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Summar

This paper reviews and extends several aspects of the
" analysis of linear combinations of time series. Special cases are
temporal and contemporaneous aggregations and systematic sampling.
We present some simple examples, a unified notation, references to
ﬁ:e.nterauxe,ad some general results for linear combinations of
'c'ala.;: and vector time series. For basic time series following
ARIMA models in scalar cases we derive the ARIMA models of the
linear combinations as functions of those of the basic series in
the non-seasonal and seasonal cases. For vector time series we
compare the  forecast efficiences of two alternative approaches:
first model and forecast and then form the linear combination, and
first form the linear combination and then model and forecast; for
this analysis we use the moving average representation of a
stationary time series. A final section contains an application to
ﬂm production and milk productivity series, monthly data, for
the State of Sdo Paulo, Brazil.
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1. INTRODUCTION

Linear combinations of the observations of one or more
time series have shown to be of considerable interest in statistics,
econometrics and elsewhere. The special cases of temporal and
contemporaneous aggregation and systematic sampling are often

discussed. In this paper we consider a general linear combination

of k time series over a period of H time intervals. Two basic
problems will be entertained, namely those of nodelling and
forecasting such linear combinations, under specific assumptions.
b1
1.1. Motivation .
N We motivate the purpose of this paper with gsome simple:w

examples. Let us consider a ltatiénary stochastic process satisfying
a first-order autoregressive model, denoted AR(1l),

Lo LB $Bgeg v B, tom 0,81,52,.,., F(1.1)
kT34 -
where the {at_}fp:m ‘a white noise sequence (that ig, they are

independent, identically distributgd random variables with zero
mean and variance U;), and |¢#| < 1. For the sake of definiteness
let us c;onsider that t ranges over semesters. We then consider the
situations that ;arise when certain linear combinations of the z

A
are taken. 4

— a3silid
Case 1: Moving Average. This smoothing techn.ique corresponds to

forming the "overlapping” linear combination




H-1

x = [ w

e = Do 0,2l (1.2)

By overlapping we mean that for two different values of t, x, may
include some of the same z,. A vety simple case of (1.2) is when

H = 2, that is, when !:he moving average covers one year. Then,

Xe = VoTe1Pea1 " Vo9 ptay) ¢ Wyl peap

= éx, ¢+ wea +wa

0"t 17t-1
e, 14 §
and then, )
) Cx, = dx, ) v a2 e Gwiwgar Wy
which shows that x, follows an ARMA (1.1) model with the . same
&

autoregressive coefficlent as in {1.1) and a white noise Sequence

2

at
ag with variance v

2 z
Ua.

Case 2: Temporal Aggi-egationJ Flow Varidble: If-twd® “vafiable in

~.{1.1) is a flow variable (for example, production of cars per
semester) we can form the yearly series by aggregatﬁii'~i;’"‘follovs=

- ] f WY TG S e

= It 0 =t—1' T = o,tl,iz,...,' L8 eansae {1.4)

'pfi2 Tabla-

Ty

<
\;here t = 2T and 0 is (arbitrarily) 'taken as the ofi‘éiﬁ.‘"l‘oéd. that
(1.4) looks like a special case of (1.2), but here the linear
combination is “non-overlapping™, in that for two different values
of T, Yy includes different z,. Then S

wn . onaqggalIeve® T aa.xIor



Toez, g =Wz ez, o) s v,

= ',02(2t_2;=t__3) . ¢la,_jva, o)ea va, , -

and it follows that

Ty = 0%, jea e ledla,_ eda, . (1.5

Now

cov {ag o Ledda, Lo 1403 5y _3:3,* (1ed)a,_y+ta, ) =
- 20:(1o¢;¢'), u=0

- oty v us=1 {1.6)

hence (1.5) may be written as

R :';*Y‘l‘-l + by + 6%, ,, 1.m)
and we conclude that Yo is ARMA (1,1). A further question is what
h! and 9* will have (1.6) for covariances. This will be discussed
later in sections. 2. and 4.

Case 3: Systematic Sample, Stock Variable. If the variable in (1.1)

is a stock variable (for example, end-of-gemester cash balances),
we can form a;yearly series by recording the values corresponding
to one of the semesters only. Hence,

3t moad



!'.I! = Zome T = 0,t1,t2,..., - (1.8)

and we have that

Tar = $23p.173r = $WZyp ptayp 1leany.

or 3
Yy = ¢ Yoyt b’!' (1.9)

where b'r = an ;0'2'1'-1 form and iid sequence, with mean zero and
variance 0% (1+6?). Hence, we showed that Yo is also AR(1), with
change in parameter from ¢ to ¢? and in the variance of the white

noise sequence from 0 to Oy (l46%).

Case 4: Contemporaneous aggregation. lLet Z. and Zo¢ be two series

measured in semesters, both AR(1l),

<
’

- ¢ t=0,%1,%2,..., (1.10)

e ™ ’1‘1,:-.-1"11;'- 22" 2%, 0130

where the a,, are 1id {0,%') and the a,, are 11d{0,qf ). -Consider the

aggregate
! S :1;. +3,,. : : (1.11)
1t 01 = ¢, = ¢, and further the ‘1; and a,, are independent over
time, then )
z§ = 92} ) ¢ af ] (1.12)

where the ay are 1.4.d4(0,9%+q?), that is, 2 is AR(l)-with the same
parameter ¢ and a change in the innovation variancs. -

Several observations can be deduced from these examples:



{a) Questions of practical interest can be_inferpreted as arising
from linear transformations of one or more observable time series;
{b) If we assume that the basic series satisfy models belonging to
the ARIMA family, it is reasonable to expect that linear transforma
tions will remain in the family; even if this is the case there are
questions about changes in the orders and in the nature of the
parameters, including the innovation variances: (c¢) One important
objective of time series analysils is forecasting: the question then
arises as to how should the forecasting of linear combinations of
time series be studied; (d) The models considered so far are non-
seasonal: similar questions as those discussed above can be raised

for seasconal models.

1.2. Contents of the Paper

The rest of the paper is organized as follows. Section

1.3. contains. a brief survey of the literature on linear combinaticns

of time series. In Section 1.4. we establish the notation that will

be used in ehe sequel. Section 2 discusses the problem of modelling

a linear combjination of one or more time series, assuming that the

_basic time series follow ARIMA models; the non-seasonal and

seasonal case are treated separately.

Eorecasting linear combination is dealt with in Section

3. Two different approaches are used and their efficliences compared.,

Two applications with real series are shown in Section 4 and some

further comments are collected in Section §.

3



1.3. References

Temporal aggregation has been well discussed in sta-
tistical and Fconometric literature. It was first investigated in
econometrics by Theil (1954), Grunfeld and Griliches (1960),Mundlak
(1961) , Orcutt, Watts and Edwards (1968), Moriguchi (1970), Zellner
and Montmarquette (1971), Aigner and Goldfeld (1973 and 1974) ,Dunn,
Williams and DeChaine (1976), Tiao and Wei (1976), Geweke (1978),
Bsiao (1979), Palm and Nijman (1981) and others. Geweke (1979)
derived procedures for optimal seasonal adjustment and aggregation.

