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Abstract. Different network models have been proposed along the last years inspired by
real-world topologies. The characterization of these models implies the understanding of the
underlying network phenomena, which accounts structural and dynamic properties. Several
mathematical tools can be employed to characterize such properties as Cellular Automata
(CA), which can be defined as dynamical systems of discrete nature composed by spatially
distributed units governed by deterministic rules. In this paper, we proposed a method based
on the modeling of one specific CA over distinct network topologies in order to perform the
classification of the network model. The proposed methodology consists in the modeling of
a binary totalistic CA over a network. The transition function that governs each CA cell is
based on the density of living neighbors. Secondly, the distribution of the Shannon entropy is
obtained from the evolved spatio-temporal pattern of the referred CA and used as a network
descriptor. The experiments were performed using a dataset composed of four different types
of networks: random, small-world, scale-free and geographical. We also used cross-validation
for training purposes. We evaluated the accuracy of classification as a function of the initial
number of living neighbors, and, also, as a function of a threshold parameter related to the
density of living neighbors. The results show high accuracy values in distinguishing among the
network models which demonstrates the feasibility of the proposed method.

1. Introduction
In the last decade, there has been a growing interest in Complex Networks, which is an area
directly related to the study of complex systems [1, 2, 3]. The possibility of modeling different
systems through the interactions between their constituent elements motivates the representation
of discrete systems by means of a network structure. The focus of analysis becomes the
connectivity among the elements of the system and not only the elements themselves. Many real
world networks became available and significant studies have been conducted on the analysis of
network structures with a large number of vertices. These networks have nontrivial topology
and present communities and hierarchies [3, 4]. Consequently, statistical tools combined with
graph theory have provided a more robust study of the topology of networks. The importance
of network characterization is becoming more evident due to the vast amount of applications
that can be handled by this approach. Different areas comprising biology, medicine, epidemic
spreading, engineering, transportation, economy, scientific collaboration and social interactions
are a few examples that can be benefited from network modeling. Many studies accounted that
real networks are scale-free, with degree distributions that follows a power-law. The models
that describe these types of networks incorporate important characteristics such as growth and
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preferential attachment [5, 6] in contrast to random networks on which all the vertices have
equal probability of connecting to each other.

Among the tools that can be used to characterize the properties of networks are Cellular
Automata (CA). Originally studied as models of growth and self-reproducing processes, CAs
have become a relevant tool for the study of spatio-temporal pattern formation [7]. Besides
being used as modeling tools, CAs are also employed in the study of complexity. They can be
defined as discrete dynamical systems composed by spatially distributed units over tessellations
of the Euclidean space, which are governed by deterministic rules. Regular tessellations are
the most common topologies used for modeling CAs, however, real-world topologies are built
upon irregular tessellations. Related works have shown that CAs can be combined with
networks in order to analyze topological properties of complex systems under the perspective
of pattern formation. Previous works on small-world networks were performed by Watts and
Tomassini [8, 9]. Both authors discuss the global computing capacities of CAs as the density
classification problem in small-world topologies. Marr & Hütt studied the dynamics of evolving
networks through the use of CAs [10, 11]. Their results indicate a strong association between
entropy measures obtained from the spatio-temporal patterns and the degree distribution of a
network.

In this study, we propose a method that performs the classification of theoretical network
models based on spatio-temporal patterns evolved by a cellular automaton. The methodology
consists in the modeling of a binary totalistic CA over the topology of the network and in the
definition of the CA dynamics based on the density of living neighbors (cells that are in the on
sate). Then, quantitative measurements are obtained through the evolved patterns. Specifically,
we used the distribution of the Shannon entropy to compose the feature vector of each network.
The dataset used in the experiments performed in this paper is composed by four different types
of networks: random, small-world, scale-free and geographical. We used two parameters in
the evaluation of the classification accuracy: the initial number of living neighbors, σ, and the
threshold parameter, µ, related to the density of living neighbors. It was obtained a maximum
accuracy of 95.56% which demonstrates the feasibility of the proposed method.

2. Proposed Methodology
A cellular automaton can be described by the quintuple C =< T ,S, s0,N , φ >, where, T is the
tessellation of the automaton, S is the set of states, s0 is the initial configuration of the states
in t = 0, N is the neighborhood function, and, finally, φ is the transition function that governs
the dynamics of the automaton. The first step of the proposed method consists in the modeling
of the CA over the network topology. Therefore, the network becomes the tessellation T of the
automaton and each network node corresponds to one CA cell. We assumed a binary state space
S and s0 is controlled by the parameter σ, which is a threshold that defines the percentage of
initial alive nodes.

