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Abstract— Magnetic resonance imaging (MRI) is of great
interest in medicine because it provides high quality images
without exposing the patient to ionizing radiation. However,
MRI images are susceptible to intrinsic degradation of the
acquisition process, such as the addition of noise, which can
impair medical diagnosis. Image processing techniques can filter
the noise and improve image quality, making them useful tools
in the medical field. Denoising performance depends on the
accurate modeling of the noise characteristics in the images.
Many works in the literature report different techniques for
denoising MRI images, however, very few use the correct
and accurate model for the different acquisition modalities,
such as the number of coils, the reconstruction algorithm
and the use or not of parallel (accelerated) acquisition. Thus,
this work presents different methods to remove noise from
MRI images, in which the correct noise model is adopted
according to the acquisition mode. In addition, this work
shows how a variance stabilization transformation can be used
before the image processing, improving the performance of the
denoising algorithm. The validation procedures were conducted
using synthetic MRI images of a human brain (BrainWeb
phantom) corrupted by different noise patterns, generally
observed in clinical MRI exams. Noisy images were processed by
different denoising algorithms and the results showed improved
performance when the adequate model for each acquisition
modality was considered.

Keywords— Magnetic Resonance Imaging, Image Processing,
Image Denoising, Rician Noise

I. INTRODUÇÃO

Ruı́do é um problema presente na maioria das modalidades
de imagens utilizadas na medicina. Imagens corrompidas
por ruı́do podem dificultar o diagnóstico médico e, por esse
motivo, técnicas de processamento de imagens, visando a
remoção dessas distorções, são de suma importância. No
caso das imagens de ressonância magnética, o ruı́do é
provocado principalmente pela interação do objeto com o
campo magnético e pelo efeito térmico devido à eletrônica
presente no sistema de aquisição [1].

Estatisticamente falando, o ruı́do em MRI pode ser
modelado por uma distribuição de probabilidade Riciana
ou Non Central Chi. Essas diferentes distribuições estão
diretamente relacionadas com o processo de aquisição do
sinal, mais especificamente, com o número de bobinas e
também com o algoritmo utilizado para a reconstrução da
imagem final [1, 2].

Apesar de essas caracterı́sticas estatı́sticas serem bastante
exploradas na literatura [1, 3, 2, 4], é comum ainda a
existência de trabalhos reportando a adoção de um modelo
de ruı́do gaussiano, branco e aditivo (AWGN - Additive
White Gaussian Noise) para filtragem do ruı́do presente
em imagens de MRI. Isso se deve ao fato de que, em
regiões com alta relação sinal-ruı́do (SNR - Signal to
Noise Ratio), as distribuições Riciana e Non Central Chi
tendem a se comportar como uma distribuição Gaussiana [5].
Todavia, existe um grande viés nessa premissa. A tendência
Gaussiana, por si só, não contempla todas caracterı́sticas
de um ruı́do AWGN; mais especificamente, que o ruı́do é
homoscedástico, ou seja, que é independente e igualmente
distribuı́do (i.i.d) em toda a imagem [6]. Dessa forma, mesmo
quando o ruı́do pode ser aproximado por uma distribuição
Gaussiana, sua variância, e consequentemente o desvio
padrão, podem não ser igualmente distribuı́dos ao longo da
imagem, pois podem ser dependentes da intensidade e/ou da
posição espacial do pixel, ou seja, o ruı́do é heteroscedástico.
Esse é o caso encontrado na grande maioria das imagens
produzidas por equipamentos de MRI. Sendo assim, assumir
um modelo AWGN para filtragem de imagens de MRI, pode
prejudicar significativamente o desempenho dos algoritmos
de filtragem de ruı́do e comprometer a qualidade da imagem
final processada.

Para o caso de imagens corrompidas por outros tipos de
ruı́do, como no caso de MRI, a abordagem mais utilizada
é a de desenvolver métodos de filtragem especı́ficos para
cada tipo de ruı́do [7, 8]. No entanto, uma alternativa a
essa abordagem é a de transformar o ruı́do heteroscedástico
em homoscedástico, antes da filtragem do ruı́do, utilizando,
para isso, uma transformada de estabilização de variância
(VST - Variance Stabilization Transformation) [3]. Assim,
a proposta deste trabalho é utilizar o conceito de
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VST para transformar matematicamente o ruı́do Riciano,
heteroscedástico, presente nas imagens de MRI, em ruı́do
homocedástico aproximadamente Gaussiano, antes da etapa
de filtragem. A grande vantagem dessa abordagem é o fato
de que o ruı́do de variância constante, homoscedástico,
é mais fácil de ser removido da imagem e, além disso,
existem diversos trabalhos e algoritmos de filtragem com
resultados excelentes focados nesse tipo de ruı́do [9], muito
mais comum do que métodos de filtragem desenvolvidos
especificamente para ruı́do Riciano ou Non Central Chi.

