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Summary 

This paper reviews and extends several aspects of the 

analysis of linear combinations of time series. Special cases are 

tell)poral 'and contemporaneous aggregations and systematic sampling. 

We present some simple examples, a unified notation, references to 

the .llterat:un!,and some general results for linear combinations of .. 
•calar and vector time series. For basic time series folloving 

ARIMA models in scalar cases we derive the ARIMA models of the 

linear combinations as functions of those of the basic series in 

the non-seasonal and seasonal cases. For vector time series -

_compare the ,forecast efficiences of two alternative approaches: 

first model and forecast and then form the linear combination, and 

first form the linear combination and then model and forecast; for 

this analysis we use the moving average representation of a 

stationary time series. A final section contains an application to 

a.ilk production and milk productivity series, 110nthly data, for 

the State of Sio Paulo, Brazil. 

Iey words: ARIMA models, modelling, efficiency of foreca.t, 

linear combination, aggregation, ■y■t-tic suiplinq. 
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1. INTRODUCTION 

Linear combinations of the observations of one or more 

time aeries ~ave shown to be of considerable interest in statistics, 

econometrics and elsewhere. The special cases of temporal 

are often contemporaneous aggregation and systematic sampling 

cliac:ussed. In this paper we consider a general linear cOlllbination 

of k tiJDe series over a period of B time intervals. Two 

problems will be entertained, namely those of modelling 

basic 

and 

forecasting such linear combinations, under specific aaaumptiona. 

1.1. Motivation 

.. We 110tivate the purpose of _this paper with some aimplec,,.. 

examples. Let ua consider a stationary stochastic process satisfying 

a first-order autoregressive model, denoted AR(l), 

-
where the {at:}f?,~ -;a white noise sequence (that is, · 

independent, 1dentica1ly distribut:!d random variables 

-an and variance __ a!), and I ♦ I . < l.. For the sake of 

they are · 

with zero 

definiteness 

l.et us consider that t ranges over semesters. We then conaider the 
:ill 

situation~-~t,~ise vben certain linear combinations of the zt 

are __ taken. t,_-! :J !'A' 

- - . · - •"'·a llil> 

Case 1: Moving Average. This amoothing techn..:que corresponds to 

foZlliDg the •overlapping• 11Dear OOllbination 



• 

t.•O, tl, :U, •• (1.2) 

By overlapping - mean that for two different values oft, xt aay 

· include some _of the same •t• A 'Ney ailllple c:aae of (1.2) 1• when 

B • 2, that is, when the moving average covers one year. Then, 

and then, 

vhich· ahowa that xt follow• an ARMA (1.1) IIOdel with the ... 
autoregressive coefficient - ill (l.lJ and a white noi-

. ·e~ with variance v~a!, 

(1.3) 

. same 

aequencii" 

Case Z: Temporal Aggregation, Flow-Variable: If; t.\li t "'vdiable 

·. (1.1) is a flow variable (for example, production of cars ~ 

.... ater) - can fora the yearly aerieil by aggregatfois'·q ' followa: 

.. 
where t • 2T and O is (arbitrarily) ' taken as the oili1Jif'lfo£• that ~ 

11.4) looks like a special caM of (1.2), hut here the 

combination is •non-overlapping•, in that for two different values 

-:;,_~.!:!!LI.r .. 
,t•r. •;; 11 .. qqa!'J•vo• ~-.:.~ :-a .. o.3c~ 

• 
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st••t-1 • ♦ (zt-i••t-2> • •t + l!t-1 

• ·.♦ 2 (zt-2•zt_J) • ♦ (•t-1 ••t-2) ••t +at-1 · 

am it follov1 that 

(1.5) 

Nov 

c::ov (at+2u+(l+♦ )at+2u-l+♦at+2u-2'at+(l+♦ )at-l+♦at-2 1 • 
\ . 

• 2a:(1+♦+♦2 ), u • 0 

(1.6) 

• 0 u > 1 .. 

benc:9 (1.5) may be wri.tten as 

(1.7) 

and ve conclude that YT is ARMA 11,l.). A further question is what 
~ and e• will have (l.6) for cov~iances. Thia will be discussed 
later in sect.M)a.s. ·2·; and 4. 

Case l: Svstematic Sample, Stock Variable. If the variable in (l.l) 
1a a stock variable (for example, e~d-of-semester cash balances), 
1119 can form a; yearly series by recording the values corresponding 
to one of the s ... •ters only. Bance, 
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(1.8) 

an4 - have that 

or 
(1.9) 

where bT • a2T +♦ a2T-l form and iid sequence, with mean zero and 

~ariance 0
1 11+♦ 2 ). Hence, we showed that YT is also AR(l), with 

change in parameter from ♦ to ♦2 and in the variance of the white 

noise sequence from a: . to a;. 11~♦ 2 ) • 

~: Contemporaneous aggregation. Let z1t and z2t be two series 

Masured in semesters, both AR(ll, 

l 
vh•re the •it are 1.id (0 ,Gi2 l and the a2 t are iid.io',-a/ ,-.. -Consider the 

aggregate 

(1.11) 

If ♦ 1 • ♦ 2 • ♦, and further the •it and a2t are indepe11dent over 

time, then 

(1.12) 

I . 2 where the •tare 1. i.d(O,eJi +(\>,that 1a, zt ia AR(Ut •ith the same 

parameter ♦ and a change in the innovation variance; - .. 

