

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

Twisted conjugacy in free products

Daciberg Gonçalves, Parameswaran Sankaran & Peter Wong

To cite this article: Daciberg Gonçalves, Parameswaran Sankaran & Peter Wong (2020): Twisted conjugacy in free products, Communications in Algebra, DOI: <u>10.1080/00927872.2020.1751848</u>

To link to this article: https://doi.org/10.1080/00927872.2020.1751848

	Published online: 17 Apr 2020.
Ø	Submit your article to this journal 🗷
lılıl	Article views: 5
a a	View related articles ☑
CrossMark	View Crossmark data 🗹

Twisted conjugacy in free products

Daciberg Gonçalves^a, Parameswaran Sankaran^b, and Peter Wong^c

^aDepartment of Mathematics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil; ^bChennai Mathematical Institute, Siruseri, Tamil Nadu, India; ^cDepartment of Mathematics, Bates College, Lewiston, ME, USA

ABSTRACT

Let $\phi: G \to G$ be an automorphism of a group which is a free product of finitely many groups each of which is freely indecomposable and two of the factors contain proper finite index characteristic subgroups. We show that G has infinitely many ϕ -twisted conjugacy classes. As an application, we show that if G is the fundamental group of a three-manifold that is not irreducible, then G has property R_{∞} , that is, there are infinitely many ϕ -twisted conjugacy classes in G for every automorphism ϕ of G.

ARTICLE HISTORY

Received 8 January 2020 Accepted 25 March 2020 Communicated by K. C. Misra

KEYWORDS

Twisted conjugacy; free product of groups; three-manifolds

2010 MATHEMATICS SUBJECT CLASSIFICATION 20E45; 22E40; 20E36

1. Introduction

Let G be an infinite group. Given an automorphism $\phi:G\to G$, one has an action of G on itself, known as the ϕ -twisted conjugation, defined as $g.x=gx\phi(g^{-1})$. The orbits of this action are the ϕ -twisted conjugacy classes. Let $\mathcal{R}(\phi)$ denote the orbit space. We denote by $R(\phi)$ the cardinality of $\mathcal{R}(\phi)$ if it is finite, and, when $\mathcal{R}(\phi)$ is infinite we set $R(\phi):=\infty$ and $R(\phi)$ is called the Reidemeister number of ϕ . One says that G has the R_{∞} -property, or that G is an R_{∞} -group, if $R(\phi)=\infty$ for every automorphism ϕ of G. The notion of Reidemeister number first arose in the Nielsen-Reidemeister fixed point theory. Classifying (finitely generated) groups according to whether or not they have the R_{∞} -property is an interesting problem and has emerged as an active research area that has enriched our understanding of finitely generated groups.

The fundamental group of a closed connected three-dimensional manifold is an important invariant of the manifold as it carries a lot of information concerning its topology. The main motivation for this work is to understand which manifolds have the property that their fundamental groups have the R_{∞} -property. We have not been able to completely answer this question. However, we obtain a very general result showing that a wide class of groups have the R_{∞} -property. This yields a partial answer, to the above question covering a large class of compact three-manifolds.

Recall that a closed connected three-dimensional manifold M is said to be *prime* if $M = M_1M_2$ implies that at least one of the M_i is a 3-sphere. One says that M is *irreducible* if every embedded 2-sphere is the boundary of a 3-disk in M. Every irreducible manifold is prime, but the converse is not true: $\mathbb{S}^2 \times \mathbb{S}^1$ is an example of a prime manifold which is not irreducible. If M is

irreducible and has infinite fundamental group, then the sphere theorem (due to C. D. Papakyriakopoulos) implies that M is a $K(\pi,1)$ -space. A fundamental result in three-manifold theory is that every closed connected orientable 3-manifold M, can be expressed as a connected sum: $M \cong M_1 \# \cdots \# M_k$ where each M_j is prime (and not the 3-sphere). Moreover, the decomposition is unique (up to reordering of the factors). When M is non-orientable, one still has a prime decomposition. However, the uniqueness part fails. If P is nontrivial \mathbb{S}^2 -bundle over \mathbb{S}^1 , then $P\#N = (\mathbb{S}^2 \times \mathbb{S}^1)\#N$ when N is non-orientable. In view of this, in the case when M is non-orientable, one may assume that none of its prime factors M_i is $\mathbb{S}^2 \times \mathbb{S}^1$. With this restriction the uniqueness part is valid. See [5, Chapter 3]. As for any finitely generated group, $\pi_1(M)$ may be decomposed as a free product of groups $\pi_1(M) = G_1 * \cdots * G_r$ where each G_i is freely indecomposable. It turns out that r = k and after reordering of indices $G_i = \pi_1(M_i)$, $1 \le i \le k$.