Derivations of the resulting model for the 1linear
combination series given the model for the original series were
presented by Amemiya and Wu (1972) in the flow case for AR model,
by Brewer (1973) in the flow and stock cases for ARMA and ARMAX
models, by Wel (1979) in the flow case for seasonal and nonseasonal
ARIMA models, by Granger and Morris (1976) for the sum of
independent ARMA processes and by Rose (1977) for:<lineaf? oxxhinations
of independent ARIMA processes. g 1 .29t

_ 'The effect of linear combination on patameter estimation
was considered by Tiao ({1972), Tiao and Wei (1976), .We&f {1978 and
1979) and Hsiao (1979). The effect-of linear combinatidn - on fore
casting was studied by Tiao (1972), Amemiya and Wu (1972), Tiao and
Wel (1976), Granger and Morris (1976), Rose (1977), <¢=Tiao and
Guttman (1980), Wei and Abraham (1981), Abraham (1982), Abraham and
Ledolter (1982), and Kohn (1982).

Temporal aggregation is related to missing observations
problem when time series observations may be divided in two



periods: one with data in aggregated form and another with data
in disaggregated form (see Harvey and Pierse, 1984).

The case of forecasting contemporaneous time ' series
aggregates was considered by Wel and Abraham (198l1) using a Hilbert

space approach.

1.4. Notation

In this Section we set down the notation that will be
used in the rest of the paper. We shall denote by {zt,t-O,zl,tZ,...}
the basic univariate time series in the original time scale. Let B
be the backshift operator, such that szt = zt-j'

By an overlapping linear combination of the zél in the
original time scale we shall mean the series ‘

“

BE-1 i
x, = hfo V¥ p t= 0,%1,%2,..., {1.13)
while
H-1 H-1 h
‘!'1' = hft_) VpZ. = (hfo whs )zt, T a 0,%1,22,...,(1.14)

where t = TB, is a non-overlapping linear combination of the zés in
the new time scale. In (1.13) and ;1.14), WorW)seoe Wy g are real
known weights, with Yo $#0.
Two interesting special cases of (1.14) are:
(a) It Vg RV e mWy o= 1 we have a temporal aggregation (as
in the case of a flow variable); =

(b) I!Hho = 1, for D;hogn-landwh- 0 £orhlh°, we have a
systematic sample (as in the case of a stock variable). To
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simplify the notation and without loss of generality (we can shift

the origin) we let h6 = 0. It follows that the process (Y,r] in
(1.14) is then a systematic sample of {xt} in (1.13), Ty = Xpg,
T=0,%1,42,...

Turning to vector time series, we shall denote by

{Et' t=0,21,%2,...} a k x 1 basic vector time series in the original

time scale, If !6 13 a k x 1 vector of known constants, then
‘it'ﬁt' t =0,t1,22,... (1.15)

is a contemporaneous linear combination in the original time scale,

and
H-1 B-1 h
Yo = I w'z a{f wB)z , T s 0,21,:2,...(1.16)
. T he0 ~h~t-h R=0 - ~t
'is a non-overlapping linear combination of contemporaneously ag-

gregated series, in the new time scale. Here, as before, t = THE and

kg L are k x 1 vectors of real known weights, with w_ # 0.
=01 ~H=1 ~0" -

If they are all equal to (1,1,...,1}'we have an aggregation of
contemporaneous sums, and if ¥ = (1,1,...,1) " while v, = 0 for

h #0, we have a systematic sample of contemporaneous Sums.
= Observe that (1.16) may be also written as
k H-l

Y = I (I Mz

W, {1.17)
T  4a1 heo Bl

it’

where v, = (“hl"""hk)" z, '(zlt,'”'zkt)"

These ideas can be generalized one step further, by
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considering simultaneously sets of =m (1 <m < k) linear

combinations, for example by defining

B-1
Y, = I W 2 (1.18)
J h‘o -k -t‘h
where Wh are m x k matrices. Then !0 z, is a set of m possibly
different, contemporaneous aggregates; if k = m, the case of

'0 I, Wy = 0 for h # 0, corresponds to a systematic sample of

the vector time series Zy, YO = gl = ... = !H-l

the sum Zy ¥ een * 2, 4o’ etc. To study this situation we need

= I correspond to

to develop models and forecasts for vector aggregates, but we do

not consider this extension in the present paper.

2 - MODELLING LINEAR COMBINATIONS

In this Section we derive the ARIMA models for linear
combinations of basic time series that also follow ARIMA models, in
the non-seasonal and seasonal cases.

‘A preliminary question relates to the covariance
structure of the resulting linea; combination. For simplicity we
consider the scalar case (1.14), but the vector case (1.16) can be

handled similarly.

Lenma 2.1

Let Y, be defined by (1.14) and let I, = (o (|1-3]))

denote the n x n covariance matrix of Y = (Yl, Yor «ens Yn)'. L,

= (dzlli-jl)) denote the nH x nH covariance matrix of
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Z . (zl, Zys eees z“)‘ and 1=

¥O .0
0w ... 0
w e .. : (2.1)
00 ..o ¥
where w = ("n—l' cees Wy, wo)' and L/ # 0. Then,
(a} I, =W I, W;
I | H-1 H-1l l |
(b} o (lU]) = & I w w, o,(|UH+sh-1]);
¥ h=0 1s0 h "1 72
{c) L positive definite implies I, positive definite.
Proof.
o We have that
Y=¥.2, 2.2)

. .
g0 that (a} and (b) .follow directly. Next, W is nH x n and of rank
n, since vy # 0 and this proves (c). See Anderson (1984) . for
exanmple.

In systematic sampling w = {0, 0, oo, 1)' , and Ey is
obtained from !_:z by deletion of rows and columns,

In order to treat formally the cases of aggregation and

systematic sampling at the same time, let us define

r-l+m{hz°;h=8~1,wh|‘0}. (2.3)
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In the case of aggregation, r = H,in the case of systematic sampling,
r = 1. We also use the notation [x] to mean the largest integer

contained in x.

2.1. - Non-seasonal Case

The model for Y.r, when z: follows a non-seasonal ARIMA

model is given in the following theorem.

Theorem 2.1

R let Y., T = 0,%1,%22, ... be as in (1.14) and suppose

T'
that z, follows an ARIMA (p,d,q) model. Then, Y, follows an ARIMA

(p.2.,9*) model, where
q* =[{-3-(8-1) (ped) +qex-1} 1. (2.4)

Proof. <.
.Let us consider the overlapping linear combination
(1.13) , namely

H-1 =

x, = hfo LN H-I(B) Z,, (2.5)

B-1
vhere W, ,(B) = hio w, Bh. From (2.5) we obtain ¥, by systematic

sampling: Y‘!‘ = Xog- If the ARIMA (p,d,q) model for z, is written

4
¢p(8) (1-B)" z, = Gq(n) a. (2.6) |
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where OP(B) s 1-¢,B -...-opo is a p-order autoregressive
operator and 8_(B) = 1s 0, Br...+D qu is a q-order moving average
operator (see Box and Jenkins, 1976), and defining :t - (I-B)d 2,
and X, = (1-B) x,, then

d
X, = (1-B)° W, (B) z, =Wy (B) Z,

= Wy_y (B) {1-¢ (8)}z, + Wy (B) 6 (B) a

and

xt = {1 - ¢p(B)} X, *Eq-rr-lm) ap 2.7)
where the moving averaga operator Eq ﬂ__1(3) has coefficients
?j -1%0 91 wj-l / LY if we defix:w Vool ™ Yre2 =ccet wqu.-l' aqd =

= 8 2-..-- 8

q+ = 0, and the white noise sequence a¥ = vy has

q+r=1 t

mean zero and variance w} o:.