Several ohaervat.iona can be deduced froa these examples: 



• 

(al Questions of practical interest can be _interpreted as arising 

from linear transformations of one or more observable time series; 

(bl If we assume that the basic series satisfy models belonging to 

the ARIMA family, it is reasonable to expect that linear transform_! 

tions will remain in the family; even if this is the case there are 

questions about changes in the orders and in the nature of the 

' parameters, including the innovation variances: (cl One important 

objective of time series analysis is forecasting: the question then 

arises as to how should the forecasting of linear combinations of 

time series be studied, (di The models considered so far are non­

seasonal: smilar questions as those discussed above can be raised 

for seasona1 lDOde1a. 

1.z. Contents of the Pa·per 

The rest of the paper is organized as follows. Section 

1.3. contain~ .. a.3 lrief .survey of _the . literature on linear CCJli>inatians 

of time series. In Section 1.4. we establish the notation that will 

be =ed_in th~ , sequel. Section 2 discusses the problem of modelling 

a linear combination of one or more tme series, assuming that the 

basic t:LJ:ie ser,ies follow ARIMA models; the non-seasonal and 

seasonal case are treated separately. 

, Eorecasting ' linear combination is dealt with in section· 

3. Tvo different approaches are used and their efficiences compared. 

Two applications with real series are ·shown in Section 4 .and SOllla 

~ COJlllllen~ are collected in Section S. 
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1,3. References 

Temporal aggregation has been well discussed in sta­

tistical and econometric literature. It was first investigated in 

econometrics by Theil (19S4), Grunfeld and Griliches (1960),Mundlak 

(1961), Orcutt, Watts and Edwards (1968), Moriguchi (1970), Zellner 

and Montmarquette (1971), Aigner and Goldfeld (1973 and 1974),Dunn, 

Williams and DeCha:ne 1197_6), Tiao and Wei (1976), 

Hsiao (1979), Palm and Nijman (1981) and others. 

Geweke (1978), 

Geweka (1979) 

derived procedures for opt1mal seasonal adjustment and aggregat1oo. 

Derivations of the resulting model for the linear 

combination series given the model for the original series were 

presented by Amemiya and WU (1972) in the flow case for AR model, 

by Brewer (1973) in the flow and stock cases for ARMA and ARHAX 

IIOdels, by Wei 11979) in the flow case for seasonal and nonseasonal 

ARIMA models, by Granger and Morris (1976) for the SUlll of 

independent ARMA processes and by Rose (19771 for l lhear CXlllbinatials 

of independent ARIMA processes. 

The effect of linear combination on parameter est1matian 

was considered by Tiao 11972), Tiao and Wei (1976) ~ ;w4i "U978 and 

1979) and Hsiao (1979). The effect-of linear combinaeioti. • on for.! 

casting was studied by Tiao (1972), Amemiya and Wu t:n7~l, Tiao and 

Mei (1976), Granger and Morris (1976), Rose (1977), ~-;< ~iao and 

Guttman (1980), Wei and Abraham (1981), Abraham (1982), Abraham and 

Ledolter (1982), and ltohn 11982). 

Temporal aggregation is related to missing observations 

problem when time series observation■ aay be divided in two 

I 
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periods: one with data in aggregated form and another with data 

in disaggregated for11 (see Harvey and Pierse, 1984). 

The can of forecasting contemporaneous time series 

agqre<Jates was considered by Wei and Abraham (1981) using a Hilbert 

space approach. 

1.4. Notation 

In this Section we set down the notation that will be . . 
uaed 1n the rest of the paper. We shall denote by {zt,t•0,tl,±2, ••• } 

t.he basic univariate time series in the original time scale. Let B 
j be .the backshift operator, such that B zt • zt-j• 

By an overlapping linear combination of the zt• in the 

original time scale - shall mean the series 

R-1 
.xt • h!O vhzt-h' t • 0,tl,t2, ••• , (1.13) 

while 
., r'.! • 

' ~, vbere t • TR, is a non-overlapping linear combination of the zt• in 
> 

the new time scale. In (1.13) and (1.14), w
0

,w
1

, ••• ,w
8

_
1 

are real 

-ights, with w0 IO. 

Two interesting special cases of (1.14) are1 

(&) If v0 • w1 • ••• • w8_1 • 1 we ·have a temporal aggr9<Jation (as 

1n the case of a flow variable), ·-

(b) If v~ • 1, for D < h < H-l and vh • 0 tor h I h
O

, we have a 
.. 0 - 0 -

syateaati.c a&111ple ,_ 1n the case of a ■tock variable). To 
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simplify the notation and without loss of generality (ve can shift 

the origin) we let hes• o_- It follows that the process {YT) in 

(1.14) is then a systematic sample of {xt) in (1.13). YT• lr.re, 

Turning to vector time series. we shall denote by 

{ ~t, t•O, tl, t2, ••• } • k x 1 basic vector _time series in the grlgi:ial 

time scale. If !o is a k X l vector of known constants, then 

!o~t• t • O,tl,t2, ••• (1.15) 

is a contemporaneous linear combination in the original time scale, 

and . I 

·is• non-overlapping linear combination of contemporaneously ag­

gregated series, in the new time scale. Here, as before, t • TH and 

!o•~l•••·•~H-l are k x l vectors of real known weights, v~th ~O~ 0. 

If they are.all equal to (1,1, .••• l)•we have an aggregation of 

contemporaneous sums, and if ~O • (1,1, ••• ,1)' while ~h • ~ for 
-

h (, _o. we have a systematic sample of contemporaneous swu: 

Observe that (1.16) may be also written u 

..... (l.171 ... 