Our main result is the following.

Theorem 1. Let $k \ge 2$. Suppose that $G = G_1 * \cdots * G_k$ where (i) each G_i is freely indecomposable, and, (ii) G_i has a proper characteristic subgroups of finite index for i = 1, 2. Then G has the R_{∞} -property.

As an application of the above theorem, we shall establish the following.

Theorem 5. Let M be a non-prime compact connected three-manifold. Then $\pi_1(M)$ has the R_{∞} -property.

The main tool used in the proof of Theorem 1 is Kuroš subgroup theorem. It is well-known that no group is both a nontrivial free product and a nontrivial direct product. See [8, Observation, p. 177]. Thus, if $H = H_0 \times H_1, H_0, H_1$ are any two nontrivial groups with H_0 is a finite group with the trivial center and if H_1 is torsionless, then H is freely indecomposable and admits finite index characteristic subgroup, namely H_1 . To see this we note that (i) any automorphism of H maps H_0 to itself since H_1 is torsion-free, the centralizer of H_1 in H contains H_0 , and, (iii) the only element of H_0 in the centralizer of any element $(h_0, h_1) \in H$ is the trivial element. So H_1 is characteristic in H. Therefore we see that the hypotheses on the free factors of G in Theorem 1 hold for a large family of groups.

Theorem 5 follows easily from Theorem 1 using the fact that the fundamental group of a compact three-manifold is residually finite. (See [10, Theorem 3.3], [6]).

We should point out that Fel'shtyn outlined in [2] the main steps of a proof which shows that finitely generated non-elementary relatively hyperbolic groups have property R_{∞} . This proof relies on group actions on \mathbb{R} -trees and other notions from geometric group theory. Thus Fel'shtyn's result will imply that any finite free product of freely indecomposable finitely generated groups has property R_{∞} from which Theorem 5 will follow. On the other hand, Theorem 1 does not assume that the free factors are finitely generated and the proof uses elementary techniques from combinatorial group theory. Hence, Theorem 1 does not follow from the result of [2]. For instance, if G is a freely indecomposable torsion-free group containing a proper finite index characteristic subgroup and if $H = \bigoplus_p \mathbb{Z}_p$ where p varies over the set of all primes, then G * H has property R_{∞} while H is not finitely generated (see also [9]).

2. The R_{∞} -property of a free product

Our goal here is to establish the R_{∞} -property for a free product $G = G_1 * \cdots * G_n, n \geq 2$, for a wide class of groups G_i . The main tool will be the Kuroš theorem that reveals the structure of a subgroup of a free product. The strategy of proof would be to first establish our goal when all the G_i are finite. Here the case n = 2 is well-known. We then reduce the general case, under suitable hypotheses on the G_i , to the case of free product of finite groups.

We begin by recalling the Kuroš subgroup theorem. Let G be a free product of groups G = G $G_1 * \cdots * G_n$ and let K be a subgroup of G. Then K is itself a free product of groups

$$K = F_0 * H_1 * \dots * H_n \tag{*}$$

where each H_j is a free product of a family of subgroups $\{\alpha_{i,j}H_{i,j}\alpha_{i,j}^{-1}\}_{i\in I_i}$ of G for suitable elements $\alpha_{i,j} \in G$ and suitable subgroups $H_{i,j} \leq G_i$, $i \in J_i$ for some indexing set J_i , $1 \leq i \leq n$.

The following lemma is a standard application of the Kuroš subgroup theorem. We include a proof for the sake of completeness.

Lemma 2. Let $G = G_1 * \cdots * G_n$ where each G_i , $1 \le i \le n$ is a finite nontrivial group. Then G is virtually free and hence has the R_{∞} -property if $n \geq 2$.

