


ENERGY FUNCTION FOR POWER SYSTEMS WITH TRANSMISSION 
LOSSES: EXTENSION OF THE INV ARIANCE PRINCIPLE 

L.F.C. Alberto, H. M. Rodrigues, N.G. Bretas* 

Summary - In many engineering and physical problems, 
it is very hard to find a Liapunov function satisfying the 
classical version of the LaSalle's Invariance Principie. 
This obstacle has been a great problem in the 
application of energetic methods to the stability analysis 
of power systems with more realistic models. In this 
work, an e>..1:ension of the Invariance Principie, which 
does not require the Liapunov function to be negative 
semi-definite, is used to support theoretically the 
proposal of a new energy function for power systems 
with transmission losses. 

Keywords - invariance principie, transient stability, 
direct methods, energetic methods, liapunov function. 

1. INTRODUCTION 

Direct methods have been shown to be suitable for the 
stability analysis of power systems on real time. Among 
these methods, the Liapunov's ideas associated to the 
LaSalle's Invariance Principie have been used to 
estimate the stability region of power systems. In the 
last two decades, many authors have adressed the 
problem of estimating the stability regions and these 
studies culminated with the development of the BCU 
method [4], which nowadays is considered the most 
efficient energetic method to study transient stability. In 
spite of these advances, the application of these methods 
to the assessment of stability in real power systems has 
found many obstacles. The main obstacle is that the 
energetic methods are still impropet to deal with more 
realistic models. In fact this obstacle is intimately 
related to the problem of finding a suitable Liapunov 
function associated to those models. 
The most known energy function nowadays was 
proposed by Athay et al.[3] . That function is an energy 

type Liapunov function in the Center of Angle(COA) 
formulation. In this case the loads were modeled as 
constant impedances and the network was reduced to 
the electromotive force buses. As consequence, the 
transfer conductances of the reduced system cannot be 
neglected and it is not possible to prove that this energy 
function is a Liapunov function in the usual sense. 
In general, in order to find a Liapunov function, many 
simplifications are made to the power system model. 
The machines are usually modeled as a constant 
electromotive force behind the transient reactance, loads 
are modelled as constant power and the transmission 
losses are neglected. Also the existence of a infinite bus 
is required or a hypothesis of uniform damping is ma de. 
Some improvements were made in order to consider 
more realistic models. Tsolas et al.[lO] exhibited a 
general Liapunov function for a structure preserving 
power system model with the one-axis-model for the 
generators but no advance was achieved in the load 
model. 
In other paper Alberto & Eretas [1] tried to take in 
account more realistic load models. They have provided 
a general Liapunov function for a structure preserving 
power system model in which the loads were modeled 
as a constant active power plus a voltage dependant 
reactive power and a linear dependency with frequency. 
However, the transmission losses were still neglected 
and the load active power was still modeled as a 
constant power. 
Chiang et al.[5] studied the existence of energy 
functions for power systems with losses and they proved 
the non existence of general Liapunov functions to 
power systems in the presence of transfer conductances. 
In the same article they have proved the existence of a 
local Liapunov function which can be used for stability 
studies purpose when the transfer conductances are not 
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bigger enough, however their result concems only with 
the existence and they did not exlúbit such function. 
After Chiang et al.[5] studies, the problem of finding a 
general Liapunov function for power systems 
considering transfer conductances seemed to be 
unsolved until an e:\.iension of the Invariance Principie 
was proposed by Rodrigues, Alberto & Eretas [8]. In 
this paper this e:\.iension is used to support the proposal 
of a new energy function for power systems taking in 
account the in.fluence of small transfer conductances. It 
can be shown that this energy function is a Liapunov 
function in a wider sense, i.e, in the sense of the 
e:\.i:ension of the Invariance Principie. In this wider 
sense, the derivative of the Liapunov function is not 
required to be always negative semidefinite and it can 
assume positive values in some bounded regions. 
This paper is organized as follow. In Section 2, the 
theoretical results and an example including good 
estimates for a single Lorenz system are presented. In 
Section 3, the e:\.iended Invariance Principie is used to 
study the stability of power systems considering 
transmission losses. Finally, conclusions are presented 
in Section 4. 

