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ENERGY FUNCTION FOR POWER SYSTEMS WITH TRANSMISSION
LOSSES: EXTENSION OF THE INVARIANCE PRINCIPLE

L.F.C. Alberto, H. M. Rodrigues, N.G. Bretas*

Summary - In many engineering and physical problems,
it is very hard to find a Liapunov function satisfying the
classical version of the LaSalle's Invariance Principle.
This obstacle has been a great problem in the
application of energetic methods to the stability analysis
of power systems with more realistic models. In this
work, an extension of the Invariance Principle, which
does not require the Liapunov function to be negative
semi-definite, is used to support theoretically the
proposal of a new energy function for power systems
with transmission losses.

Keywords - invariance principle, transient stability,
direct methods, energetic methods, liapunov function.

1. INTRODUCTION

Direct methods have been shown to be suitable for the
stability analysis of power systems on real time. Among
these methods, the Liapunov's ideas associated to the
LaSalle's Invariance Principle have been used to
estimate the stability region of power systems. In the
last two decades, many authors have adressed the
problem of estimating the stability regions and these
studies culminated with the development of the BCU
method [4]. which nowadays is considered the most
efficient energetic method to study transient stability. In
spite of these advances, the application of these methods
to the assessment of stability in real power systems has
found many obstacles. The main obstacle is that the
energetic methods are still improper to deal with more
realistic models. In fact this obstacle is intimately
related to the problem of finding a suitable Liapunov
function associated to those models.

The most known energy function nowadays was
proposed by Athay et al.[3]. That function is an energy

type Liapunov function in the Center of Angle(COA)
formulation. In this case the loads were modeled as
constant impedances and the network was reduced to
the electromotive force buses. As consequence, the
transfer conductances of the reduced system cannot be
neglected and it is not possible to prove that this energy
function is a Liapunov function in the usual sense.

In general, in order to find a Liapunov function, many
simplifications are made to the power system model.
The machines are usnally modeled as a constant
electromotive force behind the transient reactance, loads
are modelled as constant power and the transmission
losses are neglected. Also the existence of a infinite bus
is required or a hypothesis of uniform damping is made.
Some improvements were made in order to consider
more realistic models. Tsolas et al.[10] exhibited a
general Liapunov function for a structure preserving
power system model with the one-axis-model for the
generators but no advance was achieved in the load
model.

In other paper Alberto & Bretas [1] tried to take in
account more realistic load models. They have provided
a general Liapunov function for a structure preserving
power system model in which the loads were modeled
as a constant active power plus a voltage dependant
reactive power and a linear dependency with frequency.
However, the transmission losses were still neglected
and the load active power was still modeled as a
constant power.

Chiang et al.[5] studied the existence of energy
functions for power systems with losses and they proved
the non existence of general Liapunov functions to
power systems in the presence of transfer conductances.
In the same article they have proved the existence of a
local Liapunov function which can be used for stability
studies purpose when the transfer conductances are not
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bigger enough, however their result concerns only with
the existence and they did not exhibit such function.
After Chiang et al.[3] studies, the problem of finding a
general Liapunov function for power systems
considering transfer conductances seemed to be
unsolved until an extension of the Invariance Principle
was proposed by Rodrigues, Alberto & Bretas [8]. In
this paper this extension is used to support the proposal
of a new energy function for power systems taking in
account the influence of small transfer conductances. It
can be shown that this energy function is a Liapunov
function in a wider sense, ie, in the sense of the
extension of the Invariance Principle. In this wider
sense, the derivative of the Liapunov function is not
required to be always negative semidefinite and it can
assume positive values in some bounded regions.

This paper is organized as follow. In Section 2, the
theoretical results and an example including good
estimates for a single Lorenz system are presented. In
Section 3, the extended Invariance Principle is used to
study the stability of power systems considering
transmission losses. Finally, conclusions are presented
in Section 4.

2. THE INVARIANCE PRINCIPLE

This section starts by reviewing the usual Invariance
Principle [6]. Consider the following autonomous
differential equation:

i= f(x) m
Theorem I[.1:Let V : R” =R, and f: R” —R" be '
functions. Let L > 0 be a constant such that Q; ={x
ER": Vix) <L} is bounded. Suppose that Vi{x) < 0 for
every x € §2; and define E:={x€Q;: V=0
Let B be the largest invariant set contained in E. Then
very solution of (1) starting in £, converges to B as
t— C.