Proof. The statement that G is virtually free is trivially valid when n=1. So assume that $n \ge 2$. We consider the kernel of projection $\eta: G \to G_1 \times \cdots \times G_n$, denoted K. Note that η maps any conjugate of G_i isomorphically onto G_i . Therefore, if H_i is a subgroup of G_i and $g \in G$, then $\eta(gH_ig^{-1})$ maps onto a conjugate of H_i . It follows that writing $K = F_0 * K_1 * \cdots * K_n$ as in (*), we see that K_i is trivial for all i. Therefore $K = F_0$ is a free group. Since $G/K = \prod G_i$ is finite, the index of K in G is finite. Since G is finitely generated, the same is true of K.

If n=2 and $G_1\cong G_2\cong \mathbb{Z}_2$, then G is infinite dihedral and it is known that G has the R_{∞} -property (see [3]). In all other cases, with $n \geq 2$, K is a non-abelian free group of finite rank. It follows that G is finitely generated non-elementary word hyperbolic and thus has the R_{∞} -property by [7].

We say that a nontrivial group is freely indecomposable if it cannot be expressed as a free product of two nontrivial groups. The only nontrivial free group which is freely indecomposable is the infinite cyclic group.

If $\alpha: G \to H$ is an isomorphism and if $C \subset G$ is a characteristic subgroup of G, then $\alpha(C)$ is a characteristic subgroup of H which is independent of the choice of α . Indeed, if $\beta: G \to H$ is another isomorphism then $\beta \circ \alpha^{-1}: H \to H$ is an automorphism. Since $\alpha(C)$ is characteristic, we have $\alpha(C) = \beta \circ \alpha^{-1}(\alpha(C)) = \beta(C)$.

Lemma 3. Let $G = G_1 * \cdots * G_n$ where each $G_j, 1 \le j \le n$, is freely indecomposable and not infinite cyclic. Let $C_i \subset G_j$ be a characteristic subgroup of G_i , $1 \le j \le n$. Fix an isomorphism α_{ij} : $G_i \to G_i$ whenever G_i G_i are isomorphic. Then the subgroup K of G generated by the family C of subgroups gC_ig^{-1} , $g\alpha_{ij}(C_i)g^{-1} \subset G$, $g \in G$, $1 \le i, j \le n$, is characteristic in G.

Proof. Evidently, K is normal in G since the family \mathcal{C} is closed under conjugation. We need only show that the \mathcal{C} is closed under any automorphism of G.

Let $\phi: G \to G$. Consider the subgroup $\phi(G_i)$. Since G_i is freely indecomposable and is not infinite cyclic, the same is true of $\phi(G_i)$. By the Kuroš subgroup theorem, $\phi(G_i)$ is contained in $g_iG_{k_i}g_i^{-1}$ for some $k_i \leq n$ and $g_i \in G$. Therefore $\phi(G) = \phi(G_1) * \cdots * \phi(G_n) \subset g_1G_{k_1}g_1^{-1} * \cdots * \phi(G_n)$ $g_nG_{k_n}g_n^{-1}\subset G$. Since $\phi(G)=G$ we must have equality $\phi(G_j)=g_jG_{k_j}g_j^{-1}$ for all j. In particular $\iota_{g_i^{-1}}|_{G_{k_i}} \circ \phi|_{G_j} : G_j \to G_{k_j}$ is an isomorphism, which we shall denote by κ_{j_i} . Here ι_g denotes the inner automorphism $x \mapsto gxg^{-1}$ of G.

 $A_i \subset G_j$ be any characteristic of G_i . Then $\kappa_i(A_i) = \alpha_{ik_i}(A_i)$. subgroup Therefore $\phi(A_i) = g_i(\alpha_{ik_i}(A_i))g_i^{-1}$.

Taking A_i to be C_i or $\alpha_{ij}(C_i)$, it follows that the family C is closed under any automorphism of G. Hence K is characteristic in G.

Remark 4. (i) In our application, we shall choose the characteristic subgroups C_j so that whenever G_i and G_j are isomorphic, C_i corresponds to C_j under an isomorphism $G_i \to G_j$. In this case, $K \subset G$ is generated as a normal subgroup by the finite collection of subgroups C_j , $1 \le j \le n$.