2. THE INVARIANCE PRINCIPLE 

This section starts by reviewing the usual Invariance 
Principie [6]. Consider the following autonomous 
differential equation: 

.X= f(x) (1) 

Theorem I!. I :Let V: R" ~R+ and f: R" ~R" be C1 

fimctions. Let L > O be a constant such that .QL ={x 
E R" : V(x) <L} is bounded Suppose that V(x) :::; O for 
eve1y x E .QL and define E:= {x E .QL: V(x)=O}. 
Let B be the largest invariant set contained in E. Then 
very solution of (I) starting in .QL converges to B as 
t~ 00. 

In this work, more general results than the above one 
are presented. They require less restrictive conditions 
and allow the possibility of the derivative of V to be 
positive in some regions. The advantage of these results 
is that it is easier to fmd the function V and some quite 
complicated problems can be treated as well. The frrst 
result obtained is: 

Theorem !!.2. (The Extended Invariance Principie): Let 
V R" ~R andf R" ~R" be C1fimctions. Let L E R 

be a constant such that .QL ={xER" :V (x)<L) is 

bounded Let C:={x E .QL: V(x)>O), suppose that 

supx E c V(x) =l<L. Define .Q 1={x E R" : V(x) :::; l} and 

E: ={x E .QL : V (x) =O} U .Q I· Let B be the largest 
invariant set of (I) contained in E. Then every solution 
o f (I) starting in .QL converges to the invariant set B, 
ast ~ oo. 
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Figure 1- Lorenz System (a) Attractor Estimation (b) 
Deriva te o f Energy 

lvforeover ij X 0 E .01 then (jJ (t, Xo) E .Q 1 for eve1y 

t ~O and rp(t, x 0 ) tends to the largest invariant set o f 

(I) contained in .Q I· 

For a proof and more details see [8] and [9]. 

Remark I!. I: The sup x e c V(x) is always attained in 

the boundary a c of c. If in particular c is a convex 
set and V is a convex function, then the Lagrange 
technique is very useful for the calculus of this 
supremum. 

Remark !!.2: In the above theorem if we assume that V: 

R" ~ R+ is such that V(x) ~ oo ,as /lx/1 ~ oo, then a 

global stability result can be established. 

Example I!. I: Attractor Estimate of the Lorenz System. 
In arder to illustrate the application of the e:\.iended 
Invariance Principie, consider the following interesting 
Lorenz system : 
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{
x = -ox+oy 
y=-y-.xy=rx 
z = -bz = .xy 

where, O" =10, r=28 and b=8/3. Let 

V(x,y,z)=rx2-r4 O" /-r4 O" (z-5r!4/ (2) 

be a Liapunov function for the previous system. It is 
easy to see that this function satisfies the conditions 
established in remru:k 11.2, therefore the ell..1ended 
Invariance Principie will be used to estimate the global 
Lorenz attractor. The derivative of Vis given by: 

V (x,y,z)=-2 O" (rx2+4y2+4bz2 -5rbz) 

The set C is given by C:={x E R3:rx2+ y2 + bz2 -2rbz < 
O} and it is easy to see that the boundary of C is an 
ellipsoid centered at (:\.=O,y=O,z=5r/8). As C is a convex 
set and the Liapunov function Vis a convex function, 
the Lagrange multipliers teclmique will be used to 
calculate the sup x E c V(x). Using the Lagrange 
function: 