'1'heae ideas can be generalized one step further, by 
~ -

-
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considering •imultaneously sets of 11 (1 ~ 11 ~ k) 

cambinations, for example by defining 

B-1 
y • I W z 
;:r h•O -k -t-h 

where ?harem x k matrices. Then !o !t 1• a set of m 

d.ifferent, contemporaneous aggregates: if k • m, the 

linear 

(1.18) 

possibly 

case 

!o • !• !h • 0 for h ~ O, corresponds to a systematic sample 

of 

of 

the vector time series !t• !o • !i • ••• • !e-l • ! correspond to 

the sum !t + •• ~ • !t-H+l' etc. To study this situation we need 

to develop models and forecasts for vector aggregates, but we do 

not consider this extension in the present paper . 

2 - MODELLING LI~'EAR COMBINATIONS 

In this Section we derive the ARIMA models for linear 

CICllbinations of basic time series that also follow ARIMA 1110dels, in 

th• non-seasonal and •easonal cases. 

A preliminary question relates • to the covariance 

structure of the resulting linear combination. For simplicity we 

consider the scalar ciUle (1.14), hut the vector case (l.161 can be 

handled siailarly. 

Lemma Z.1 

Let YT be defined by (1.14) and let ;y 

• le11 I I .1-j f J) denote the nB :ic nB covuiance matrix of 
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V 0 

0 V . 

• 
- 11 -

... 0 

0 

• • 

t • W' -Y • 

0 0 V 

!z !!l 
H-1 H-1 

• t t wb wi qzlltra+h-il>, 
h•O 1•0 

(c) ; 1 positive definite implies !y positive definite. 

We have that 

. 

(2.1) 

(2.2) 

so that la) and lb) follow di.rectly. Next, w is nB x n and of rank 

n, since w0 IO and this proves le). See Anderson (19841, for 

example. 

In systematic sampling!• 10, 0, ••• , l)' , and ;y 1s 

obtained from ~Z by deletion of rows and columns. 

In order to treat formally the cases of aggregation and 

systematic sampling at the s- tiae, let us define 

r • l + max{b1 0 ! b ! B-1, "b IO}. (2.3) 
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In the case of aggregation, r • B,in the case of systematic saapl.irq, 

r • l. We also use the notation [xJ to mean the largest 

contained in x. 

2.1. - Non-seasonal Case 

integer 

The model for YT, ·when zt follows a non-seasonal ARIMA 

aodel is given in the following theorem. 

. Theorelll 2. l 

be as in (1.14) and suppose 

that zt follows an ARIKA (p,d,q) model. Then, YT follows an ARIMA 

(p,d,q*) model, where 

.Let us consider the overlapping linear 

(1.13); namely 

combination 

(2.5) 

B-1 . h 
where •11-1 1B) • [ _ wh B. From (2.5) we obtain YT by systematic 

h•O 
Hlllpling: YT•~- If the AlUMA (p,d,q) aodel for zt is written 

(2.61 
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where ♦p(B) • l-♦ 1B - ••• -♦PDP ia & 

operator and eq (Bl • 1+ B1 B+ ... ~8qBq 

operator (see Box and Jenkins, 1976), 

p-order autoregressive 

ia a q-order moving average 
d 

and def1n1ng It• (l-Bl at 
d 

and xt • 11-~l :r.t, then 

and 

(2. 7) 

where the moving average operator "Ir 1 CB) 
- j q+r-

has coefficients 

ej • t Bi wj 1 / w0 , if we define w 1 • v 2 •···• w 1■ 1.o - . r+ r+ q+r-
• eq+l•••·• eq+r-l • o, and the white noise sequence at• v0 

mean zero and variance vi o!. 

eq+l • 

has 

Therefore Xt follows an ARMA (p,q+r-1) model and 

follows an AlUMA (p,d,q~r-1) model. Now, whereas YT is a systematic 

sample of :r.t, it follows (see Brewer, 1973) that YT follows an 
1 ARIMA (p,d,q*) modal where q* • [p + d + 7r lq + r - 1 - p - d ll, 

and (2.-4) holds. 

Example. 

Let zt be MA(ll, i.e., zt • •t + ea~_1 , and consider 

aggregation as for flow variable, where H • 2. By theorem 2.1, 

uaing (2.41, YT follows a MAil) model. In fact, 

• al • 
- 0 , 

lul • l 

lul > 1, 
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or 

ay(UI • ·cov(YT~u•YTI • 2a: (1 ♦ 8 ♦ 92 , . u - o. 

• (1: , lul - 1. . (2. 8) 

. 0 , lul 1, 

which agrees with the covariance structure of a MA (1) model, as 

expected. 

By lemma 2.1 we note that (2.8) is a positive definite 

covariance &equ~nce. It remains to see (cf. section 1.1, case 2) 

what a; and e• will have (2,8) for covariances. For 

definite s~nces Anderson (1971, p.224-5) gives the 

positive 

procedure 

to find e•, with a:• a
4

, that is, a;•~· For MA(l), the o::ivariance 

generating function is ay(-1) ; ay(O)z + ay(1Jz2 • O, which has 

t:vo roots: one is lz11 ~ 1 and the other is l/z1 • Then (see 

Anderson, 1971, page 225), z - z
1 

• a 0 z + ij*. z + 8• .and we 

have that 

1 
ay(O) :;: {ai(O) - 4ai(l) }~ 

, 8 • • -zl • -='------=-------=------
2'1y (1) • 

. • 

whichever is less than or equal to one in absolute val11e, 

ayCU) are given in (2.8). 