(ii) We remark that a finite index subgroup of a freely indecomposable group is not necessarily freely indecomposable. For example, $SL(2,\mathbb{Z})$ is virtually free with a finite index non-abelian free subgroup but is freely indecomposable.

Proof of Theorem 1. By relabeling if necessary, we assume that (i) $G_1, ..., G_n$ are the free factors of G such that either G_i is infinite cyclic or is isomorphic to one of the groups G_1 , G_2 , and, (ii) the group G_j is not isomorphic to any of the groups G_1, G_2, \mathbb{Z} , for $n < j \le k$. Note that $n \ge 2$.

Let K be the kernel of the natural projection $G \to G_1 * \cdots * G_n$ that maps each G_i identically onto $G_i, 1 \le i \le n$ and maps G_j to the trivial group for j > n. Then, by Lemma 3, K is characteristic. To show that G has the R_{∞} -property, we need only prove that $G_0 := G_1 * \cdots * G_n$ has the R_{∞} property.

The proof will be divided into three cases depending on the number of groups G_i , $1 \le i \le n$, that are isomorphic to \mathbb{Z} being zero, or one or at least two. We shall denote this number by r. Relabeling if necessary, we assume that $G_i \cong \mathbb{Z}$ if $1 \le j \le r$ in case r > 0.

Let $C_i \subset G_i$ be a proper finite index characteristic subgroup of G_i . We assume, as we may, that whenever $G_i \cong G_j$, then C_i corresponds to C_i (under an isomorphism $G_i \to G_j$).

Case 1: Suppose that none of the G_i is infinite cyclic. Set $_{\bar{G}}i = G_i/C_i$, $1 \le i \le n$, and let $\bar{G} = _{\bar{G}}1 * \cdots *_{\bar{G}}n$. Let K_0 be the kernel of the natural projection $G_0 \to _{\bar{G}}0$. Then K_0 is normally generated by the finite collection of subgroups $\{C_j|1 \le j \le n\}$. Hence by Lemma 3, K_0 is characteristic in G_0 . By Lemma 2, $_{\bar{G}}0$ has the R_{∞} -property. It follows that G_0 has the R_{∞} -property.

Case 2: Suppose that r > 1 so that $G_j \cong \mathbb{Z}$ for $1 \le j \le r$ and $G_j \ncong \mathbb{Z}$ for j > n. If r = n, in view of the fact that $n \ge 2$, G_0 is a non-abelian free group of finite rank and so has the R_{∞} property.

So suppose that $2 \le r < n$. Set $A := G_1 * \cdots * G_r$, $B := G_{r+1} * \cdots * G_n$ so that $G_0 = A * B$ where A is a non-abelian free group of rank r. Let K_1 be the kernel of the projection $G_0 \to A$. Then K_1 is the free product of the family of groups $\mathcal{C} = \{gG_jg^{-1}|g \in G_0, r < j \le n\}$. Since each $G_j, j > r$, is indecomposable and not infinite cyclic, under any automorphism of G_0 , G_j is mapped to a conjugate of a G_i isomorphic to G_j where $r < i \le n$. It follows that \mathcal{C} is stable by any automorphism of G_0 . Therefore K_1 is characteristic in G_0 . Since A is a free non-abelian group of finite rank, it has the R_{∞} -property. It follows that G_0 also has the R_{∞} -property.

Case 3: Suppose that r=1, that is, $G_1 \cong \mathbb{Z}$, $G_j \ncong \mathbb{Z}$ for $2 \le j \le n$. We consider the canonical projection $\eta: G_0 \to G_1 * \bar{B}$ where \bar{B} is the free product of G_i/C_i , $2 \le i \le n$. The kernel $K_3 := \ker(\eta)$ is as a subgroup generated by the collection $\{gC_jg^{-1}|g \in G_0, j \ge 2\}$. Proceeding as in the proof of Lemma 3, we see that K_3 is characteristic in G_0 in view of our hypothesis on the C_j . (See Remark 4 (i).)