F(x,y,z) =d +4 O"/ +4 O" (z-5r!4/ + 
À (rx2+4/+4br-5rbz) 

the following e:\.1reme conditions are obtained: 
a F 
- = 2rx(l+Â) =O ax 
a F 
- = 8y(cr+Â) =O 
éY 

aF = 8(cr+bÂ)z-(10cr+5Â)r =O 
az 
aF = rx2 +4y2 +4bz2 -5rbz =O 
8Â 

The solution of the previous system is À =-O", x=O, 

5r(2-b) 25b 2r 2 (b-2) 
z = and l= . Substituting 

8(1- b) - 64(b -1) 2 

these values in the e:\.-pression of v; the number l is 
obtained: 

25b 2r 2 cr 156800 _ 
l=supx E cV(x)= = --- < )2267 

16(b-l) 3 

The set D.1 is the ellipsoid: {(x,y,z) E R3
: rx2+40" i 

4 ( - /4)2 156800} + O" z-)r ::;---
3 

The set in which V =O is contained in n 1 and so every 
solution converges to the largest invariant set contained 
in n 1 . The set D. 1 is an estimate ofthe attractor. Figure 
Ia shows the estimate of the attractor. In this case it is 
important to note that the derivative of V keeps 

changing of sign after the solution enters in D. I· A 

graphic of V:· (x(t),y(t),z(t)) is shown in Figure lb. 

3. LIAPUNOV FUNCTION FOR POWER SYSTEMS 
WITH TRANSMISSION LOSSES 

A. Single-Machine-Injinite-Bus System 

Consider the SMIB system of Figure 2 where a 
synchronous machine is connected to the infmite bus 
through a transmission line with losses. 

Pm Elo_ 
-. 

jB 
Figure 2- Single Machine infinite Bus System 

Modeling the generator as a constant electromotive 
force behind the transient reactance, this system can be 
mathematically described by the following pair of 
di:fferential equations: 

where O and úJ are respectively the rotor angle and 
the generator frequency deviation from the synchronous 
frequency, P m is the input mechanical power, E is the 

electromotive force, Eoo the voltage modulus at the 
infinite bus, Tis the damping coefficient and G+jB is 
the admittance of the equivalent transmission line. For 
notation simplicity, let us rewrite the SMIB differential 
equations as: 

{
o= w 

Mr» = P-Csino -D coso -Tw 
(4) 

whereP = P111 - E 2 G,C =-EE00 B andD = -EE00 G. 

Although this model incorporates the line losses, this 
system has a general Liapunov function in the usual 
sense given by: 

V(o,w) :=lvf w
2 

- Po- C coso+ Dsino + cte (5) . 2 

It is easy to show that the derivative of V along the 
orbits is given by: 

(6) 

which is a negative semi-definite function. The function 
V satisfies the requirements of the usual Invariance 
Principie and as consequence this function can be used 
to study the stability o f this system in the usual way. In 
spite of that a new energy function will be proposed in 
what follows and the ell..1ended Invariance Principie will 
be used to study the stability ofthis system. 
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Our purpose is to ilustrate the application of the 
e:x.iension of the Invariance Principie and to prepare the 
ideas to solve the multi-machine problem which does 
not present a Liapunov :function in the usual sense when 
the tranfer conductances are not neglected in the model. 

With this purpose consider the following energy 
:function: 

2 

W(5,w):=M w
2 

-P5 -Ccos5- (7) 
- fJw(P- Csin5 + D cos 5) 

where j3 is a parameter to be adjusted. Our goal is to 

show that this :function satis:fies the requirements of 
Theorem II.2. 

Calculating the derivative of W along the orbits we 
obtain: 

vV := -(T- jJ(C cos5- Dsino))w
2 + jJT(P- Csino- (S) 

- Dcos5)w- jJ(P- Csino- Dcos5)- Dcos(o)w 

which is equivalent to: 

-wfz~"'r[-~ -2- P/5) -jJT J 
T-j3(Ccos5-Dsin5) OJ ]c9) 

+Dcos(5)w 

where P, ( 5) := P - Csin5 - D cos 5. Note that this 

function is composed by a quadratic term plus the term 
Dcos(5)w. Note that the parameter j3 can be chosen 

in order to make the quadratic term positive de:finite. 
Applying the Silvester's Criteria one can easily :find that 
this is certainly guaranteed if 

T 
/3< 2 

T 
C+D+-

4 
In this way, only the tenn D cos( 5)w will be 

responsible for generating regions where the derivative 
of TY is positive. 