Therefore xt follows an ARMA (p.q+r-1) model and x

13
follows an ARIMA (p,d,gsr-1) model. Now, whereas Y, is a systematic
sample of Xe o it follows (see Brewer, 1973) that Y,r follows an

ARIMA (p,d,q*) model where g* = [pod«t—;‘—(q-rz-l-p-d)l,

and (2.4) holds.

Example.
Let z_ be MA(1}, i.e., z, = a, + ea,_,, and consider
aggregation as for flow variable, where H = 2. By theorem 2.1,

using (2.4}, Y'.l.‘ follows a MA{l) model. In fact,

.eov(z .2 + ztpl) = 20:(1 . 8 40%), u =0,

to2u * *pe2u-1’ %t
=0, 'ul =1

a
=0, |ul>12,
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or
0y(0) = cov(¥y o %) =253 (1 + 8 + 8% ), wu=o,
= o2 ul =1
2 o lol-1, . (2.8)
= 0 ,|ul 1,
which agrees with the covariance structure of a ﬁn(l) model, as
expected.

By lemma 2.]1 we note that (2.8) is a positive definite
covariance sequ?nce. It remains to see (cf. section 1.1, case 2)
what a3z and 6* will have (2.8) for covariances. For positive
definite seahences Anderson (1971, p.224-5) gives the procedure
to find 8%, with o3 = 9., that is, a2 = ap. For MA(l), the covariance

generating function is 0 (-1) + 0,01z + 0!(1)22 = 0, which has

two roots: one is lzll £ 1 and the other is l/zl. Then (sea
Anderson, 1971, page 225), z - z, = aa 2 + U% = 2 4 8%  and we
have that
3
- 2 - 2
,9- '--31 L 0y (0) ¥ {GY(O) 4cy(l)} (2.9)
- 20¥(1)_

whichever is less than or equal to ona in absolute value, where
oy (0) are given in (2.8). i
2.2 - Seasonal Case

The following theorem extends the result to the

seasonal case.
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Theorem 2.2

Let Y, T = 0,%1,¢2,..., be as in (1.14), and

that z, follows an ARIMA (p,d,q)x(P,D,Q)' xodel, where S

suppose
is an

integer such that SH = s. Then, YT follows an ARIMA ( p, 4, q*) x.

.(P, D, Q)s model, with g* given by (2.4).

Proof.

By hypothesis,

s s,D a ]

OP(B )op(B) (1-B7)" (1-B) z, = eo(a )eq(B) LI {2.10)
where ¢ p(Bs) and ¢ o (B) are autoregressive operators, 90(3') and
eq(B).are moving average operators and {at, te0,%1,%2,...} is a
vhite noise sequence with variance 0:. Then,

] 8. D s
op(s )} (1-B") z, = GQ(B ) e, (2.11)
‘where OP(B)‘ (1’3')d_¢t = eq(nl a,, that is, c, follows an ARIMA
(p,d,q) model. Defining
H-1 N )
Vp = ( hfo v, B) cpp {2.12)

by theorem 2.1, Vp follows an ARIMA(p,d3,q*) model, with q* given by

{(2.4), that is,

T8 1-8% v, « Tye 8 by,

(2.13)
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SH

where 8 = Ba, Bs = B - Bs, oq (B) is an antoregressive operator,
'é'q., (8) is a moving average operator and bT is a white noise

sequence. Now,

9 (8%) v, = (u;1 w_B%) ©_ (B%)
Q T heo B Q 4ry
H-1
- h s -r5 D
(hfo v BY) ¢, (B%) (1-B%)" 2y, (2.14)
using (2.13). From (1.14) and (2.14), :
s _a8,D - O 2%
) ep(B) (1-87)7 Y = Opis™) Ve (2.15)
Multiplying both sides of (2.15) by ¢(B) a-a? and
using (2.13) we obtain
o (B9 (81 -85 1-8)% v = 0 (85T (B1p,  (2.16)

and the theorem is proved.

- Under the conditions of theorems 2.1 or 2.2 we see that

lim gq* = p + d + [1im x/H], (2.17) -
Boe H+®
with 0 < lim x/H < 1, that is, gq* approaches p+d
Ho+e= 8
if r does not increase as much as H (as

in systematic sampling), otherwise, it apprcaches p+d+l (as ‘in
_ temporal aggregation).



Consider the special cases of aggregation

systematic sampling (r = l). The models
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models for z,, are presented in Table 1.

Table 1 - Models for z

t

for Y, , given

(r =¥) and

several

and Y.r in the cases of aggregation

and systematic sampling

MODEL FOR YT

MIDEL RR z
t AGGRECATION SYSTEMATIC SAPLING
. . ARMA(p.qQY) (1)  ARMA(p.q*)
AR(p) q’ - [M)_] q' - [ML]
H H
MA(q*) MA(q*)
MA(Q)" Q¢ =[1+ a1 g q* = (9
H H
N ARA(P.q*) (2) ARA.3") ()
i q* = [ﬂ-l);({m)_:_a] e - t-(’i-lm—ﬂ 1
AN . ARDMA(p.d.q*) ARIMA(p,d,q") )
ARTMA(p.d.q) q = (=1 (prd+l)+q 4 q* = (=D (pd)g,
H H
ARTMA(p.d,q)x(P.D,Q) ARDMAP.d.q")x(F.D.Qg (*)  ARDMAP.d.q*)x(P.D.Q)g
s=s ot = (ED (e q =fHD(pd)a
. H H

(1) This result was obtained by Brewer (1973). Amemiya and Wu
{1972) obtained g* = [{(H~1) {p+l)+l1l} /H], if H<p+l, and q* = p,

if H>p+l.

(2) These results were obtained by Brewer (1973).
(?) This result was obtained by Arrsham and Ledolter (1982).

"{*) This result was obtained by Wei (1979).
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3. FORECASTING LINEAR COMBINATIONS e

We now consider forecasting the linear combinations
introduced in Section l.4. We assume that the basic time series
are stationary and have a moving average representation, that in

the univariate case we write as

z, = jfo 'j at—j' t =0,$1,22,..., (3.1)

where Y, = 1, £;=° ¥2 <=, and {a,} is a white noise stochastic

0 -3

process with variance o; > 0. In the vector case we use the moving

average representation

z, jfozj 3e-yr  t=0,2l,22,..., (3.2)

where now the ¥_ are kxk matrices, ¥, = I, {at} is a sequence of

b] -0
independent random vectors with mean 0 and positivé definite

covariance matrix L_, and z;_o !j I, Yy s convergent.

- The class of time series having this kind of moving
average representation is very large. Essentially the representation
follows from Wold's theorem, and is valid for non-deterministic
stationary timé series; see, for example, Anderson (1971,Chapter 7)
or Bannan (1970,Chapter III).