2.2 - Seasonal Case 

The following theorem extends the result 

aeasonal case. 

to 

(2.9) 

where 

the 
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Theorem Z.Z 

. . 
Let YT, T • o.tl,t2, ••• , be as in (1.14), and 

that zt follows an ARIMA (p,d,q)x(P,D,Q)
8 

IIIOdel, where S 

suppose 

:la an 

integer such -that SB• s. Then, YT follows an ARIMA ( p, d, q*) x . 

(P, D, Q)
8 

model, with q* given by (2.4), 

Proof, 

By hypothesis, 

tp(B8 ) ♦p(B)(l~B8 )D (1-B)d zt • e0 (Bs)8q(B) at• (2 .10) 

where tp(B8
) and ♦PCB) are autoregressive operators, e

0
ca8

) and 

8q(B). are moving average operators and {at• t•O,ti,tz, ••• } is a 

white noise sequence with variance a2
• Then, . a 

a a D I a tp(B ) Cl-B ) zt • eQ B ) ct, 

·where ♦.p (B)' 11-a·1 d ct • 8 q (Bl at, that is, ct follows an 

(p,d,q) model. Defining 

H-1 h 
VT • ( . I wh B ) ~a• 

h•O 

(2 .11) 

AlUKA 

(2 .12) 

by theorem 2.1, VT follows an ARDIA(p,d,q*) IIIOdel, with q• given by 

(2 .4), that is, 

♦p(B) (1-B)d VT • Jq* (8) b.r• (2.13) 
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where 8 • BB, B 9 
• BSH • B9 , i" CS l is an au.toregressive operator, 

q 

'Jq•(Bl is a 1110ving average operator and bT is a white noise 

sequence. Now, 

B-1 
e,• he c 5 
QB) VT• ( t wh B) Q B) aTH 

h•O 

B-l h s s D 
• ( t wh Bl t (Bl (1-B I zTH, 

h•O P 
(2 .14) 

using (2.13). From (1.14) and (2.14), 

tp<s•, u-11•1° YT • 9
0 c~•1 v-r. c2.1s1 

- d Multiplying both sides of (2.15) by ♦ (Bl (1-Bl and 

using (2.13} we obtain 

tpCS9 ltp(l!)(l-88 )D(l-Bld YT• &0 (118 )'Jq*(B)bT (2.16) 

and the theorem is proved. 

Under the conditions of theorems 2.1 or 2.2 we see that 

llm q* • p + d + [lim r/Hl, (2.17) · 
a- a-

with 0 ~ lim r/H ~ 1, that is, q* . approaches P + d 
a-

if r does not increase as much as H (as 

1n systematic sampling), otherwise, it apprc.oches p+d+l (as · 1n 

_ tempOral aggregation). 
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Consider the special cases of aggregation (r • H) and 

systematic sampling {r • 11 • The models for YT' given 

lllOdels for zt' are presented in Table 1. 

Table l - Models for zt and Yy in the cases of aggregation 

and systematic sampling 

MODEL FOR YT 
KIDEL 

.AGGREGATION 

. .ARMA.(p ,q*) (!) A™A(p ,q*) 

AR(p) q• • C (H-1) (o+l) l q• - [ .ili::!2I!....] 
H H 

MA(q*) MA(q*) 
MA(q), q* • [l + ..s.:L.1 q*. c...9.....J 

H H 

m!A(p,q*) (a) AR-!A(p ,q*) 
.ARM~.(p.q) 

q• • c@-1) (p+l) + 9. l [(H-l)p:q 
q*. 

H 
H 

. .ARIMA(p,d,q*) ARIMA(p,d,q*) 

(a) 

l 

(I) 

ARIMA(p ,d,q) - q* - C (H-lHl!+d+l)~ ] q* • c@-l) (p+d)~ l 
H H 

ARIMA(p,d,q)x(P,D,Q)
5 

ARIMA(p,d,q*)x(f ,D,Q)s c-1 ARIMA(p,d,q*)x(P.D,Q)s 

s • SH q* • cCH-ll(l!+d+l)~ ] q* -c@-1> ('l)+dJ~ l 
H H 

(l) This result was obtaj_ned by Brewer (1973). Amemiya and WU 
(1972) obtained q* • [{(H-1) (p+ll+l} /Bl, if H<p+l, and q* • p, 
if H~l. 

(I) These results were obtained by Brewer (1973). 
(•) This result was . obtained by At.rah&111 and Ledolter (1982). 
<-> This result was obtained by Wei (1979). 



-18 -

3. FORECASTING LINEAR COMBINATtONS 

We now consider forecasting the linear combinations 

introduced i~ Section 1.4. We assume that the basic time series 

are stationary and have a moving average representation, that in 

the univariate case we write as 

- (3.1) 

where , 0 • 1, tjso ~j <·•, and {at} is a white noise stochastic 

pr~ess with variance a~> O. In the vector case we use the moving 

average representation 

z --t t • O,tl,t2, ••• , (3.2) 

where now the !j are kn matrices, !o • !• {~t} is a sequence of 

independent random vectors with mean O and positive definite 

covariance ma_ tri.JI:. t_a• and r• T I: 'P is convergent. 
j•O -j _a _j 

The class of time series having this kind of moving 

average representation is very large. Essentially the representatial 
~ . 

follows from Wold's theorem, and is valid for non-deterministic 

stationary time series; see, for example, Anderson (1971,Chapter 7) 

or Bannan (1970,Chapter III). 