Example III.l: Consider the SMIB system of Figure 2 
with P1=1.0, C=2.0, D=0.05, T=0.15 and M=0.5. The 
levei curves of Tfí are depicted in Figure 3. Note that the 
regions where the derivative of vV is positive are small 
bounded sets. One of them is dose to the stable 
equilibrium point and this set corresponds to the set C 
in Theorem II.2. The another region is dose to the 
unstable equilibrium point. The ma~imum value of W in 

C defines the set Q, which is an attractor estimate, i. e, 
ali the solutions starting into the stability region 
will enter in this attractor estimate in a :finite time. To 
estimate the stability region or attraction area of the 
attractor we must choose the largest number L such that 
the conditions ofTheorem II.2 are satis:fied. In practice, 

Angle (radj 

Figure-3. Levei Curves ofW 

we must guarantee that .QL does not intercept the 
region dose to the unstable equilibrium point where the 
derivative is positive. 
Figure 3 ilustrates the attractor and stability region 
estimates. 
The criticai dearing time obtained by simulation for a 
solid three-phase-short -circuit at the machine bus 
belongs to the interval (1.07,1.08s). The estimated 
criticai dearing time obtained with this new energy 
function belongs to the interval (l.O,l.Ols). As 
e:x.-pected, this estimate is a little conservative because 
the stability region estimate is contained into the real 
stability region. In spite of that, it is not much more 
conservative than the estimated dearing time obtained 
with the conventional Liapunov :function V which 
belongs to the interval (1.03,1.04s). Figure 3 shows the 
trajectories of the fault and post-fault system for a 
dearing time equal to LOs. 

B: Two-machine versus infinite bus system 

Before considering the general multi-machine case, 
let us frrstly consider the two-machine versus infinite 
bus system of 4. 

The following differential equations: 

5 r = 0)1 

M{h1 =P1 -C1sin5
1
-D1 cos51-C12sin(51-

-52)-D12 cos(5
1 
-5

2
)-T1w1 

52= 0)2 

M
2
io

2 
=P

2 
-C

2
sin5

2 
-D

2 
cos52 -C

12
sin(5

2
-

-51)D
12 

cos(5
2 
-5

1
)-T2w2 

(10) 

describe the dynamical behaviour of this system. When 
the transfer conductances are neglected in the model 
(D12=0), there exist a general Liapunov :function in the 
usual sense which can be used to study the stability of 
this system. This :function can be easily found by a 
traditional integration process and it is given by: 
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Figure 4- Two-maclúne versus infinite bus system 

ú)2 

V(5I,ml, 52'm2)=Ml +-PI5I -Cl cos 51 + 

ú)2 
+D

1
sin5

1 
+M

2 2
2 -P

2
5

2 
-c2 cos52 +D

2
sin52 -

-c
12 

cos(5
1 
-52 )+cte 

(11) 
However wheu D,2 :;t: O the integration process yields a 

path dependant integral and it is impossible to prove 
that its derivative, along the trajectories, is semi­
negative definite. 
In order to solve this problem we propose a new energy 
function and we will use the eÀiension of the Invariance 
Principie to study the stability of this system. It will be 
shown that this new energy function is a Liapunov 
function in the sense of the eÀiension of the Invariance 
Principie if the tranfer conductance D12 is small. With 
that in mind consider the following energy function: 

m2 
vV(51,m1,52,m2)=Ml +-P15l -Cl cos51 + 

+ D
1
sin5

1 
- p

1
m

1 
[P

1 
- c

1
sin5

1 
- D

1 
cos 5

1 
-

ú)2 
-c

12
sin(5

1 
-5

2
)-D

12 
cos(5

1 
-5

2
)]+M

2 
:} -

- P
2

5
2 

- c
2 

cos 5
2 

+ D
2

sin5
2 

-,8
2

m
2 

[P
2 

- C
2 

sin5
2 

-D
2 

cos5
2 
-c

12
sin(5

2 
-5

1
)-D

12 
cos(5

2 

-5
1
)]-c

12 
cos(5

1 
-52 )+cte 

(12) 

where ,8 1 and ,8 2 are parameters to be determined. 