We could add constant means to the right hand sides
of (3.1) and (3.2), since they may be important in applications.
However, this does not affect what follows and for simplicity

we onit them.
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We shall present all the results in this section in
terms of moving average representations. For !'1' defined by (1.14)

or (1.16) we shall use

+

-
Y= L Y, b, ., T=0,21,22,..., (3.3)
T 40 3 T=3

-
where ¥, =1, I Y; < ®, and {by} is a white noise stochastic

0 5
j=0
gsequence, with variance ag > 0.

3.1 Forecasts

- Prom standard results in the literature (see, for

example, Box and Jenkins, 1976) we know that for z, as in (3.1)

the u{xbiased minimum mean square error (MMSE) forecast of Zeim’

at origin t, can be written as

Z, (m) -jfo 'm-!-j Beg (3.4)
its forecast.. error is
- . w1l
_et(n) - z“m-zt(n) = .2 .‘lj atm_j. (3.5)
i=0
and the variance of the forecast error is
‘m1= o T ¥ (3.6)
V[et(m)] = moa jfo 'j 5 &

The class of optimum linear forecasts is closed under

linear operations, from which the following results are obtained.

Theorem 3.1
Suppose that 2z, satisfies (3.1) and Y, is given by (1.14).
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) the unbiased MMSE forecast of Yone 2t origin T, is given by

= :C
y‘rm) = :o uh'z',:m(MH-h’) ' (3.7)
h=

(11) the forecast error is (where 1 corresponds to k = 1)

H=-1MH-h-1
ep(BM1) = Yo, = To(M) = hEO jfo Y42 (r4m)gop-y’ (3-8
(111) the variance of the forecast error is

B-1 ME-h~-1 G

V [e,(H,4,1)]= a; T I I ww¥Y¥

j=0 j=0 i=0 B 1 3 hei-i’ (3.9

where G = min {H-1, j+h} .

Box and Jenkins (1976, page 128) consider (3.7}. The
other results follow from the definitions,but we omit those details

here.

Special Cases

a) Aggregation. If v, = 1 for all h, then we have the case presented
by Abraham (1982}.

b} Systénatic sampling. If w, = 1 and = 0 for h > 0, then we have

0 *h
the case presented by Abraham and Ledolter (1982).

The previous results extend to the vector case. In ef-

fect, we have that the MMSE forecast vector of Zp4pe 8t origin t,

can be written as

(m) = ¥

z a _ (3.10)
~t =0 ~m+y -t-3’
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its forecast error is the vector =

e m =z ~-Zm= I ¥ 2eem-3° (3.11)
j=0
and the variance of the forecut error is the kxk matrix
Ve, (m) ] = r ¥y I, Y (3.12)

Sea, for example, Tiao and Box (1981). Then we have:

Theorem 3.2 :

Suppose that z, satisfies (3.2) and Yo is given by

t
(1.16). Then:

(1) the unbiased MMSE forecast of Y,

T+M’ at origin T, i{s given by

- B-1 .
. Y M) = £ w 2z
, 30 ~h ~TH

(MH-h) (3.13)

(11) the forecast error is

H-l MH-H-1
e, (H,M,k) = j-;;o jfo Th!jE(T+M)H-h—j’ (3.14)

{(ii1) the varian_ce of the forecast error is

’ Ve (H.M k)1 = o (3.15)
. e (H,M, = I L - F WY.L Y,_¥ 3
T o §o0 1 Zh¥jZa¥jen-17

Special Cases

a) Contemporaneous aggregation. If H = 1 we have that u o tk = 01 Zie
is formed. If further W = (1,1,...,1)* we obtain iEI zi: a
contemporaneous sum of k time series, as considered by Weli and
Abraham (1981).

b) Aggregation. If w, = {1,1,0..,1)" for all h, !,r beconmes an
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aggregate (through time) of contemporaneaus aggregates (sums).

¢€) Systematic sampling. If Y # 0 but Y = 0 for h » 0, we  obtain
in !* a systematic sample of contemporaneous aggregates, while if
¥y = (1,1,...,1)" the latter are (unweighted) sums.

3.2 Efficiency in forecasting linear combinations

We pow consider forecasting the general linear combination

Y, =t

A ]
T " S.0%hZe-n
proach given by (3.13), there are other possibilities. Following Wei

defined in {1.16). We notice that besides the ap-

\
and Abraham (198l) we consider three alternative procedures:

Method 1. Forecast Y'l‘ from an univariate model for the linear

combinations of basic time series. Let the MMSE forecast of YT+M

obtained by using this method be denoted by 'Y'T(m i

Method 2. Obtain MMSE forecasts of each component of 2 from individual
univariate models, then form the vector of those forecasts, and then

the forecast of the linear combination, denoted by YT(H).

.

Method 3. Porecast 2, by means of a k-dimensional vector model, and

then form i'rT (M) as in Theorem 3.3.

In the case of z scalar (ksi), Methods 2 and 3 coincide.

t
Por the case of contemporaneous (or contemporal) sums, that is (1.15)
with ¥y = (1,1,...,1)', Wei and Abraham (1981) were able to prove
that in terms of mean sguare error of predictiocn ?T(M) dominates
both ?&(H) and YT(H), but that no unique soluticn exists between
§E(H) and QT(M). They used a Hilkert space approach, which is

ftlevant because all possible predictors are linear comtinations of
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the available past, and finding a given MMSE predictor corresponds
to choosing from a set formed by them (the Hilbert space spanned by
the available past) that element which is closest to the value to
be predicted, namely its orthogonal projection onto the space.
Following similar arguments we can prove our next
theorem.. In view of our purposes (cf. Section 4) we restrict our
attention to Methods 1 and 3, that we identify as Approach I, first
form the linear combination, then model and forecast, and Approach

I3, first model and forecast, and then form the 1linear combination,

respectively.
Theorem 3.3
< Let z,, Y, and YT(M) be as in Theorem 3.2. Let (Y.}

.

bave the moving average representation (3.3), so that

Ty = kg Tyuq Ppy (3.16)
Then,

VB ale 2 o4 2

ECY, = Yo 1° < E LY., - T, (0] (3.17)

T+M

) This result then means.that forecasts obtained by Ap-
proach II are equally or more precise than those obtained by Ap-
proach I, when precision is measured by the mean square error of
prediction. Theil (1954) also discussed some advantages of Ap-
proach II.

Efficiency of Approach II relative to Approach I can be
measured by comparing the corresponding forecast errors, eT(B.H,k)

and E&(B.H.k) respectively, or, alternatively, by relating their
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variances in the measure
VCeT(H.M.k)] s .