Now B is nontrivial and is virtually free by Lemma 2, possibly finite. Indeed the kernel F of the natural projection $\pi: \bar{B} \to \prod_{2 \le j \le n} G_j/C_j$ is free by Kuroš' theorem. Since \bar{B} is finitely generated, and F has a finite index, F has finite rank. We claim that $G_1 * \bar{B} \cong \mathbb{Z} * \bar{B}$ has a non-abelian free group of finite rank as a finite index subgroup. To see this, let S be a transversal to the projection π . We note that the kernel L of natural projection $q:G_1*\bar{B}\to\prod_{2\le j\le n}G_j/C_j$ equals the subgroup generated by the family of subgroups F,gG_1g^{-1} as g varies over S. The subgroups $F,gG_1g^{-1},g\in S$, generate their free product in $G_1*\bar{B}$. Since F is free of finite rank, $G_1\cong \mathbb{Z}$ and S is finite, we see that L is a free group of finite rank. Since $\prod G_j/S_j$ is a finite group, L has finite index in $G_1*\bar{B}$. The group L is non-abelian since S has at least two elements. This proves our claim. So $G_1*\bar{B}$ is a finitely generated non-elementary word hyperbolic group and so has the R_∞ -property by [7]. Since K_3 is characteristic in G_0 , it follows that G_0 also has the R_∞ -property.

Thus in all cases, G_0 has the R_{∞} -property as was to be shown.

As an immediate corollary, we obtain

Theorem 5. Let M be a non-prime compact connected three-manifold. Then $\pi_1(M)$ has the R_{∞} -property.

Proof. Since M is not prime, it admits a prime decomposition: $M = M_1 \# \cdots \# M_k$ where each M_i is a prime manifold and k > 2. Thus $\pi_1(M) = \pi_1(M_1) * \cdots * \pi_1(M_k)$. (See [5, Chapter 3].) Note that since M_i is prime, $\pi_1(M_i)$ is freely indecomposable in view of [5, Theorem 7.1]. Also, it is known that $\pi_1(M_i)$ is residually finite as a consequence of the geometrization theorem and the work of Thurston [10, Theorem 3.3]. (See also [6]) So we may take G_i to be $\pi_1(M_i)$ in Theorem 1 and we see that $\pi_1(M)$ has the R_{∞} -property.

Remark 6. (i) The same arguments as above also yields the following: if M is a connected sum $M_1 \# \cdots \# M_r$, $r \geq 2$, where each M_i is a connected *n*-manifold $(n \geq 3)$ and M_1 and M_2 each admits a nontrivial finite *characteristic cover*, then $\pi_1(M)$ has the R_{∞} property. (A cover is characteristic cover) acteristic if it corresponds to a characteristic subgroup of the fundamental group.)

(ii) Let $P \subset \mathbb{N}$ be a nonempty proper subset of primes. Suppose that $p \notin P$. Let $\mathbb{Z}(P) \subset \mathbb{Q}$ be subring $\mathbb{Z}[1/q|q \in P]$. Since $p \notin P$, we have a natural surjective ring homomorphism $\mathbb{Z}(P) \to \mathbb{Z}(P)$ $\mathbb{Z}/p\mathbb{Z}$. The kernel is a proper characteristic subgroup of $\mathbb{Z}(P)$. (It consists precisely of elements which are expressible as $px, x \in \mathbb{Z}(P)$.) Evidently $\mathbb{Z}(P)$ is freely indecomposable. It is readily seen that $\mathbb{Z}(P)$ is not isomorphic to $\mathbb{Z}(P')$ if $P \neq P'$ so the collection of such groups has cardinality the continuum. It is known that $\mathbb{Z}(P)$ is the fundamental group of an open three-manifold M(P), which is, in fact, an aspherical space. This can be derived from constructing a non-compact 3manifold (in fact, the complement of a solenoid in \mathbb{S}^3) whose fundamental group is \mathbb{Q} (see e.g., [1, p. 209]). If $M_i := M(P_i)$, $1 \le i \le k$, are such manifolds (where we do not assume that the P_i are pairwise distinct) then their connected sum $M_1 \# \cdots \# M_k$ is an open three-manifold whose fundamental group has the R_{∞} -property, provided $k \geq 2$ and at least two sets, say, P_1 , P_2 are nonempty proper subsets of the set of all primes.