In this work, more general results than the above one
are presented. They require less restrictive conditions
and allow the possibility of the derivative of V to be
positive in some regions. The advantage of these results
is that it is easier to find the function V and some quite
complicated problems can be treated as well. The first
result obtained is:

Theorem IL2.(The Extended Invariance Principle): Let
V:R" — Rand f R* —R" be C' functions. Let L € R
be a constant such that §l;={xeR’ -V ()<L} is
bounded. Let C:={x € $3;: V(x)>0}, suppose that
sup.e c Vix)=I<L. Define ) ;={x €R" :Vix)<I} and
E={xe Q: V =0} U .. Let B be the largest
invariant set of (1) contained in E. Then every solution

of (1) starting in Q)1 converges to the invariant set B,
ast —>» o0,
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Figure 1- Lorenz System (a) Attractor Estimation (b)
Derivate of Energy

Moreover if x, € C; then @ (t, x) € ), for every
t20 and (p(z‘ " xo) tends to the largest invariant set of

(1) contained in 5 »
For a proof and more details see [8] and [9].

Remark II.1: The sup, ¢ & Vix) is always attained in

the boundary 8 C of C. If in particular C 1is a convex
set and V is a convex function, then the Lagrange
technique is very useful for the calculus of this
Suprenmum.

Remark I1.2: In the above theorem if we assume that V-
R" — R.is suchthat V(x) — o0 .as “x“ ~—> oo, then a
global stability result can be established.

Example II. 1. Attractor Estimate of the Lorenz System.
In order to illustrate the application of the extended
Invariance Principle, consider the following interesting
Lorenz system :



X =-ox+ay
VE-y-xy=ox
z=-bz=xy

where, o =10, =28 and b=8/3. Let
Vi yz)=m+40 y'+40 (z-5v/4)° )

be a Liapunov function for the previous system. It is
easy to see that this function satisfies the conditions
established in remark II.2, therefore the extended
Invariance Principle will be used to estimate the global
Lorenz attractor. The derivative of V is given by:

V (xy.2)=-2 0 (1xX’+4y*+4bz>-51b7)

The set Cis given by C:={x € R¥*1x*+ y*+ bz’ -2rbz <
0} and it is easy to see that the boundary of C is an
ellipsoid centered at (x=0,y=0,z=51/8). As C is a convex
set and the Liapunov function V' is a convex function,
the Lagrange multipliers technique will be used to
calculate the sup (ec V(x). Using the Lagrange
function:
Flxy,2)=rc’+40 V' +4 0 (z-5r/4)+
A (1 + 47 +4b-5rbz)
the following extreme conditions are obtained:

—0—5=2rx(l+/1)=0
Ox

oF
—=8y(c+4)=0
oy

F (o +bA)z—(106+54)r =0
(074

or 2 -

——=¥x" +4y,y +4bz4 —-3rbz =0

& Y2 %5

The solution of the previous system is A=-0, x=0,
5r(2 = b) L 25b2r2 (b -2)

zZ=—- yE——
8(1-b) 64(b - 1)

these values in the expression of I, the number / is

obtained:

Substituting

25b%r%5 156800
16(5 -1) 3
The set Q is the ellipsoid: {(xy.z) € R i+ oy
156800 .

I=sup,c Vix)= < 52267

+Ho (z-5r/0t <

The set in which ¥ =0 is contained in Q ; and so every
solution converges to the largest invariant set contained

in (2 ;. The set €2,1s an estimate of the attractor. Figure
la shows the estimate of the attractor. In this case it is
important to note that the derivative of V keeps

changing of sign after the solution enters in 2, A
graphic of V (x(t),y(t).z(1)) is shown in Figure 1b.

3. LIAPUNOV FUNCTION FOR POWER SYSTEMS
WITH TRANSMISSION LOSSES

A. Single-Machine-Infinite-Bus System

Consider the SMIB system of Figure 2 where a
synchronous machine is connected to the infinite bus
through a transmission line with losses.

1B
Figure 2- Single Machine infinite Bus System

Modeling the generator as a constant electromotive
force behind the transient reactance, this system can be
mathematically described by the following pair of
differential equations:

S=w

3
Me> = Py, ~E*G+EE_Bsind +EE_Gcos§~Taw )

where ¢ and @ are respectively the rotor angle and
the generator frequency deviation from the synchronous
frequency, Py, is the input mechanical power, E is the
electromotive force, E  the voltage modulus at the
infinite bus, 7 is the damping coefficient and G-+/B is
the admittance of the equivalent transmission line. For
notation simplicity, let us rewrite the SMIB differential
equations as:

S=w @
Mao=P-Csind~Dcosd-Tw

where P= P, - E*G.C =—EE, B and D = —EE_,G .
Although this model incorporates the line losses, this

system has a general Liapunov function in the usual
sense given by:

V(S w) =M 92— — P& —Ccosd + Dsind +cte  (5)

It is easy to show that the derivative of V along the
orbits is given by:

V=-Te? ()

which is a negative semi-definite function. The function
I satisfies the requirements of the usual Invariance
Principle and as consequence this function can be used
to study the stability of this system in the usual way. In
spite of that a new energy function will be proposed in
what follows and the extended Invariance Principle will
be used to study the stability of this system.
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Our purpose is to ilustrate the application of the
extension of the Invariance Principle and to prepare the
ideas to solve the multi-machine problem which does
not present a Liapunov function in the usual sense when
the tranfer conductances are not neglected in the model.

With this purpose consider the following energy
function:

(s w? S_C -
WS w)=M S~ —Po~Ccoso )
— Ba(P ~Csind + D cos &)
where £ is a parameter to be adjusted. Our goal is to

show that this function satisfies the requirements of
Theorem II.2.

Calculating the derivative of W along the orbits we
obtain:

W = ~T - B(CcosS — Dsind)w> + ST (P —Csins —

8
—Dcos®)w — f(P —Csind — Dcosd) — Dcos(d)a ®
which is equivalent to:
P (5 T Y __ﬁT__ P
- -{ 1 )} 2 1(5)]
@ ZQE T-B(Ccoss-DsiwsyL @ 1O
+Dcos@)w

where P, (5):=P —Csind—Dcosé. Note that this
function is composed by a quadratic term plus the term
Dcos(d)w . Note that the parameter § can be chosen

in order to make the quadratic term positive definite.
Applying the Silvester's Criteria one can easily find that
this is certainly guaranteed if

pe—=I —

C+D+Z
4

In this way, only the term Dcos(d)w will be

responsible for generating regions where the derivative
of J¥is positive.

Example 111.1: Consider the SMIB system of Figure 2
with P;=1.0, C=2.0, D=0.05, T=0.15 and M=0.5. The
level curves of # are depicted in Figure 3. Note that the
regions where the derivative of # is positive are small
bounded sets. One of them is close to the stable
equilibrium point and this set corresponds to the set C
in Theorem IL.2. The another region is close to the
vnstable equilibrium point. The maximum value of # in

C defines the set Q, which is an attractor estimate, i.e,
all the solutions starting into the stability region

will enter in this attractor estimate in a finite time. To
estimate the stability region or attraction area of the
attractor we must choose the largest number L such that
the conditions of Theorem I1.2 are satisfied. In practice,

Velocity {radfs)

1 0 1 3
Angle (rad)

Figure-3. Level Curves of W

we must guarantee that Q: does not intercept the
region close to the unstable equilibrium point where the
derivative is positive.

Figure 3 ilustrates the attractor and stability region
estimates.

The critical clearing time obtained by simulation for a
solid three-phase-short-circuit at the machine bus
belongs to the interval (1.07,1.08s). The estimated
critical clearing time obtained with this new energy
function belongs to the interval (1.0,1.01s). As
expected, this estimate is a little conservative because
the stability region estimate is contained into the real
stability region. In spite of that, it is not much more
conservative than the estimated clearing time obtained
with the conventional Liapunov function ¥ which
belongs to the interval (1.03,1.04s). Figure 3 shows the
trajectories of the fault and post-fault system for a
clearing time equal to 1.0s.

B: Two-machine versus infinite bus system

Before considering the general multi-machine case,
let us firstly consider the two-machine versus infinite
bus systein of 4.

The following differential equations:

0, =®

1 1

Mo, =P —-Clsinol =D, cos 3, ~C,sin(d) -

-02)—D12 cos(o1 —02)~Tla}1

Mzd’z = P2 —C25i71§2 —D2 cos 52 —C125f77(52 -
—c)l)D12 cos(o2 —01)—T2602

(10)

describe the dynamical behaviour of this system. When
the transfer conductances are neglected in the model
(D2,=0), there exist a general Liapunov function in the
usual sense which can be used to study the stability of
this system. This function can be easily found by a
traditional integration process and it is given by:
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Figure 4- Two-machine versus infinite bus system

2
@
- - _ 1 _ps _ -
V(ol,a)l,oz,a)z)—-M1 5 Plol Clcosol+

w2

. 2 pos . L
+D1smo1 +M2 —2— P202 C2 cos 02 +D2sn702

-C cos(01—02)+cte

12
(1D
However when D,, # 0 the integration process yields a
path dependant integral and it is impossible to prove
that its derivative, along the trajectories, is semi-
negative definite.
In order to solve this problem we propose a new energy
function and we will use the extension of the Invariance
Principle to study the stability of this system. It will be
shown that this new energy function is a Liapunov
function in the sense of the extension of the Invariance
Principle if the tranfer conductance D;, is small. With
that in mind consider the following energy function:

2

@

VG0 5 0= ML _p 5 5

U/(ol,a)l,oz,a)z)—M1 5 Plo1 C1 cosol+

+D1si1101 - 'Blwl[Pl - Clsinol - D1 cos ol -
2

12° 2
—P202 —C2 cos 02 +D25i1702 —,b’za)z[P2 —C2
smoz —D2 cos 02 - C‘Izsm(o2 - 01) —D12 cos(o2
- 01)] - C12 cos(o1 - 02) +cte

-C ?il7(01“02)—D12 COS(OI—Oz)]+M —2——

12)

where £ 1and g , are parameters to be determined.

Calculating the derivative of this function along the
system orbits one finds:

? 0)1 1
W = o B o
RZ(OI?OZ) PIZ(OI—'OZ)
o, o,
+D,, cos(d, = 9, ) (v, +w,) (13)
where
B Bll BIZ
Bu Bzz
and
pT
5 e "
2
By = :
_ ATy |1y + B1[=Cq cos 8] + Dysiné;
L 2 |7 Cp08(8) = 8y) + Dyysin(sy = 5,)]
; h -
2 2
Bzz = _ﬂ2T2 T2-+-ﬂ2[—C2 cos62 +D25in52
L 2 —C12 005(52 —51)+D12,fin(52 —51)] B
0] 0 -
ﬂl
—[C 85 =6 )= Dyysin(dy - &
By, = 0 ) [ 12 cos( . 2) 125in(51 21+
ﬂZ
i —2—[C12 cos(8y = 81) = Dyysin(Sy — 61)]

Note again that the derivative of /¥ is composed by a
quadratic term plus the term Dy
cos (0, —4,)(w, +w,).Parameters B, and S, can be
chosen in order to make the quadratic term positive
definitee.  In this way, only the term

Dy, cos(0, =6, )(w, +w,) will be responsible for
generating regions where the derivative of /¥ is positive.

Example 1IL.2: Consider the system of Figure 4 with
P1=1.25, P3=l.5, C]=1.7, C;=2.0, D}=D'_)=0.1, Cy_>=0.5,
D12=0.04, T1=T2=0.1 and M1=M2=0.5. The level curves
of W are depicted in Figure 5. Note that the region
where the derivative of W is positive is a small bounded
region close to the stable equilibrium point. As
consequence the extended Invariance Principle can be
used to study the stability of this system. Figure 5 shows
the projection of the stable attractor estimate.
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Figure 5- Level curves of W

C.Multimachine-systems

Consider a system composed by n machines where the
n™ -machine is an infinite bus. One can show, similarly
to the case of two-machines, that the following energy
function

2
_<n-1 @; - - s
W=y =l {Mi —2———Pioi —Ci Cos9; +Dismoi -

—,b’iali[E -C,sind, =D, cos S, —

~5'C,sin(@,~8,)~'5 D, cos@, —5,)] 1H
J=1 7 J=1
=i Fei
n-1
- 3 C..cos(§.~§.)+cte}
=i+l o

is a Liapunov function in the sense of the extended
Invariance Principle if the transfer conductances are
small. Consequently it can be used for power system
transient stability analysis.

4. CONCLUSIONS

In this paper, a more general version of the Invariance
Principle, which seems to be very interesting in the field
of stability of non-linear systems, was used to study the
existence of general Liapunov functions for power
systems with transmission losses. In this version, less
restrictive  conditions than the conditions of the
Classical Invariance Principle were used in order to
allow their application in a larger class of problems.
Basically, the derivative of the Liapunov function is
allowed to be positive in some bounded regions. In this
way, many complex problems of physics and
engineering, such as systems with chaotic behavior, can
now be more easily treated. The theorem was
successfully applied in this paper to support
theoretically the proposal of a new general energy
function which is a general Liapunov function in a
wider sense(its derivative can assume positive values)
for power systems with transmission losses.

In this paper we gave a contribution in the search for
general Liapunov functions for power systems
considering only the problem of transfer conductances.
However the range of applications of the extension of
the Invariance Principle is very large and we expect in
the future researchers would have solved other problems
as the incorporation of more realistic generator models
as well as effects of some regulators allowing the
application of energetic methods to the assessment of
transient stability with more realistic models.
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