B(H,M,k) = tr———————————— - {3¢18)
VET(H'Mnk)]

To use in the following ana.lysis we have that under

Approach II
% -7 i (3.19)
X, (M= £ wZ (MB-h) = I I W'Y _ . .3, ..(3.
7 520 “hiTH B0 §=0 ~h-MH-h-3jZTH-3;

in (3.15) we split the range 0 < j < MH-h-1 into consecutive parts,
0 <3 <B-h-1, B-h £ § £ 2E-h~1,...,M-1}H-h < j < ME-h~1, so that

M¥-1

Vlep(H,Mk)1 = I A, - ’ . (3.20)
2
=0

B=-1(+1)H-h-1 G

A, = 1 I L WY T ¥ W,
27 peg gy imo-B-dTasitheiiil |

{3.21)
with J = max {0,18-h} , and we already had G = min {H-1,j+h}.
Under Approach I, we have for YT (M) the representation

(3.16) and using (3.6)

~

. - .
- VEL(H,M,k)] = o2 £ +y2i. (3.22)
s T b j=0 3.
Theorem 3.4 L
The efficiency measure (3.18) is given by
- =
£ v? A
2=0 "%
E(H,H,k) = :i = 5 (3.23)
Tyt T a
ac0 ¥ 2=q 2

Proof.
E(H,M,k) is the ratio of (3.20) and (3.22). To evaluate

c; we use (1.16) and (3.2) to write
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B-1 Bl =
¥o= I wiz .= I L wVYa .. (3.24)
P j=0 ~h-t-h h=0 j=0 ~h~j~=t=j~h

Hence, using (3.3) we have that

. -1 & ¢ .
% = E(Y )= I I wY _ = L A (3.25)
j b=0 j=0 i=0 “hYZalien-1%1 o X

and (3.23) follows.

We next study conditions under which Vv [e,r(ﬂ,n,k)] =
V [€,(8,M,k)], and conditions under which en (H,M,k) = ET(a,u,x). In
‘both cases E(H,M,k) = 1, that is, predicitions under Approaches I

and II have the same forecast variance.

Corollary 3.1 (Conditions for V[eT(H,M.k)]a V(?T(H.M.k)]).

a) vle;(8,M,k)] = V[E,(H,M,k)] for all T = 0,¢1,... if and only if

M-1
z

ag - koM
M-1 7

L v,

m=0 =

(3.26)

b} Equality holds for all T = 0,21,... and for all M 21, if and
only if ’
-] 2 .
L i

for al-l L2 1.

Proof.

Part (a) follows directly by inspection of (3.23).

To prove part (b) we first consider (3.26) for M=1 and
M=2,
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: X o W
qb--—-AOI 3
2 1+7;

and hence A, = y’AD. Suppose that (3.27) holds for & = 0,1,..., M-1;

then
M M;l .
L & Ay Y+AM
=0 3 =0 .3
q;-Ao- jM - Ty
AR

from which A07’H = A, follows, and the proof is complete by induc-
tion.

Corollary 3.2 (Conditions for er(H.M.k) = ?T(H.M.k)).

-a) ep(H,M,k) = ep(H,M,k) for all T = 0,:1,:2,..., if and only if

B-1 MH-j-1 M-1
T »

=0 j=0 *n !j 2TK+HH—h—j = on Yj bT+M—j (3-2'3)

for all T = 0,21,22,...5
b) e,r(n,u,k)‘- E'T'(B,u,k) for all T = 0,+1,t2,... and for all M > 1,

if and only if

H-1 MHE-j-1 M-l H-1 B-h-1
T b w'Y.a drn = T L I Y,wiY
+ hey 4eg CROITTEMEhed T 0yl gug BUh-(Mermlich
(3.29)
for all M > 1.
Proof.
= H-1 b
eT(B.H.k) = YoM~ YT(H) = hfo !ﬂgﬂ+m_h - YT(M)
B-1 : H-1
- a3 ¥ we r ¥

w0 jeo SR (ramm-n-y” (I L) ¥ aH-h=32TH-3 ¢
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where we used (3.2) and (3.19); this difference is left-hand-side of
(3.28) . Next,

-2

e, (H,M,k) =
S §=0

Ypay = Tp 00 = j_% Y5Pran-3 O ST

where we used (3.3) and (3.16); this difference is the right-hand-
side of (3.28), and the proof of part a) is completed.
To prove part b) we put M=l in (3.28) to obtain

H-1 B-h~1

I I w

b = y.a A
THL © g jeo -B-3= (T+L)E-h-j,

from which (3.29) follows.
’ In the special case of contemporaneous aggregation (H=1),
it can be seen that e (1,M,K) =@ (1,M,K) holds for all t = 0,%l,...

and all M > 1 if and only if

!';j- 1jg' . for all j 20, (3.30)
that is, v is an eigenvectgr for each !j and Yj is the corresponding
eigenvalue. Kohn (1982) showed this for M=l and showed that (3.30) is
a necessary condition for e, (1,M,k) -.3;(1,H,k).

In the univariate case_(k=1) it can be. shown that
Vlen(H,M,1)] = V[e,(H,M,1)] holds for all T = 0,tl,... and all M > 1
if and only if ‘ '

. A= Yina , for all gt > 1. (3.31)

Abraham and Ledolter (1982) calculated what in our
notation is E(H,M.l) in the case of systematic sampling, for the
ARIMA(1,0,0) and ARIMA(0,1,1) models.
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Finally, note that lim E(H,M,k)J=1, that is, Approach I
Hr=

draws near Approach II for long run forecasts.
4 - APPLICATIQONS

Now we present two empirical applications to agricultural
problems. The models used hexre are slight modifications of those in
Pino and Morettin (1981).

In these applications we have univana.te time series

that follow seasémal ARIMAQ,0,0)x(0,1,0) 12 models, denoted by
: (L-¢B8)( -B*)z =a, , (4.1)

where var(at) = o; . We then form the aggregate ‘l,r as in (1.14), that
accordlng to Table 1 follows a seasonal ARIMA(].,O,I)X(O,LO)l model
denoted by

(1 - ¢*B)(1 - B)Y, = (1 - BB)by, . (4.2)

= gt
where var (b.r) 9

= In order to use the results of Section 3 we relate o’b

2 = ,' =
to 0, as follows. Let (1 - B)z,rH =_x,1,H and (1 - B)‘l,'E = Yoo Then
Xrm follows an ARIMA(1,0,0) model and Yo follows an ARIMA(1,0,1)

model. By repeated substitutions (compare with case 2 in Section 1),
- = : -
© %pg T $Xpgey * Apg T ¢7Xpgop * fApg. ¥ Ay

o8 T
- X + v
(T-1)° 50 v
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and hence
. EH-l1
Yp = Yp = Ypg -jfo “h *rg-n =
-yt E; ?‘f‘:"h o) argney (.3

Comparing (4.2) as an ARIMA(1,0,1) model for Yo with

(4.3) we observe that ¢* = oa and
B~1 BH-1
(1 =8B)by, = by = 6by_y = h-xo jfo ¥h ¢ Arg pey 4.4)

Multiplying (4.4) by h,r - °b'r—1 and taking expectations

we see that

o} «

1 +62%) -a‘ar,

where 'G’a and a; are the variances of the processes a, and by respec-

tively, and where
8-1 B-1 H-1 H-1

F= [ £ I I w w ¢
he0 i=0 jx0 k=g P 1

I+

with the sums in F taken only for h+j = i+k.
. Similarly, multiplying (4.4) by bi‘-l = ab,l,_2 and

taking expectations, we obtain

-sag-Gc‘a . (4.6)

where
B-1 BE-1 H-1 B-1
G= L & L I whvioj"k,
h=0 {0 j=0 k=0
with the sums in G taken only for h+j = {+j+4H.

