a new hadronmass spectrum
formula. The results found fair agreement with experiments
[10–15].

The Callan–Symanzik equation was formulated in the
context of renormalization theory of quantum gauge fields
with scale invariance.The Yang–Mills theory, in particular, is
scale-free and may satisfy that equation. In this regard, the

Callan–Symanzik equation was fundamental to determine
the asymptotic freedom of QCD [16–19].

In [20–22] it was shown that a system with a particular
fractal structure in the energy-momentum space should
be described by the nonextensive statistics proposed by
Tsallis. Such system, named thermofractal, presents three
fundamental properties:

(1) It has an internal structure formed by𝑁󸀠 thermofrac-
tals.

(2) The total energy of the thermofractal is the sum of the
total kinetic energy,𝐹, and the total internal energy,𝐸,
of the compound thermofractals. These energies are
such that the ratio 𝐸/𝐹 = 𝜀/𝑘𝜏 fluctuates according to
the probability density 𝑃(𝜀).

(3) The internal energy decreases as deeper levels of the
thermofractals are considered.

It is possible to show [20] that the probability density for
such system is given by

𝑃 (𝜀) = [1 + (𝑞 − 1) 𝜀𝑘𝜏]
−1/(𝑞−1) , (1)

where 𝜏 = (𝑞 − 1)𝑇, with 𝑇 being the temperature of the
thermofractal. A consequence of such properties is that the

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 9141249, 4 pages
https://doi.org/10.1155/2018/9141249

http://orcid.org/0000-0001-9179-6363
https://doi.org/10.1155/2018/9141249


2 Advances in High Energy Physics

temperature of thermofractals at level 𝑛 scales, on average, is
as

𝑇(𝑛)
𝑇 = 𝐸(𝑛)𝐸 . (2)

This system can be shown to have a fractal dimension in the
energy-momentum space, so from now on it will be referred
to as fractal. They are scale-free systems and present several
characteristics that are interesting to investigate the origin
of nonextensivity in hadron systems, as the similarities with
Hagedorn’s fireballs. With the introduction of this kind of
fractal it was possible to understand that Hagedorn’s theory,
which is based on a self-referenced definition of fireballs or
hadrons, should necessarily be described by Tsallis statistics.
In the circumstances of hadron physics, it allows a new
understanding on the intermittency effect [23–28] observed
in high energy data, determines the related fractal dimension,
and connects this effect to other features of high energy
experimental data, such as self-similarity [29–31], long-tail
distributions [8], and mass spectrum [12].

Intermittency effects, in particular, have been associated
with fractal-like properties of the multiparticle production
process [32–34] (see [35, 36] for a more complete account
on the subject), and it was associated with gluon emission of
high energy jets [37–39] that results from the QCD evolution
equations [40]. These equations arise from the properties of
the renormalization group for non-Abelian Yang–Mills gauge
field theory [16–19].

A detailed analysis of thermofractals and their properties
allows one to show that the density in (1) can be written in
terms of 𝐹 and 𝐸 for a fractal at an arbitrary level 𝑛 as

𝑃 (𝐹, 𝐸) = 𝑁󸀠𝑛 ( 𝐹(𝑛)𝑘𝑇(𝑛))
3/2

⋅ 𝑒−𝑈(𝑛)/(𝑘𝑇(𝑛)) [1 − (𝑞 − 1) 𝜀𝑘𝜏]
−1/(𝑞−1) ,

(3)

with 𝑈 = 𝐸 + 𝐹. Introducing𝑀 = 𝑘𝑇 for convenience and
taking into account the fact that

( 1𝑁)
𝑛/(1−𝐷) = 𝑇(𝑛)𝑇 (4)

results in the following:

𝑃 (𝐹, 𝐸) = (𝑀(𝑛)𝑀 )
−(1−𝐷)

( 𝐹(𝑛)𝑀(𝑛))
3/2

⋅ 𝑒−𝑈(𝑛)/𝑀(𝑛) [1 − (𝑞 − 1) 𝜀𝑘𝜏]
−1/(𝑞−1) ,

(5)

where𝐷 is the Hausdorff fractal dimension [20].
Notice that for a fixed value of the scale𝑀, at a fixed level𝑛 of the fractal structure, the equation above is a well-defined

continuous function and a simple analysis would lead one
to conclude that dimension 𝐷 is not fractal but reflects the
topology of the phase-space where the system is embedded.
This is due to the fact that the anomalous dimension arises

from the fractal structure itself and not from the underlying
distribution. In other words, it is necessary to take into
account the fractal evolution with the scale variation, which
leads to a tree-like diagram, to obtain the fractal dimension.
A nice account on the subject, in general, can be found in
[27, 41], and for a specific description of the system analyzed
here, see [42].