We could add constant means to the right hand sides 

of (3.1) and (3.2), since they may be important 

However, this does not affect what follows and 

we 011.1 t them. 

in applications. 

for silllplic~ty 
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We shall present all the results in this section in 

~ of 110Ving average representation&. For YT defined by (1.14) 

or (1.16) we shall use 

(3.31 

: y2 < where Y0 • 1, " •, and {b'l'} 1• a white 
j•O j 

sequence , with variance ab > 0. 

noiae atochutic 

3.1 Forecasts 

Prom standard result• in the literature (see, for 

example, BoX and Jenkins, 1976) we ltnov that for zt as in (l.1) 

the ~iased minilllWR 111ean square error (MMSE ) forecast of zt+•' 

at ori.9.111 t, can be vri.ttan a.a 

ita forecast error is 

--1 
_ •t (11) • · zt+lll-it (m) • j:O . "fj at♦--j, 

and the variance of the forecast error is 
.-1 

(3.4) 

(3.5) 

V[e~(m)l • era I ,; • (3.6) 
j-0 

'1'he elaaa of optimum linear forecasts is closed m1der 

linear operations, from which the following results are obtained. 

Theorem 3.1 
• 

Suppose _that •t satisfies (3.1) and Y-r ia given by (1.14). 

I 
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'l'ben: 

(1) the unbiased MMSE forecast of YT+M' at origin T, is given by 

_ ll-1 
Y_(M) • t w L(MH-h:), (3. 7) 
"-"l' h•O h-Tl:I 

(il.} the forecast error is (where l corresponds to k • 1) 

ll-'1 Mll-b.-1 
e.r<B,M,ll • YT+M - fT(Ml • t .t fja(T+M)H-h-jJ(3.8) 

h•O 3•0 

(111) the variance of the forecast error is 

V [8T lH ,M, l)] • 

where G • min {B-1, j+h}. 

(3.9) 

BoX and Jenkins (1976, p~ge 128) consider (3.7). The 

other results follow from the definitions,but we omit those details 

here. , 

Special Cases 

a) Aggregation. If wh • l for all h, then we have the case presented 

by Abraham (1982). 

b) Systematic sampling. If w0 • l 4:1d wh • 0 for h > O, then we have 

the case presented by Abraham. and Ledolter (1982). 

The previous results extend to the vector case. In ef­

fect, we have that the MMSE forecast vector of !t+m' at origin t, 

can be written as 

-!t <•> - j~ !m+j ~t-j, (3.10) 

. I 

I 
I 
I 

i 
I 

I 
·I 
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ita forecast error ia the vector 

and the vari~ce of the forecast error is the kxlc matrix 
-1 

V[~t -(JII) ] • j:0 !j 1:a !j • 

See, for example, Tiao and Box (1981). Then we have: 

Theorem 3,2 

(3.11) 

(3.12) 

Suppose that zt satisfies (3.21 and !T is given by 

(1.16). Then: 

(il ' the unbiased MMSE forecast of YT+K' at origin T, is given by 

- 11-1 
YT (Ml • i: ~h !Ta CMH-h > , 

j-0 

(11) the forecast error is 

B-1 MB-B-1 
eT(K,M,k) • t t !'h!j!(T+M)H-h-j' 

j•O j•O 

(111) the variance of the forecast error is 

11-1 - Hll-h-1 
. V [eT(H,M,k)] • I: I: . 

~-0 j-0 _ 

Special Cases 

(3 .13) 

(3.14) 

(3.15) 

a) Contemporaneous aggregation. If H • 1 we have that '!!o::t • ~-1WOizit 

is formed. If further ~0 • (1,1, ••• ,1)' we obtain t z. a 
i•l J.t 

contemporaneous Sllll of k time series, as considered by Wei and 

Abraham (1981). 

b) Aggregation. If~• Cl,1, ••• ,1)' for all h, YT bec:maea 



- 22 -

• 

aggregate (through time) of contemporaneous aggregates (sums). 

c) Systematic sampling. If !or~ but ~h •~for h > 0, we obtain 

in YT a systematic sample of contemporaneous aggregates, while if 

!o • (1,1, •.•• ,ll • the latter are (unweighted) sums. 

3.2 Efficiency in forecasting linear combinations 

We now consider forecasting the general linear caibinaticn 

Y • tr"1 w' z defined in (1. 16). We notice that besides the ap-
T h•o-h-t-h 

proach given by (~.13), there are other possibilities. Following Wei 
I 

and Abraham (19811 we consider three alternative procedures: 

Method 1. Forecast YT from an un~var~ate model for the 

co::ibinations of basic time series. Let the MMSE forecast of 

obtained by using this method be denoted by YT (M) • 

l 

l~near 

Method 2. Obtain MMSE forecasts of each component of ?t fxanitldividual 

mu.variate models,t!En· form the vector of those forecasts, and then 

the forecast of the linear combination, denoted by 2T(M). 

Method 3-. Forecast !t by means of a k-dimensional vector model, and 

then form YT(Ml as in Theorem 3.3. 

In _the case of .=t scalar (k•l), Methods 2 and 3 coincide. 

For the case of contemporaneous (or contemporal) sums, that is (1.15) 

wit.~ ~O • (1,1, ••• ,lJ', Wei and Abraham 11981) were able to prove 

that in terms of mean ~quare error of_prediction YT(M) 

both YTIM) and iT(MI, but that no unique solution exists 

dominates 

between 

Y.r(M) and YT(M). They used a Hilllert space approach, which is 

relevant because all possible predictors are linear combinations of 
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the available past, and finding a given MMSE predictor corresponds 

to choosing from a set formed by them (the Hilbert space spanned by ... 
the available past) that element which is closest to the value to 

• be predicted, -namely its orthogonal projection onto the space. 