Solving (4.5) and (4.6) we obtain
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ol -o:cn(rz-mz)‘“]/z “.n

and applying theorem 3.4 we have

2)1/2] !

B(H,1,1) =2 A3 / [F ¢ (F- 4 G (4.8)

vhich is easy to compute in terms of the w's and ¢. This approach
enables us to study the loss in forecast efficiency without estimating
the model by Approach I, which would be impossible in the next

two examples, anyway.

4.11 - Exarmple 1 : milk production o

A simple univariate model for monthly data of milk produc
tion (in millions of litres) in the State of S3o Paulo, Brazil, is
a- 0.84 B) (1 - B1?) z, = 2, o = 20.9224. See Pino and Moret-
tin (1981), for the data used and further details.

Available data (60 observations, from January'1975 to

December 1979) did not allow to estimate a model to produce direc-

tly yearly forecasts. Therefore, Approachk II ad to be used, with
Yo ™ ek = wll = 1. Using theorem 2.1, the one year ahead (1980) fore
cast turned out to be 1,622 ¢ 127, for the observed production of

1,695 (see Table 2).

From Theorem 2.2, we see that yearly production follows
an ARIMA(1,1,1) model. The estimated forecast efficiency, using
(4.8), without incorporating the estimation error of ¢(see Abrahan
and Ledolter, 1982, for a discussion of this point), is

E(12,1,1) = 0.82.
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This means that there is a loss of 18% in efficiency when forecasting
with Approach I, instead of with Approach II.

$.2 - Example 2 : milk productivity

The estimated univariate model for monthly data of milk
productivity (in daily litres per cow) in the State of Sao Paulo,
Brazil, resulted to be (1 - 0.91 B){1l - B“)zt =a_, c: = 0,0095.

t

As before, Approach II had to be used to obtain the

yearly forecast for 1980, with Wo =Wy TW, E W m W, =y =W, =
31/?66, Wi Wg T We =W, = 30/366 and w, = 29/366.

Using Theorem 2.1, the one-year ahead forecaste turned
out to be 4.11 * 0.29, for the observed value of 4.17 (see Table 2}.
The résulting aggregate process is an ARIMA(1,1,1), according to the
theorem 2.2. The estimated forecast efficiency, without incorporating

the estimation error of ¢, resulted to be
E(12,1,1) = 0.74,

meaning that there is a loss of 26%_1n efficiency when using Approach
I instead of Approach II.
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Table 2 - Milk data

Milk production Milk productivity

Month Observed Observed Forecast Observed Observed Forecast

1979 1980 1980 1979 1979 198¢
Jan. 158.84 149.96 150.19 4.11 4.19 4.12
Feb. 146.36. 145.27 139.20 4.41 4.5C 4.42
Mar. 143.06 142.80 137.08 3.99 4.16 4.00
Apr: 136.59 132.88 131.56 4.11 4.19 4.12
May 131.66 129.91 127.39 3.89 4.04 3.90
June 128.03 127.50 124.48 3.93 4.09 3.94
July - 121.26 134.06 118.36 3.78 3.85 3.79
Aug. 123.18 135.97 120.74 3.77 3.85 3.77
Sept. 137.34 138.43 135.24 4.17 4.18 4.17
Oct. 141.57 144.82 139.88 4.13 4.13 ‘4,13
Nov. 151.22 151.56 149.76 4.42 4.34 4.42
Dec. 149.28 162.45 148.06 4.17 4.50 4.57

S

Year - 1,695.41 1,622.00 - - 4.17 4.11
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S. Concluding Remarks

In this paper we showed that temporal and
contemporaneOQS aggregation, (temporal) systematic sampling, and
other operations of interest, can be profitably studied as linear
combinations of univariate or vector basic time series with a known
system of weights. We studied in general k-dimensional vectors and
aggregation over H time periods, so that a 1linear combination is

= =1
- Y,r € 0 ¥h Zt-n , where t = TH.

One advantage of the linear-combination approach is
that it makes clear the following: if the basic time series is second
order stationary the linear combination YT also has this p:operty(.);
if the basic time series has a positive definite covariance sequence
g0 has the linear combination, and the covariances are related by a
simple formula (cf. Lemma 2.1).

We considered basic univariate time series that follow
ARTMA(p,d,q) or ARIMA(p,d,q)x(P,D,Q)s models, in the non-seasonal and
seasonal cases, respectively, and asked what model does the linear

" combination follow. We found that the needed model is also in the
ARIMA family, with a possible change from q to q* (cf. (2.4}), and
from 8 to S in the new time scale, where s = SH. The coefficients of
the resulting ARIMA model and the variance of the innovations ) zay
differ from those in the original ARIMA model, and the cases of Sec-—
tion 1 showed various possibilities; the coefficients of the MA

opeiator of Y, may be related to those of the MA operator of z, in

{*) It can also be shown that if z, is strictly stationary the sanme

- is true for YT.'
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non-trivial ways, as one example showed, and the same is true for the
AR operator.

Another point refers to the invertibility of AR and MA
operators in the ARIMA model for Yp- We may assume that z, is second-
order stationary and "causal" (dependence is only on present and past
values), so that its AR operator is invertible (this is a necessary
and sufficient condition). Under this condition the AR operator in

the model for Y, corresponds to second-order stationarity, and is

T
invertible. The MA operators always define stationary stochastic
processes, s0O thaL invertibility has to be studied separately, but
we did not consider this point here; Terdsvirta (1977) studied the
invertibility of MA operators under contemporaneous sums,foriruvaziate
and vector time series.

; We also studied the forecasting of the linear combination
YT' for M pericds ahead, at origin T, assuming “hat all parametexs are
known. We considered two approaches: Approach I, first form the

linear combination, then model YT and forecast, and Approach II, first

model 2z, and. forecast, then form the linear combination. For these
studies we enlarged the class of time series under .consideration,
since we now only assumed that they possess convergent, one-sided,

infinite MA representations.
¥We showed that, in terms of mean square error of fore-
casting, Approach II should be preferred to Approach I.
Z Besides being more precise, there are at least two
cases in which Approach II is intuitively more appealing: {a) when
the number of available observations is small (c¢f. Section 4); in

fact, when parameters have to be estimated, as is usually the case,
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a reasonable number of observations is needed to produce good
parameter estimates; (b) when both leves (e.g., monthly and annual)
are of interest to the user.

.In spite of its relatively larger mean squsre forecast
efror, we may consider Approach I at least in two situations:(a) when
disaggregate date.are scarce, or have larger observation error than
aggregate data, as pointed out by Aigner and Goldfeld (1974);(b) when
it 1s difficult, or costly, to develop a vector model for 2

There is still a third possible forecasting approach
when k > 1, namely to model each component of 2, separately, forecast
them, and then form the aggregate forecast. This is reascnable if
the basic univariate time series are independent, since otherwise
the development of a vector model that takes into account the cor-
relations among series is superior. Hence, we did not consider this
approach in our presentation.

The loss in forecast efficiency of Approach I relative
to Approach II was studied theoretically. In two , numerical il-
lustrations it was shown that the loss due to the difference in ap-
proach ¢an be substantial (18% and 26}). In these calculations the
parameters were tzken as known; in px_:actlce the effect of the
estimation procedure can be also taken into account, as for example
in Abraham and Ledolter (1982).