Calculating the derivative of this function along the 
system orbits one finds: 

(13) 

where 

and 

[ pl 
_ 13tr l Eu= 

2 

Pr Tr T1 +/31[-C1 coso1 +D1sino1 J 
2 -C12 cos(ó'r -ó'z)+Drzsin(ó'r -ó'z)] 

Pz 
_ 13/z 

l B22 = _ /32T2 T2 + p2 [-C2 cos o2 +D2 sino2 

2 -C12 cos(ó'2 -ó'r)+D12sin(ó'z -51)] 

o o 

Note again that the derivative of W is composed by a 
quadratic term plus the term D12 

cos (5,- 5 2 )(m, +m2 ). Parameters ,8, and ,8
2 

can be 

chosen in order to make the quadratic term positive 
definite. In this way, only the term 

D12 cos(ô1 - Ô2)(w1 + w2) will be responsible for 

generating regions where the derivative of W is positive. 

Example III.2: Consider the system of Figure 4 with 
?1=1.25, ?2=1.5, CI=1.7, C2=2.0, D1=D2=0.1, C12=0.5, 
D12=0.04, T1=T2=0.l and MI=M2=0.5. The levei curves 
of W are depicted in Figure 5. Note that the region 
where the derivative of W is positive is a small bounded 
region close to the stable equilibrium point. As 
consequence the eÀiended Invariance Principie can be 
used to study the stability ofthis system. Figure 5 shows 
the projection ofthe stable attractor estimate. 
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Figure 5- Levei cUIVes of W 

C.Afultimachine-systems 

Consider a system composed by n machines where the 
nth -machine is an infmite bus. One can show, similarly 
to the case of two-machines, that the following energy 
function 

o} 
ru- n-1 f '1· i p - C - D . -rr -L . 1 tlV' . -- .o.- . coso.+ .smo.-

I= I 2 I I I I I I 

- p.w.[P; -C1sin51 -D, cos51 -
I I 

(14) 

n-1 
- L C .. cos(S. -5 .)+cte} 

. . 1 [1 I J 
} =I+ :J 

is a Liapunov function in the sense of the exiended 
Invariance Principie if the transfer conductances are 
small. Consequently it can be used for power system 
transient stability ana1ysis. 

4. CONCLUSIONS 

In this paper, a more general version of the Invariance 
Principie, which seems to be very interesting in the field 
of stability of non-Iinear systems, was used to study the 
existence of general Liapunov functions for power 
systems with transmission losses. In this version, less 
restrictive conditions than the conditions of the 
Classical Invariance Principie were used in order to 
allow t11eir application in a larger class of problems. 
Basically, the derivative of the Liapunov function is 
allowed to be positive in some bounded regions. In this 
way, many complex problems of physics and 
engineering, such as systems with chaotic behavior, can 
now be more easily treated. The theorem was 
successfully applied in this paper to support 
theoretically the proposal of a new general energy 
function which is a general Liapunov function in a 
wider sense(its derivative can assume positive va1ues) 
for power systems with transmission 1osses. 

In this paper we gave a contribution in the search for 
general Liapunov functions for power systems 
considering only the prob1em of transfer conductances. 
However the range of applications of the exiension of 
the Invariance Principie is very large and we expect in 
the future researchers would have solved other problems 
as the incorporation of more realistic generator mode1s 
as well as effects of some regulators al1owing the 
application of energetic methods to the assessment of 
transient stability with more realistic models. 
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