Following similar arguments we can prove our next 

theorem~. In view of our purposes (cf. Section 4) we restrict our 

attention to Methods 1 and 3, that we identify as Approach I, first 

form the linear combination, then model and forecast, and Aoproach 

II, first model and forecast, ancl then form the linear combination, 

respectively. 

Theorem 3.3 

bav• tbe 1110v~n9 average representatJ.on (3.3), so tbat 

(3.16) 

'l'hen, 

'!'bis result then means-that forecasts obtained by Ap­

proach II are equally or more precise than those obtained by Ap­

proach I, when precision is measured by the mean square error of 

' prediction. Theil (1954) also discussed some advantages of Ap-

preach II. 

Efficiency of Approach II relative to Approach I can be 

-asured by comparing the corresponding forecast errors, eT(B,M,k) 

and i'.i,(B,M,k) respectively, or, alternatively, by relating their 



• 

var1anoes in the measure 

E(B,K,lt) • 
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VCeT Ul,M,k)] 

V[i!'T(H,M,k)] 

.... 

• 

To use in the following analysis we have that 

Approach II: 

.. 

• 

• 
un9er 

1D (3.15) we split the range O ! j ! MB~h~l into consecuti?e parts, 

0 ! j ~ B-h-1, H-h ~ j ! 2H-h-1, ••• , tM-l)B-h ~ j ~ MB-h-1, ao that 

M-1 
V[9,:(R,M,k)] • J: Al., (3.20) 

t.-0 

vhare 

(3.21) 

vith J • max {0,1H-h} , and we already had G • lllin {B-l,j+h}. 

Onder Approach I, we ~ave for YT(K) the representation 

l3.l6) and using (3.6) 

(3.22) 

Theorem 3.4 

The efficiency measure (3.18) is given by 
• y1 Mil r. '-1 m-0 111 l.•0 (3. 23) E(H,H,k) • 

K-1 yl ! i: Al. 111•0 .t.•Q 

E(B,M,kl is the ratio of (3.20) and (3.22). To evaluate 

~b we use (1.16) and (3.21 to write 

• 

• • • I . ., 
• 

· I 

i 
I 
j 

! 
! 
I 

. ! 

·• 

• 

• 

... 

• • .. 
• 
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11-1 11-1 • 
• YT - J: ~h?:t-h - t t '!h!j!t-j-h 

j-0 h•O j-0 
(3.24) 

aence, using (3.3) we have that 

(3. 25) 

and (3.23) follows • 

• Ne next study conditions under which v (eT(H,M,kU 

~ [eT(H,M,k)], and conditions under which eT(H,M,k) • eT(B,M,k). In 

'both cases E(H,M,kl • 1, that is, predicitions under Approaches I 

and II have the same forecast variance. 

Corollary 3,1 (Conditions for VCerCH,M,k)l• VCer(H,M,k)]). 

a) ,V[eT(H,M,kl] • V[eT(H,M,k)] for all T • O,tl, ••• if and only if 
M-l 

a~• 1:0 At (3.26) 
M-1 

E y:a 
m-0 

b) Equality holds. for ·all T • D,tl, ••• and for all M.?, 1, if and 

only 1.f 

for all I..?, 1. 

Part (a) fellow• directly by inspection of (3.23). 

To prove part U>) we first consider (3.26) for K•l and 

• 



• 

• 
• 

• 
mid hence Ai• y2A0• Suppose that (3.27) holda for L • 0,1, ••• , K-1, 

than 

.fro■ whi.c:h AoY 2K • Ax follows, and the proof ill complete by induc­

tion. 

Corollary 3.Z (Conditions for eT(H.M.k) • eT(H,M,k)). 

·&) 9.r(B,K,kl • eT(B,M,k) for all T • O,tl,t2, ••• , if and only if 

(3. 28) 

for all T • O,tl,t2, ••• , 

bl eT(B,~,kl '• l!'T"(B,l!_',kl for all T • O,tl,t2, ••• and for all K ~ l, 

if and only if 

M-l B-l lr-h-1 
• t t J: Y w• , 

lli-0 h-0 j-0 m • h-(l'IM-m) H-h-j 

(3.29) 

for all M !. l. 

•• • 

• 
• 

• 



• 

- 27 -

where we used (3.2) and (3.19); this difference 1• 

(3.28), Next, 

l•ft-ha:ld-side of 
' .,_ 

vhere we used (3.3) and (3.16); this difference is the 

side of (3.28), and the proof of part a) is completed. 

right-hand-

To prove part b) we put M•l in (3.28) to obtain 

H-1 H-h-1 
b • t t w'y a . T+l h-O j•O -h-j-(T+l)H-h-J, 

from which (3.29) follows. 

In the special case of contemporaneous aggregation (n•ll, 

it can be seen that et(l,M,X) • it(l,M,X) holds for all t • 0,±1, ••• 

and , all M ~ l if and only if 

w'!•Tw' 
- ~j j-

for all j ,! O, (3. 301 

that is,! is an eigenvector for each !j and Tj is the corresponding 

eigenvalue. Kohn ·(1982) showed this for M•l and showed that (3.30) is 

a necessary condition for et(l,M,k) • . et(l,M,kJ. 