Será apresentada nesse trabalho uma análise comparativa
e objetiva entre os resultados da filtragem de imagens de
MRI quando o modelo AWGN é adotado, com os resultados
obtidos pela abordagem proposta nesse trabalho, na qual
um modelo mais adequando é utilizado para transformar o
ruı́do da imagem antes da filtragem, por meio de uma VST
desenvolvida especificamente para estabilização da variância
de ruı́do Riciano [3].

II. TEORIA

Antes de abordar as especificidades do ruı́do presente em
imagens de MRI, algumas propriedades gerais dos diferentes
comportamentos de um ruı́do serão apresentadas a seguir:

A. Ruı́do homoscedástico

Um ruı́do é dito do tipo homoscedástico quando a
variância de sua distribuição, em diferentes realizações, é
constante, ou seja, independe da intensidade do sinal original
bem como da posição espacial do mesmo. Trazendo essa
definição para caso de imagens digitais, isso significa que,
independentemente da intensidade e da localização espacial
do pixel, a variância da distribuição será constante. O termo
homoscedástico está diretamente relacionado, então, com o
termo independente e igualmente distribuı́do (i.i.d.) [6].

A distribuição caracterı́stica de ruı́dos desse tipo é a
Gaussiana (ou Normal). Mais especificamente, temos a
denominação AWGN, em referência a um ruı́do aditivo
branco gaussiano. O termo branco se dá pelo fato de que
afeta todas as frequências do sinal original de igual maneira.
Já o termo aditivo se dá pelo fato de o ruı́do ser adicionado
ao valor do sinal original, conforme equação 1, em que M(x)
é a imagem ruidosa nas coordenadas espaciais x, A(x) é a
imagem original sem ruı́do e N(x) é o ruı́do aleatório que
segue uma distribuição Gaussiana com média 0 e variância
constante σ2

n , N(0,σ2
n ). Esses dois termos juntos definem o

conceito de homoscedasticidade [6].

M(x) = A(x)+N(x) (1)

Importante ressaltar que esse tipo de ruı́do já foi bastante
estudado na literatura e grande parte dos algoritmos de
filtragem se baseiam nessa distribuição caracterı́stica. Sendo
assim, trabalhar com esse tipo de distribuição tende a garantir
uma melhor performance no resultado final [6, 10].

B. Ruı́do heteroscedástico

O termo heteroscedástico é atribuı́do quando a variância
do ruı́do não é a mesma em toda a imagem. Isso pode ocorrer
quando a variância do ruı́do depende da intensidade do pixel
ou quando depende da sua posição espacial; ou, também,
quando a variância é dependente dos dois fatores ao mesmo
tempo: intensidade e posição. Dessa forma, esse ruı́do não
pode mais ser modelado como AWGN [6]. Ruı́dos desse
tipo estão relacionados a diversas distribuições, dentre elas
a Riciana, caracterı́stica de imagens de MRI. Esse tipo de
ruı́do é mais complexo que o AWGN e deve ser modelado
corretamente de forma a não haver erros nos algoritmos de
filtragem de ruı́do.

C. Ruı́do Riciano estacionário

Primeiramente, antes de descrever os detalhes
matemáticos e estatı́sticos do ruı́do presente nas imagens
de MRI, vale ressaltar que a teoria apresentada neste
trabalho segue o contexto geral de aquisição em MRI.
Sendo assim, assume-se que: os dados são adquiridos no
espaço-k utilizando a trajetória Cartesiana regular; diferentes
contribuições do ruı́do são tratadas de forma independente,
de modo que o ruı́do total no sistema é advindo da
contribuição individual de cada fonte; pós-processamento
e técnicas de correção não são aplicadas [5]. Dessa forma,
alguns casos não são considerados, tais como: interpolação
devido à amostragem Não-Cartesiana; pós-processamente
para correção de artefados para protocolos de aquisição
especı́ficos como EPI (Echo-plannar Imaging), dentre
outros. Muitos desses cenários são especı́ficos de alguns
fabricantes e modelos de equipamentos de MRI ou dependem
de uma sequência de pulsos especı́fica. As caracterı́stias do
ruı́do mudariam drasticamente e estudos aprofundados se
tornam necessários para esses casos [5].