Remark 7. (i) Let M be a closed connected three-manifold such that $\pi_1(M)$ is infinite cyclic. Then M is prime. We claim that M is a 2-sphere bundle over the circle. If M is irreducible, then by the sphere theorem, $\pi_2(M)$ is trivial. Since $\pi_1(M)$ is infinite, it is a $K(\mathbb{Z},1)$ -space. Therefore it is homotopic to a circle. This is a contradiction since $H_3(M; \mathbb{Z}_2) \cong \mathbb{Z}_2$. So M is not irreducible. By [5, Lemma 3.13] *M* is a 2-sphere bundle over the circle.

(ii) When a three-manifold M admits a geometric structure, in some cases it is known whether or not $\pi_1(M)$ has the R_{∞} -property. For example, when M admits spherical geometry, the fundamental group is finite and it is trivial that $\pi_1(M)$ does not have the R_{∞} -property. On the other hand, when the manifold admits hyperbolic geometry, then $\pi_1(M)$ has the R_∞ -property as an immediate consequence of the work of Levitt and Lustig [7]. In the case of $\mathbb{S}^2 \times \mathbb{R}$ -geometry, we see that $\pi_1(\mathbb{S}^2 \times \mathbb{S}^1) \cong \mathbb{Z}$ does not have R_{∞} -property whereas $\pi_1(\mathbb{R}P^3 \# \mathbb{R}P^3) \cong \mathbb{Z}_2 * \mathbb{Z}_2$ has the R_{∞} -property; see [3]. It can be shown that the fundamental groups of Seifert fiber spaces have the R_{∞} -property provided the base surface has genus at least 2. However, the complete classification for geometric three-manifolds will take us too far a field. It will be carried out in a forthcoming article [4].

In general, by Thurston's geometrization conjecture (Perelman's theorem), for any orientable prime three-manifold M that is not geometric, the fundamental group of M is an iterated amalgamated free product of fundamental groups of geometric manifolds where the amalgamating group is \mathbb{Z}^2 . Our approach to Theorem 1 fails in this setting.

Acknowledgment

We thank Mihalis Sykiotis and Pieter Senden for pointing out some gaps in our arguments in an earlier version of this paper.

Funding

The first author is partially supported by Projeto Teml'atico-FAPESP Topologia Algl'ebrica, Geoml'etrica e Diferencial 2016/24707-4 (São Paulo-Brazil). The first and third authors thank the IMSc (August 2018) and the CMI, Chennai (December 2019), for their support during their visits. Second and third authors thank the IME-USP, São Paulo for its support during the authors' visit in February 2019.

References

- [1] Evans, B., Moser, L. (1972). Solvable fundamental groups of compact 3-manifolds. *Trans. Amer. Math. Soc.* 168:189–210. DOI: 10.2307/1996169.
- [2] Fel'shtyn, A. (2010). New directions in Nielsen-Reidemeister theory. Topol. Appl. 157(10-11):1724-1735.
- [3] Gonçalves, D., Wong, P. (2009). Twisted conjugacy classes in nilpotent groups. *J. Reine Angew. Math.* 633: 11–27.
- [4] Gonçalves, D., Sankaran, P., Wong, P. Twisted conjugacy in fundamental groups of geometric 3-manifolds. arXiv:2003.07791.
- [5] Hempel, J. (2004). 3-manifolds. Reprint of the 1976 original. Providence, RI: AMS Chelsea Publishing.
- [6] Hempel, J. (1987). Residual finiteness for 3-manifolds. In: Gersten, S. M., Stallings, J. R., eds. Combinatorial Group Theory and Topology (Alta, Utah, 1984). Ann. of Math. Stud., 111. Princeton, NJ: Princeton Univ. Press, pp 379–396.
- [7] Levitt, G., Lustig, M. (2000). Most automorphisms of a hyperbolic group have very simple dynamics. *Ann. Sci. École Norm. Sup.* 33(4):507–517.
- [8] Lyndon, R., Schupp, P. (1977). Combinatorial Group Theory. Berlin: Springer-Verlag.
- [9] Sankaran, P., Wong, P. (2020, January 7). Twisted conjugacy and commensurability invariance. Available at: https://arXiv:2001.02027v1 [math.GR].
- [10] Thurston, W. P. (1982). Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.). 6(3):357-381.