In the univariate case (k•l) it can be . sbovn that 

V[eT(H,M,l)J • V[eT~H,M,l)] holds for all T • 0,±1, ••• and all M ,! 1 

if and only if 

for all I.~ l. (3.31) 

Abr~am and Ledolter (1982) calculated what in our 

notation is E(H,M.l) in the case of systematic sampling, for the 

ARDIA(l,O,0) and ARIMA(O,l,l) IIOdels. 
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Finally, note that lim E(H,M,kt-l, that is, Approach I 
x-

dravs near Approach II for long run forecasts. 

' - APPLICATIOSS 

Nov we present two empirical applications to agricw.tural 

problems. The lllOdels used here are slight modifications of those in 

Pino and Morettin (1981). 

In these applications we have univariate time series 

' · that follow seasonal ARIMA Cl,D,0)x(0,l,0l 12 models, denoted by 

(4.1) 

vhere var (at) • a!. We then form the aggregate YT as in (1.14), that 

according to Tabla l follova a aeaaonal ARIMA(l,0,l)x(O,l,O) 
1 

model 

denoted by 

(1 - t*B) (1 - B)YT - (1 - 9B)bT , (4.2) 

vheze var (bTJ ,. a;,. 
In order to use the results of Section 3 we relate 

· 2 
to a. as follows. Let (1 - B)zTH = "TH and (1 - B)YT = YT· 

lr.rJ! follows an ARIMA(l,0,0) model and YT follows an ARIMA (l,O,l) 

aodel. By repeated substitutions (compare with case 2 in Section ll, 

R H-1 j 
• ♦ x(T-l)B + j:0 ♦ ~-j 

-



• 
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and hence 

11-1 

YT• YT - YT~l •j:O wh ~B-h • 

• • ♦B + l;:l 11;,l j (4 J) 
YT-1 h~ j!c, wh ♦ ~-h-j • 

Comparing (4.2) as an ARIMA (l,0,1) model for yT with 

(4.3) we oaaerve that ♦•• +8 and 

Multiplying (4.4) by bT - ebT-l and taking expectations 

we see that 

a 2 (l + 8 2 
) • a 2 F 

b a ' 

where · a~ and a~ are the variances of the processes at and bT' respec­

tively, and where 

ll-1 ll-1 B-1 B-1 
P• t t t t 

b.•0 i•O j•O k•O 

with the sums in P taken only for h+j • i+k. 

Silllilarly, multiplying (4.4) by bT-l - ebT-2 
taking expectations, we obtain 

where 

B-1 B-1 B-1 B-1 
G • I: I: J: I: 

h-0 i-0 j-0 k-0 

with ·tbe sums in G taken only for h+j • i+j~B. 

Solving (4.5) and (4.6) we obtain 

and 

(4.6) 

• 
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(4.7) 

and applying theorEm 3.4 we have 

(4.8) 

which is easy to compute in terms of the w's and t. This approach 

enables us to study the loss in forecast efficiency without estimatin;J 

the model by Approach I, which would be impossible in 

two ezamples, anyway. 

4.11 - Exac ple 1 : milk uroduction 

the next 

A simple univariate model for monthly data of milk produ£ 

tion (in aillions of litres) in the State of Sio Paulo, Brazil, is 

a!• 20.9224. See Pino and Moret­

ta (1981), for the data used and further details. 

Available data (60 observations, frOlll January 1975 to 

December 1979) did not allow to estimate a model to produce direc-

tly yearly forecasts. Therefore, Approach II ad to be used, with 

v0 • .• : • w11 • l. Using theorem 2.1, the one year ahead (1980) for~ 

cast turned out to be 1,622 ~ 127, ;or the observed production of 

l,69S (see Table 2). 

From TheoreD 2.2, we see that yearly production follows 

an ARIMA (l,l,l) model. The estimated forecast . efficiency, using 

(4.8), without incorporating the estimation error of ♦ (see Abraham 

and Ledolter, 1982, for a discussion of this point); is 

E(l2,l,l) • 0.82. 
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This means that there is a loss of 181 in e.fficiency when forecasting 

with Approach I, instead of with Approach II. 

S.Z - Example Z milk productivity 

The estimated univariate model for monthly data of milk 

productivity (in daily litres per cow) in the State of Sao Paulo, 

Brazil, resulted to be Cl - 0.91 B) (1 - B1 z)z a a, a1 • 0.0095. 
t t .. 

As before, Approach II had to be used to obtain the 

yearly forecast for 1980, with w0 • w2 s w4 • w6 • w7 • w9 • w11 
31/366, w3• w5 • w8 • w10 s 30/366 and w1 • 29/366. 

Using Theorem 2.1, the one-year ahead forecaste turned 

out to be 4.11 ± 0.29, for the observed value of 4.17 (see Table 2). 

The resulting aggregate process is an ARIMA(l,l,l), according to the 

theorem 2.2. The estimated forecast efficiency, without incorporating 

the estimation error of ♦, resulted to be 

,E(l2,l,ll • 0.74, 

meaning that there is a loss of 261 in efficiency when using Approach 

I instead of Approach II. 