Seguindo, então, o contexto geral, sabe-se que uma
das principais fonte de ruı́do em aquisições de MRI é o
ruı́do eletrônico (ou térmico), proveniente, como o próprio
nome já sugere, dos componentes eletrônicos existentes nos
equipamentos [1]. O sinal em MRI é adquirido diretamente
no domı́nio de Fourier, também chamado de espaço-k.
Matematicamente, no espaço-k (e somente no espaço-k),
esse tipo de ruı́do é modelado como um ruı́do AWGN [5].
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Posteriormente, dois passos são executados: (1) transformada
inversa discreta de Fourier e (2) módulo da imagem resultante
no passo 1. Com isso, chega-se ao que se conhece como
imagem de magnitude, que são as imagens efetivamente
visualizadas pelos médicos durante o exame. Com isso,
o sinal no espaço-k, corrompido por ruı́do Gaussiano
homoscedástico, passa a ser corrompido por ruı́do Riciano
heteroscedástico no domı́nio da imagem [5, 3].

Seja M(k) os dados amostrados no espaço-k, tem-se:

M(k) = A(k)+N(k), (2)

em que A(k) = Ar(k) + jAi(k) é o sinal complexo sem
ruı́do decomposto em parte real e imaginária, representados,
respectivamente, pelos ı́ndices r e i. De forma análoga,
N(k) = Nr(k)+ jNi(k) representa o rúido complexo AWGN,
em que Nr(k) e Ni(k) seguem uma distribuição Gaussiana
com média zero e variância σ2

n , N(0,σ2
n ).

Seja M(x), a imagem de magnitude ruidosa de MRI, obtida
após aplicação dos passos (1) e (2) citados anteriormente,
tem-se:

M(x) = |iDFT (M(k))|, (3)

em que iDFT (.) representa a transformada inversa discreta
de Fourier e |.| o módulo aplicado ao sinal após a iDFT (.).
A partir das equações 2 e 3 e sabendo que há uma relação
direta entre a posição k (no espaço-k) e x (na imagem de
magnitude), tem-se [5]:

M(x) =
√
(Ar(x)+Nr(x))2 +(Ai(x)+Ni(x))2 (4)

A variância de M(x), condicionada ao sinal sem ruı́do
A(x), é descrita por [3] :

var(M(x)|A(x),σn)= 2σ2
n +A(x)2− πσ2

n

2
L
(
−A(x)2

2σ2
n

)2

(5)

em que L(y) = e
y
2 [(1− y)I0

(
− y

2

)
− yI1

(
− y

2

)
], y = −A(x)2

2σ2
n

e
In denota a função Bessel modificada de ordem n. Para altos
valores de SNR, isto é, altos valores de A(x) em relação a σn,
a equação pode ser aproximada por [3] :

var(M(x)|A(x),σn)≈ σ2
n −

σ4
n

2A(x)2 (6)

Percebe-se, pelas equações 5 e 6, que a variância do sinal
var(M(x)|A(x)) não é constante em toda a imagem. Mais
ainda, nota-se que ela depende diretamente da intensidade
do sinal sem ruı́do A(x) e da sua relação com σn, ou seja,

o ruı́do Riciano é dependente do sinal, ou seja, é do tipo
heteroscedástico. Como a variância depende somente do
sinal, pode-se dizer, então, que o ruı́do é do tipo Riciano
estacionário. Em MRI, esse é o tı́pico caso de exames em
que se utiliza uma única bobina na aquisição do sinal [5].

D. Ruı́do Riciano não-estacionário

Além da dependência do sinal, vista anteriormente, a
variância do ruı́do Riciano pode ser também dependente
do espaço. Consequentemente, o ruı́do é dito do tipo
não-estacionário. Em MRI, esse cenário ocorre sempre
que tivermos aquisição com múltiplas bobinas (devido à
correlação espacial entre elas, gerando correlação do ruı́do
entre os dados em diferentes posições) e quando é utilizado
uma sequência acelerada ou paralela (devido à utilização de
algoritmos de interpolação para os dados não amostrados,
gerando também correlação do rúido entre os dados em
diferentes posições) [5].Dentre os diferentes algoritmos de
aceleração, o Sensitivity Encoding (SENSE) e o Generalized
Autocalibration Parallel Aquisition (GRAPPA) são os mais
utilizados. Porém, o GRAPPA gera uma imagem com
distribuição Non Central Chi e não será abordado nesse
trabalho [5].