Since the network is an irregular tessellation, the number of neighbors of each CA cell is
restricted to the neighborhood of each network node. Therefore, function N maps each node
to its degree, which is defined as: ki =

∑N
j=1Aij , where, N is the total number of nodes and

A is the adjacency matrix. Aij = 1, if i is connected to j and Aij = 0, otherwise. Finally,
the transition function of the referred network CA is given as a function of the neighborhood
density, ρi, defined as ρi = 1

ki

∑N
j=1Aijsj(t), where sj(t) is the state of node j in time t. Once

we have a binary state space, sj(t) can assume 0 or 1. Therefore, ρi represents the rate of alive
neighbors of node i. The transition function φ incorporates the dynamic of the nodes according
to the following equation [10]

xi(t+ 1) =

{
xi(t), ρi ≤ µ

1− xi(t), ρi > µ,
(1)
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where µ is a threshold for ρi under which the node maintains its state in the next time step,
otherwise, the node inverts its state. Fig. 1-a) illustrates the evolution of a given network with
µ = 0.5 using Eq. 1. The first newtork (t = 0) represents the initial configuration of states for
each node where black cells represent the “dead” nodes, while the white cells, the “alive” nodes,
i.e., si = 0 and si = 1, respectively. Moreover, the subsequent figures show the configuration of
the state for each node during three time steps.

t=0

a)

t=1 t=2 t=3

b)

ti
m
e

nodes

Figure 1. Evolution dynamics. a) Illustration of the configurations of the states of each node
for a sample network using Eq. 1 as transition function. b) Space-time diagram for a small-world
network with 200 nodes. The CA was evolved by 200 time steps.

The evolved pattern obtained by applying the transition function can be represented as
a spatio-temporal diagram on which each column represents a network node and each row
represents the states of all nodes at each time step. Fig. 1-b) illustrates an example for a small-
world network. The nodes were ordered by ki, therefore, the left-most nodes are the ones with
the smallest values of ki, and, the right-most, corresponds to the ones with the highest values of
ki. Further, we evaluated the evolution of each node as a time series containing zeros and ones.
Then, the Shannon entropy was calculated for each node according to the following equation:
Si = −(p0i log2 p

0
i + p1i log2 p

1
i ), where p0i is the probability of finding zeros in the time series and

p1i is the probability of ones. The Shannon entropy quantifies how heterogeneous is the series
and is normalized between [0, 1]. Finally, given the values of Si for each node, we calculated
the distribution of the Shannon entropy, ΦS , for the whole network. Therefore, the vector ΦS

represents the network descriptor that characterize a network model.

3. Results and Discussion
In previous works, Marr&Hütt [12, 10] have shown that for different intervals of µ parameter,
different spatio-temporal patterns can be obtained for a specific network topology. For low
values of µ, oscillating patterns tend to prevail since the majority of the nodes will change their
states at each time step. In contrast, for higher values of µ, the majority of the nodes will not
change their states, and, consequently, stable patterns will prevail. Finally, for intermediary
values of µ, chaotic and complex behavior tend to emerge. In this paper, we analyzed four
different theoretical network models. Fig. 2-a) shows the variation of the average Shannon
entropy (calculated for each network model by iterating over the Shannon entropy of each
network node), for different values of µ. We can observe that the transition from oscillating
patterns (high Shannon entropy) to stable patters (low Shannon entropy) occurs given distinct
values of µ for each network model.

Based on this result, we evaluated the accuracy of network model classification as a function
of the threshold parameter µ as well as the distribution of the alive and dead populations given
by σ. We created a dataset composed of synthetic networks generated according to the following
theoretical models: 1) random, with connection probability of p = 〈k〉/n; 2) small-world, with
rewiring probability of p = 0.1; 3) scale-free, with power exponent γ = 1, and, 4) geographical,
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Figure 2. a) Shannon Entropy as a function of µ parameter for the four network models. b)
Accuracy values (%) as a function of µ parameter for distinct initial conditions (σ parameter.

on which the Cartesian coordinates of the nodes are predefined. This dataset contains 100
networks of each model with mean degree 〈k〉 = 8. Each network model represents a class
in this experiment. By applying the proposed methodology, we obtained the Shannon entropy
distribution, for each network, which were used as the network descriptor ΦS . We have employed
10-fold cross-validation scheme and SVM (Support Vector Machines) classifier. In this context,
accuracy values represent the number of correct classified instances. Fig. 2-b) presents the results
for five different values of σ: 10, 30, 50, 70 and 90. Each curve of this figure represents a σ value.
The x-axis corresponds to µ parameter and the accuracy obtained is shown on the y-axis.

We can see from Fig. 2-b) that the highest values of accuracy were obtained for intermediary
values of µ and the influence of σ on accuracy becomes more apparent from µ = 0.4. The highest
accuracy obtained in the classifications of the correct network models was 95.56% for µ = 0.4.

4. Conclusion
We have presented a method that performs network model classification based on the spatio-
temporal pattern of a one parameter totalistic cellular automaton. This method achieved very
good accuracy results and can be an alternative for network characterization.
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