- 32 -
• 

Table 2 - Milk data 

Milk production Milk productivity 

Month Observed Observed Forecast Observed Observed Forecast 

1979 1980 1980 1979 1979 1980 

.Jan. 1S8.84 149.96 1S0.19 4.ll 4.19 4.12 

Feb. 146 .36. 145.27 139.20 4.41 4.SC 4.42 

Mar. 143.06 142.80 137.08 3.99, 4.16 4.00 

Apr; 136.S9 132.88 131.S6 4.11 4.19 4.12 
May 131.66 129.91 127.39 3.89 4.04 3.90 

June 128.03 127.SO 124.48 3.93 4.09 3.94 

July 121.26 134.06 118. 36 3.78 3.8S 3.79 

Aug. 123.18 13S.97 120.74 3. 77 3.8S 3. 77 

Sept. 137.34 138.43 13S.24 4.17 4.18 4.17 

Oct. 141.S7 144.82 139.88 4. 13 4.13 . 4.13 

Nov. 1s1.22 1S1.S6 149. 76 4.42 4.34 4.42 

Dec. 149.28 162.4S 148.06 4.17 4.50 4.57 

Year 1.69S.41 1,622.00 4.17 4.11 
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S. Concluding Remarks 

In this paper we showed that te111p0ral and 

contemporaneous aggregation, (temporal) systematic s11111pling, and 

other operations of interest, can be profitably studied as linear 

combinations of univariate or vector basic time series with a known 

system of weights. We studied in general k-dimensional vectors and 

aggregation over B time periods, so that a linear combination is 
,Jl-1 

· · YT • °b•O !!h !t-h , where t • TB. 

One advantage of the linear-combination approach is 

that it makes clear the following: if the basic time series is secor.i 

order stationary the linear combination YT also has this property(*) 1 

if the basic time series has a positive definite covariance sequence 

so has the linear combination, and the covariances are related by a 

simple formula (cf. Lemma 2.1), 

We considered basic univariate time series that follow 

ARIMA (p,d,q) or ARIMA(p,d,q)x(P,D,Q)s models, in the non-seasonal and 

seasonal cas~s, respectively, and asked what model does the linear 

· combination follow. We found that the needed model is also in the 

IJUMA family, with a possible change from q to q* (cf. (2.41), and 

from s to sin the new time scale, wheres• SB. The coefficients of 

the resulting ARIMA model and the variance of the innovations :ay 

differ from those in the original AlUMA model, and the cases of sec-

tion l showed various possibilities, the coefficients of the ft.A 

operator of YT may be related to those of the MA operator of in 

(*) I1: can also be shown that if zt is strictly stationary the same 
is true for YT. 
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non-trivial ways, as one exainple showed, and the same is true for the 

AR operator. 

Another point refers to the invertibillty of AR and MA 

operators in the ARIMA model for YT. We may assume that zt is second­

order stationary and •causal• (dependence is only on present and past 

values), so that its AR operator is invertible (this is a necessary 

and sufficient condition). onder this condition the AR operator in 

the model for YT corresponds to secone-order stationarity, and is 

invertible. The MA operators always define stationary stochastic 

processes, so tha~ invertibility has to be studied separately, but 

we did not consider this point here, Terlsvirta (1977) studied the 

:1nvertib.1llty of MA operators under contemporaneous sums, for la\ivariate 

and vector ti.me series. 

We also studied the forecasting of the linear cad:>inatioo 

YT' for M periods ahead, at origin T, assuming ~hat all parameters are 

known. We considered two approaches: Approach I, first form the 

linear combination, then model YT and forecast, and Approach II, first 

aodel ~t and .. forecast, then fora the linear combination. For these 

studies·wa enlarged the class of time series under .consideration, 

since we now only assumed that they_possess convergent, 

infinite KA representations. 

one-sided, 

We showed that, in terms of mean square error of fore­

casting, Approach II should be preferred to Approach I. 

Besides being more precise, there are at least 

cases in which Approach II is intuitively more appealing: (al 

the nUllber of available observations is small (cf, Section 4)J 

two 

when 

in 

fact, when parameters have to be estimated, as is usually the case, 
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a reasonable number of observations is needed to produce good 

parameter estimates; (b) when both leves (e.g., monthly and annual) 

are of interest to the user. 

-In spite of its relatively larger mean squbre forecast 

error, we may consider Approach I at least in two situations:(a) when 

disaggregate date are scarce, or have larger observation error than 

aggregate data, as pointed out by Aigner and Goldfeld (1974);(b) when 

it is difficult, or costly, to develop ·a vector model for !t· 

There is still a third possible forecasting approach 

when k > l, namely to model each component of !t separately, forecast 

the~, and then form the aggregate forecast. This is reasonable if 

the basic univariate time series are independent, since 

the development of a vector model· that takes into account 

other..,ise 

the cor-

relations among series is superior. Bence, we did not consider this 

approach in our presentation. 

The loss in forecast efficiency of Approach I relative 

to Approach II was studied theoretically. In two , numerical il­

lustrations it was shown that the loss due to the difference in ap­

proach can be substantial (181 and 261). In these calculations the 

parameters were taken as known; in practice the effect of the 

estimation procedure can be also taken into account, as for e&ample 

in Abraham and Ledolter (1982). 

Necessary and sufficient conditions for Approaches I 

and II to have equal forecast efficiency were developped. In the 

simpler cases of H~l, k•l, the analysis led to simple relations. 

A situation ·not considered in the paper is the nsul.ting 

model for the combined times series, when the basic time series fol-

-
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lows a vector AllMA model. This will be pursued elsewhere. 

The case of linear transformations of vector 

processes is dise11ssed by Lfttkepohl (1984). Related references 

Engel (1984) · and Weiss (1984). 
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cet article present quelques examples aase:a: simples, une notation 
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un1f1i, les references sur la litterature et quelques resultates 

ginirales pour les combinaisons lineaires du series chronologiques 

univariees et multivariees. On considere deux problemes: aodelisation 

et prediction des combinaisons lineaires sous des hypotheses 

apeeifiees. 
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