Para o caso não-estacionário, o termo σn da equação 6
depende da posição espacial do pixel [1, 5]. Logo, tem-se
σn(x). Dessa forma, podemos reescrever a equação 6 como

var(M(x)|A(x),σn(x))≈ σn(x)2− σn(x)4

2A(x)2 . (7)

Nota-se, então, que a variância agora depende não só do sinal
sem ruı́do A(x) como também do parâmetro σn(x) que varia
de acordo com a posição espacial.

De forma resumida, podemos elencar os cenários de ruı́do
em MRI conforme Tabela 1.

Tabela 1: Resumo das distribuições de ruı́do em MRI.

Bobinas Acelerada Distribuição Estacionário
Uma — Riciana Sim

Múltiplas SENSE Riciana Não

E. Transformada de estabilização de variância

Conforme relatado, ao analisar a equação 6, nota-se que
a variância do ruı́do depende do sinal original sem ruı́do
A(x). Para tratar dessa dependência do sinal, em [3], o autor
propõe, por meio de métodos de otimização numérica, uma
VST capaz de transformar o ruı́do Riciano heteroscedástico,
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presente em imagens de MRI, em ruı́do homoscedástico
aproximadamente Gaussiano, com média zero e variância
constante.

Dessa forma, após o uso da VST, a imagem ruidosa, agora
denominada Mvst(x), pode ser descrita como

Mvst(x)≈ Avst(x)+N(x) (8)

em que Avst(x) representa o sinal livre de ruı́do no
domı́nio da transformada e N(x) o ruı́do transformado
aproximadamente homoscedástico, Gaussiano, com média 0
e variância constante σ2, N(0,σ2). Mais ainda, a proposta
em [3] otimiza o processo para que o ruı́do da imagem passe
a ter uma variância próxima de 1. Dessa forma, a variância de
Mvst(x), condicionada à média Avst(x) pode ser descrita como

var(Mvst(x)|Avst(x))≈ σ2 ≈ 1. (9)

Assim, no domı́nio da transformada, pode-se utilizar
qualquer algoritmo de filtragem desenvolvido para o modelo
AWGN para a remoção do ruı́do dessa imagem, o que é uma
grande vantagem, já que o ruı́do AWGN é mais fácil de ser
removido.

Em termos de estimativa de parâmetros para que a
transformada possa ser realizada, um único parâmetro, σn,
da distribuição Riciana necessita ser estimado. Em [3], o
autor também propõe um algoritmo para essa estimativa.
Vale ressaltar que a estimativa e a própria VST foram
elaboradas para ruı́do Riciano estacionário. Para o caso
não-estacionário, no entanto, pode-se usar a estimativa da
matriz σn(x) abordada em [1].

Finalizando o conceito de VST, deve-se mencionar que,
após a filtragem da imagem estabilizada, uma transformada
inversa necessita ser aplicada, trazendo a imagem para
sua faixa de valores originais. Em termos de notação,
utilizaremos V ST−1.

Com isso, podemos estabelecer quatro passos para a
correta filtragem de ruı́do Riciano em imagens de MRI:

1. Estimar σn (para o caso estacionário) ou σn(x) (para o
caso não-estacionário);

2. Aplicar a V ST ;
3. Filtrar a imagem estabilizada;
4. Aplicar a V ST−1;

III. MATERIAIS E MÉTODOS

A partir do embasamento teórico apresentado em II, nesse
item serão abordados os materiais e métodos utilizados nesse
trabalho. Em termos de implementação de código, o software

utilizado foi o MATLAB (The Mathworks Inc.), versão
R2016a.