Necessary and sufficient conditions for Approaches I
and II to have equal forecast efficiency were developped. In the
simpler cases of H=l, k=1, the analysis led to simple relations.

A situation not considered in the paper is the resulting
model for the combined times series, when the basic time series fol-
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lows a vector ARMA model. This will be pursued elsewhere.

The case of linear transformations of vector ARMA
processes is discussed by Lﬂtkepohli(1984). Related references are
Engel (1984) and Weiss (1984).
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RESUME

Cet article présent quelques examples assez simples, une notation
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unifié, les references sur la litterature et quelques resultates
générales pour les combinaisons linéaires du séries chronologiques
univariées et multivariées. On considére deux problémes: modelisation
et prédiction.des combinaiscns linéaires sous des hypothéses

specifides.



7901

7902

8001

8002
8003

8004

8005
8101
8102

8103

RELATORIO TECNICO

DO

DEPARTAMENTO DE ESTATISTICA

TITULOS PUBLICADOS

BORGES, W. de S. On the 1imﬁting distributios of the failure
time of composite material. S3o Paulo, IME-USP,1979,22p.

GALVES, A.; LEITE, J.G.; ROUSSIGNOL, M. The invariance prin-
ciple for the one-dimensional symmetric simple exclusion
process. Sao Paulo, IME-USP, 1979, 9p.

MENTZ, R.P. et al. Exploratory fitting of autoregressive and
moving average models to well-behaved time series data.
Sao Paulo, IME-USP, 1980, 1l6p.

MORETTIN, P.A. Walsh spectral analysis. S3o Paulo, IME-USP ,
1980, 27p.

RODRIGUES, J. Robust estimation and finite population. Sao
Paulo, IME-USP, 1980, 13p.

BORGES, W. de S. § RODRIGUES, F.W. On the axiomatic theory
of multistate coherent structures. Sae Paulo, IME-USP,
1980, 10p.-

MORETTIN, P.A. A central 1limit theorem for stationary pro-
cesses. Sao Paulo, IME-USP, 1980, Sp.

DANTAS, C.A.B. & COLUCCI, E. A Simulation program for emer-
gency services-II, S3ao Paulo, IME-USP, 1981, 14p.

ANDJEL,E.D. Invariant measures for the zero range process.
Sio Paulo, IME-USP, 1981, 55p.

ANDJEL, E.D. The asymmetric simple exclusion process on Zd.
S3o Paulo, IME-USP, 1981, 13p.




8104

8105

8106
8107

8108

81098

8110

2201

8202

8203

8204

MORETTIN, P.A. § TOLDI, C.M.C., Accuracy of forecastins with
special reference to the Box-Jenkins and Bayvesian Methcds
logiés. S3o Paulo, IME-USP, 1981, 4lp. oL

127

PINO, F.A. § MORETTIN, P.A., Intervention analysis aprplie
to Brazilian coffee and milk time series. Sao Paulo .IME-
Usp. 1981, 36p.

BORGES, W.S. & RODRIGUES, J., Testing for new better than
used in expectation. Sdo Paulo, IME-USP, 1981, 7p.

"FAHMY, S.; PEREIRA, C.A.B.; PROSCHAN, F., The influence of

the sample on the posterior distribution. Sac Paulo, IME-

PERES, C.A., Asymptotic efficiency of the likelihood ratisc
conditional test for multinomial distributions. S3o Paulo
IME-USP, 1981, 29p.

PERES, C.A., Testing the effect of blocking in a randorized
complete block design (RCBD). Sao Paulo, IME-USP, 1981,
14p.

BASU, D. § PEREIRA, C.A.B., On the Bayesian analysis fo cate
gorical data: the problem of nonresponse. Sio Paulo, IME-
UsSP, 1981, 13p.

BASU, D. & PEREIRA, C.A.B., Conditional independence in sta-
tistics, Sdo Paulo, IME-USP, 1982, 37p.

BASU, D. § PEREIRA, C.A.B., A note on Blackwell sufficiency
and a Skibinsky characterization of distributions. Sac
Paulo, IME-USP, 1982, 12p.

PERES, C.A., On the interpretation of the parameters of the
quadratic model for cell survival ofter irradiation. Sao
Paulo, IME-USP, 1982, 22p. .

GALVES, A., et al. Rescaling the stirring process. Siao Paulc

IME-USP, 1982, 23p. N .




8205

8206

8207

8208

8209

8210

8211

8301

8302

8303

8304

8305

8306

8307

RODRIGUES, J., On the asymptotie theory for the fixed size
confidence ellipsoids. Sac Faulo, IME-USP, 1982, 14p.

PEREIRA, C.A.B. § RODRIGUES, J., Robust linear predicition
in. finite populations. Sio Paulo, IME-USP, 1982, 14p.

MORETTIN, P.A., Walsh-Fourier transforms. Sao Paulo,IME-USP
1982, 15p.

PERES, C.A. & MORETTIN, P.A., Building bridges between the
academic and real wordls-some observations from South
Acerica. Sdo Paulo, IME-USP, 1982 16p.

PEREIRA, C.A.B. & ROGATKO, A., The Hardy-Weinberg equili-
brium under a Bavesiaq perspective. Sio Paulo, IME-USP ,
1982, 16p.

MORETTIN, P.A., The Levinson algorithm and its applications
in time series analysis. Sao Paulo, IME-USP, 1982, 16p.

RODRIGUES, J., A Note on Maximized and Conditional Likelihood
Functions. S3do Paulo, IME-USP, 1982, 9p.

PEREIRA,C.A.B., Stopping rules and conditional inference in
2x2 contigence tables. S3o Paulo, IME-USP, 1983, 7p.

BOLFARINE, H., PEREIRA, C.A.B. & RODRIGUES, J., Robust Li-
near Prediction in Finite Populations: A Bayesian Perspe
ctive. Sio Paulo, IME-USP, 1983, 21p. T

MORETTIN, P.A. et al., Rainfall at Fortaleza, Ceari, Brazil
Revisited. S3ao Paulo, IME-USP, 1983, 33p.

MORETTIN, P.A. & TOLOI, C.M.C., Evaluation of Forecasting
Procedures: A Case Study. Sao Paulo, IME-USP, 1983,30p.

PERES, C.A., et al., Educating and training undergraduate
applied statisticians. S3o Paulo, IME-USP, 1983, 13p.

PEREIRA, C.A.B., &-LINDLEY. b.V., Examples Questioning the
Use of Partial Likelihood. Sio Paulo, IME-USP, 1983, 10p.

MORETTIN, P.A. et ;1.. Statistics in South America. Sdo Pau
lo, IME-USP, 1983, 10p.




8308 -
8309 -
8310 -

8401 -

8402 -

8403 -

8404 -

8405 -

8406 -

8407 -

8408 -

8409 -

8410 -

LINDLEY, D.V., Royal Statistical Society 150Eh Anniversary.

S3o Paulo, IME-USP, 1983, 19p.

ANDJEL, E.D., Invariant Measures and Long Time Behaviour of
the Smoothing Process. S3ao Paulo, IME-USP, 1983, 25p.