In the present work, the scaling properties of the fractal
structure will be investigated in the light of renormalization
theory. In this sense, the scaling properties can be analyzed
in two ways: (a) by varying 𝐸 and 𝐹 while keeping 𝑀
fixed; (b) by varying 𝑀 while keeping 𝐸 and 𝐹 constant.
Both transformations are equivalent according to scaling
properties and are related through the fundamental equation
of renormalization theory, the Callan–Symanzik equation.
The main objective here is to obtain such equation in the
context of fractals. Before doing that, observe that since𝐸 and 𝐹 are transformed by the same scale factor, ration𝐸/𝐹 remains constant and so remains the parameter 𝜀/(𝑘𝜏).
In addition, the exponential factor in (5) amounts to the
Boltzmann factor for thermal equilibrium and bears no
relation to the fractal structure itself, so it must be dropped
for the analysis. With these considerations, the invariance of
the fractal structure by scale transformation can be expressed
by the identity

Γ (𝐹,𝑀) = (𝑀Λ )
−(1−𝐷) ( 𝐹𝑀)

3/2 , (6)

with Λ being some reference scale.
The equation above is suitable for the scaling analysis in

both ways described above. From method (a), where 𝑀 is
fixed and 𝐹 varies, one gets

𝐹𝜕Γ𝜕𝐹 =
3
2Γ. (7)

From method (b), where 𝐹 remains constant while scale𝑀
varies, one gets from (6)

𝑀 𝜕Γ𝜕𝑀 = (−
3
2 − (1 − 𝐷)) Γ. (8)

The results above allow one to obtain the Callan–Symanzik
equation for the fractals considered here; that is,

[𝑀 𝜕
𝜕𝑀 + 𝐹

𝜕
𝜕𝐹 + 𝑑] Γ = 0, (9)

where 𝑑 = 1 − 𝐷 is the anomalous fractal dimension.
The fractal dimension 𝐷 was determined in terms of the

parameters that characterize thermofractals [20] and is given
by

𝐷 = 1 + log𝑁󸀠
log𝑅 , (10)

where

𝑅 = (𝑞 − 1)𝑁/𝑁󸀠
3 − 2𝑞 + (𝑞 − 1)𝑁, (11)

with𝑁 = 𝑁󸀠 + 2/3.
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Equation (9) represents the fundamental properties of the
fractal structure under scale transformation. Since it is related
to a system whose scaling properties are the main ingredient
to obtain Tsallis statistics, one can recognize the equation
above as the Callan–Symanzik equation for Tsallis statistics.

This result sets the ground for an interpretation of
Tsallis statistics in association with renormalization group
theory. In addition, it opens new possibilities of exploring
the potential applicability of nonextensive statistics in the
domain of hadronic physics and, hopefully, allows for a
deeper understanding of the properties of QCD that make
self-similarity and fractal structures emerge from the strong
interaction in complex system. It can be also be associated
with the nonthermal phase transition of hadronic matter
associated with Quark–Gluon Plasma [35, 43].

In a thermodynamical approach, the application of
the nonextensive self-consistent thermodynamics that arises
from the fractal structure when applied to hadronic systems
has gone already beyond the usual description of high energy
distributions and has been extended to systems with finite
chemical potential [44, 45], to extend the MIT Bag model by
including a fractal structure [46] and to describe neutron star
equilibrium [47].

In conclusion, the Callan–Symanzik equation associated
with Tsallis statistics was derived here in association with
the thermofractal scale-free structure, setting new grounds
for the interpretation of nonextensive thermodynamics in
terms of renormalization group theory and opening new
possibilities of its application in QCD related problems.
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