A. Banco de imagens do phantom BrainWeb

Para permitir uma análise objetiva do desempenho dos
métodos de filtragem de ruı́do apresentados, utilizou-se o
banco de imagens do phantom BrainWeb [11]. O phantom
simula a aquisição do tipo T1 (T1-weighted) e as imagens
possuem dimensão 217 x 181 pixels e quantização em
8 bits. A vantagem do uso de imagens sintéticas é a
possibilidade de se usar métricas objetivas, que necessitam
de uma imagem de referência sem ruı́do (Ground Truth), para
avaliação da qualidade das imagens filtradas. Além disso,
pode-se controlar a intensidade e a distribuição espacial do
ruı́do Riciano a ser adicionado nas imagens (estacionário
ou não-estacionário) para uma avaliação mais completa dos
métodos apresentados.

A partir da imagem sem ruı́do, 100 realizações ruidosas
foram obtidas utilizando-se dois diferentes padrões de
distribuição de ruı́do tı́picos de exames clı́nicos de MRI,
sendo um do tipo Riciano estacionário, com parâmetro σn =
20 (8% do valor máximo de intensidade) e outro do tipo
Riciano não-estacionário com σn variando de 6 a 20 em
valores absolutos (2% a 8% do valor máximo de intensidade).
Esse padrão de ruı́do variante no espaço é tı́pico de aquisição
com múltiplas bobinas e acelerada SENSE [1, 5] e é ilustrado
na Figura 2 (parte superior).

B. Algoritmo para estimativa e filtragem do ruı́do

Para a filtragem das imagens de MRI, foi utilizado o
algoritmo proposto nesse trabalho (com VST) e também
uma abordagem em que foi assumido que o ruı́do é
aproximadamente AWGN. Para ambos os casos, o método
de filtragem de ruı́do utilizado foi o Block Matching and
3D filtering (BM3D), desenvolvido especificamente para
filtragem de ruı́do AWGN [9]. Vale ressaltar, porém, que
outros algoritmos podem ser utilizados para a filtragem.
Em termos de notação para esse trabalho, utilizaremos
VST BM3D e AWGN BM3D respectivamente.

C. Métricas objetivas

Para as imagens sintéticas do phantom BrainWeb, além
da inspeção visual das imagens, duas métricas objetivas
foram aplicadas para avaliação da qualidade das imagens
processadas. Elas são descritas a seguir:

• Raiz do erro médio quadrático normalizado pela
média (EQMn)[10]

397



O cálculo do EQMn é dado por

EQMn(Â,A) =

√√√√ 1
XY

X

∑
1

Y

∑
1

(
Â(x)−A(x)

A(x)

)2

, (10)

em que A é a imagem original sem ruı́do, Â é a
imagem filtrada, X e Y são as dimensões da imagem. A
normalização é justificada como uma forma de medir o
erro localmente e de forma ponderada. Em se tratando de
filtragem de ruı́dos dependentes do sinal e/ou do espaço,
deve-se entender que o objetivo é filtrar todos os nı́veis
de cinza, de todos os pixels, de modo uniforme.

• Índice de similaridade estrutural (SSIM) [12]
Essa métrica, bastante utilizada para avaliação da

qualidade de imagens, leva em conta parâmetros da
imagem relativos ao sistema visual humano [12], como
luminância, contraste e estrutura. Inicialmente, o SSIM
é calculado de forma local, em regiões de tamanho 11 x
11 e, ao final, a média aritmética de todos ı́ndices locais
é obtida, chegando-se ao SSIM global da imagem sendo
avaliada.

Em relação aos valores númericos do SSIM, quanto
mais próximo de 1, mais a imagem sendo processada (Â)
é similar à imagem de referência (A), com 1 sendo o valor
máximo e representando o cenário ideal, quando as duas
imagens são idênticas.

IV. RESULTADOS E DISCUSSÃO

A. Inspeção visual

As Figuras 1 e 2 mostram os resultados de filtragem
da imagem do phantom BrainWeb corrompida pelos
dois padrões de ruı́do, estacionário e não-estacionário,
respectivamente. Em ambos cenários, o método VST BM3D
foi superior ao algoritmo AWGN BM3D, o que pode
ser verificado nas imagens ampliadas de uma região de
interesse. A diferença é mais evidente ainda no caso do
ruı́do não-estacionário. Nota-se bastante ruı́do residual na
imagem filtrada pelo método AWGN BM3D, principalmente
no centro da região de interesse, diretamente relacionado
com a distribuição espacial do ruı́do (ver Figura 2, parte
superior). Esse fato é explicado pois, conforme abordado
no item II, a variância do ruı́do depende da intensidade do
sinal e da posição espacial do pixel. Sendo assim, ao usar
um algoritmo que adota uma modelagem de ruı́do Gaussiano
homoscedástico (AWGN), as caracterı́sticas mencionadas
não são levadas em consideração, afetando negativamente o

resultado do processo de filtragem.