BOLFARINE, H. et al., A General Theory of Prediction in Fi-
-nite Populations. Sao Paulo, IME-USP, 1983, 42p.

BOLFARINE, H. & RODRIGUES, J., Characterization of Alterna-
tive Models for Robust Linear Prediction in Finite Poru-
lations. Sao Paulo, IME-USP, 1984, 12p.

PEREIRA, C.A.B. et al., Inversao de Condicionamento.Sao Pau
lo. IME-USP, 1984, 30p.

BOLFARINE, H. & RODRIGUES, J., On Bavesian Predicticn of tke
Population Varjance in Finite Populations. S3io Paulo, IME
-USP, 1984, 21p.

ZACKS, S., Bayes Sequential Estimation of the Size of a Fi-
nite Population. Sao Paulo, IME-USP, 1984, 25p.

ROGATKQO, A. et al., Bayesian Method for the Estimation of Pe

netrance: Application to Mandibulofacial and Fronto-Nasal

Dysostoses. Sao Paulo, IME-USP, 1984, 67p.

SHIBATA, R., Identification and Selection of ARMA models.S3o
Paulo, IME-USP, 1984, 17p.

MORETTIN, P.A. § MESQUITA, A.R., A Phase Angle Test for Feris
dic Components in Time Series. Sao Paulo, IME-USP, 1§84,

27p.

SHIBATA, R., Selection of Regression Variables. Sao Paulo;IME
-UsP, 1984, 11p. .

ESTON, V.R. et al., Chthamalus Bissinuatus (Cirripedia) and
Brachidontes Solisianus (Bivalvia)] Spatial Inte}actions:é
Stochastic Model. S3do Paulo, IME-USP, 1984, 32p.

PINO, F.A. §& MORETTIN, P.A., Forecasting Linear Ccmbinations
of Time Series. S3ao Paulo, IME-USP, 1984, 30p.




8411

8412

8413

8501

8502

8503

8504

8505

8506

8507

8508

- SCHONMANN, R.H., Metastability for the Contact Process,Sio
- Paulo, IME-USP, 1984, 29p.
~ SCHONMARN, R.H., Central Limit Theorem for the Contact Pro-
cess. Sao Paulo, IME-USP, 1984, 10p.

= ANDRADE, D.F. & BOLFARINE, H., Estimation in Covariance Com-
ponents Models with Unequal Intraclass Variances. S3do
Paulo, IME-USP, 1984, 10p.

- RODRIGUES, J. €t al., The EM-Algorithm for Finding the ML-
Predictor for Finite Populations in Two-Stage Sampling.
sdo Paulo, IME-USP, 1985, 15p.

- BOLFARINE, H. & RODRIGUES, J., A Missing Value Approach to
the Prediction Problem in Finite Populations. S3ao Paulo,
IME-USP, 1985, 16p.

rem for Contact Processes in Several Dimensions with lLar-

ge Infection Parameter. S3o Paulo, IME-USP, 1985, 1lp.

- ZACKS,S. & RODRIGUES, J., A Note on the EM-Algorithm for Ma-
ximum Likelihood Estimation in Sampling from a Finite Po-
pulation with a Multinormal Superpopulation Model. Sao
Paulo, IME-USP, 1985, Sp.

=~ ANDJEL, E.D., Convercence to a non Extremal Equilibrium Mea-
sure in the Exclusion Process. S3o Paulo, IME-USP, 1985,
15p.

- IRONY, T.Z. & PEREIRA, C.A.B., Exact Tests for Equality of
Two Proportions: Fisher x Bayes. S3o Paulo, IME-USP, 1985,
30p. .

= SCHONMANN, R.H. & VARES, M.E., The Survival of the Large Di-
mensional Basic Contact Process. Siao Paulo, IME-USP, 1985,
14p. -

— ACHCAR, J.A., Modelos de Regressio com Dados Censurados. sdo
Panlo, IME-USP, 1985, 18p, ' =




8509

8510

8511

8512

8513

8514

8515

8516

8517

8518

8519

ACHCAR, J.A. & BOLFARINE, H., Use of Accurate Approxina-
tions for Posterior Densities in Regression Models with
Censored data. Sao Paulo, IME-USP, 1985, 2lp.

SINGER, J.M. & SEN, P.K., M- Methods ig Growth Curve Ana-
lysis. Sao Paulo, IME-USP, 1985, 17p.

BOLFARINE, H. & SANDOVAL, M.C., The Linear Least Sguares
Prediction Approach to Populations with Trend. Sao Pau-
lo, IME-USP, 1985, 13p.

PERES, C.A. & NARULA, 5.C., The Quadratic Model for Cell
Survival After Irradiation: A New Interpretation of the
Parameters. Sao Paulo, IME-USP, 1985, 15p.

PERES, C.A. & NARULA, S.C., A New Derivation of the Qua-

dratic Dose-Response Model for Cell Survival in Radio-
biological Studies. S53o Paulo, IME-USP, 1985, 25p.

PERES, C.A. & NARULA, S.C., A Simple Procedure to Determi-
ne the Parameters of a Quadratic Dose-Response  Nodel.
sac Paulo, IME-USP, 1985, 15p.

FERRARI, P.A. & GOLDSTEIN, S., Microscopic Stationary Sta-
tes for Stochastic Systems with Particle Flux. Sao Pau-
lo, IME-USP, 1985, 32p.

RODRIGUES, J., Some Shrunken Predictors in Finite Popula-
tions with a Multinormal Superpopulation Model. Sao Pau
lo, IME-USP, 1985, 12p.

ACHCAR, J.A. & BOLFARINE, H., A Bayesian Analysis of ThLe
Log-linear Model with one Covarjate and a Generalized /
Garma Distribution for the Error. Sao Paulo, IME-USP,

1985, 27p. _

SINGER, J.M. et al.; Tests for the Hardy-Weinberzs Ecuili~
brium, S3ao Paulo, IME-USP, 1985, 10p.

BOLFARINE, H., Some Shrinkage Tecniques for Predicting the
Population Total in Finite Populations. Sio Paulo, IME-
Usp, 1985, 14p.

et R - e Mt



8520 - BUENO, U.C.; A Model in Negative Dependence Through Stochas-

tic Ordering Using Order Statistics. Sao Paulo, IME-USP ,

1985, 21p.

8521 - PAULINO, C.D.M.; Um Ensaio sobre Identificabilidade de Mode-
los Estatisticos Paramétricos. Sio Paulo, IME-USP, 1985,

8op.

8522 - PEREIRA, C.A.B. & PERICCEI, L.R.; Analysis of Diagnosability.

S3o Paulo, IME-USP, 1985, 44p.

8601 - GALVES, A., OLIVIERI, E., VARES, M.E.; Metastability for a

Class of Dynamical Systems Subjetc to Small Random Pertur

bations. Sao Paulo, IME-USP, 1986, 15p.

8602 ~ BOLFARINE, H., ACHCAR, J.A.; Predictive Densities in Survial

Analysis with a Generalized Gamma Regression Model, Sao

Paulo, IME-USP, 1986, 22p.

8603 — RODRIQUES, J., BOLFARINE, J.; A Kalman Filter Model for Sin-

gle and Two-Stage, Repeated Surveys. Sao Paulo, IME-USP ,
22p.