B. Métricas objetivas

As Tabelas 2 e 3 mostram os resultados das métricas
objetivas para os resultados referentes às imagens do
phantom BrainWeb para ambos cenários: ruı́do estacionário
e não-estacionário, respectivamente. Para o cálculo desses
parâmetros foram processadas 100 imagens de cada
distribuição de ruı́do e o valor médio, juntamente com o
desvio padrão, são apresentados nas tabelas.

Figura 1: Resultado de filtragem para o caso de ruı́do Riciano estacionário.
Na figura estão exibidas as imagens sem ruı́do, ruidosa (linha superior)
e também os resultados de filtragem pelos métodos: AWGN BM3D e
VST BM3D (linha inferior). À esquerda, as imagens completas e à direita
uma região de interesse ampliada (referente à área delimitada em vermelho).
É possı́vel notar o melhor desempenho da proposta baseada em VST, em que
a imagem resultante apresenta menos ruı́do residual.

Tabela 2: Métricas objetivas. Ruı́do Riciano estacionário. Na coluna de
resultados, estão destacados, em negrito, os valores referentes ao algoritmo
de melhor desempenho. A linha referente à imagem ruidosa foi mostrada
para melhor compreensão do ganho obtido por meio dos métodos de
filtragem.

Algoritmo Métrica Resultado
Ruidosa EQMn 1.320 ± 0.060

AWGN BM3D EQMn 1.120 ± 0.040

VST BM3D EQMn 0.430 ± 0.070

Ruidosa SSIM 0.540 ± 0.002

AWGN BM3D SSIM 0.840 ± 0.003

VST BM3D SSIM 0.858 ± 0.003

Confirmando a análise visual, os resultados mostram, de
forma objetiva, o melhor desempenho do método baseado em
VST. O método obteve melhor desempenho na filtragem do
ruı́do para as duas métricas, EQMn e SSIM, para ambas as
distribuições de ruı́do abordadas nesse trabalho.
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Figura 2: Resultado de filtragem para o caso de ruı́do Riciano
não-estacionário. Na parte superior, o padrão de variação espacial do
parâmetro σn(x). A escala refere-se ao valor absoluto do parâmetro. Abaixo,
estão exibidas as imagens sem ruı́do, ruidosa (linha mediana) e também
os resultados de filtragem pelos métodos: AWGN BM3D e VST BM3D
(linha inferior). À esquerda, as imagens completas e à direita uma região
de interesse ampliada (referente à área delimitada em vermelho). É possı́vel
notar o melhor desempenho da proposta baseada em VST, em que a imagem
resultante apresenta menos ruı́do residual.

Tabela 3: Métricas objetivas. Ruı́do Riciano não-estacionário. Na coluna de
resultados, estão destacados, em negrito, os valores referentes ao algoritmo
de melhor desempenho. A linha referente à imagem ruidosa foi mostrada
para melhor compreensão do ganho obtido por meio dos métodos de
filtragem.

Algoritmo Métrica Resultado
Ruidosa EQMn 0.980 ± 0.005

AWGN BM3D EQMn 0.829 ± 0.004

VST BM3D EQMn 0.363 ± 0.006

Ruidosa SSIM 0.622 ± 0.002

AWGN BM3D SSIM 0.824 ± 0.003

VST BM3D SSIM 0.874 ± 0.002

V. CONCLUSÃO

Os resultados obtidos indicam as vantagens do uso da
metodologia baseada em VST para a filtragem de ruı́do
de imagens de MRI. Em todos os cenários abordados,
fica clara a importância do correto modelamento do ruı́do
bem como da estabilização da variância antes da filtragem.
Por último, reforça-se a grande aplicação da técnica em
diversos subcampos de MRI. Diversos trabalhos fazem uso
de pré-processamento das imagens para posterior aplicação
em softwares de segmentação (diffusion MRI, por exemplo).

Sendo assim, com o melhor resultado da remoção de ruı́do
espera-se que melhores resultados em etapas posteriores
venham a ocorrer.

Além disso, outra consequência seria a redução do tempo
e custo de exame. Em geral, os equipamentos fazem várias
amostragens durante o processo de aquisição da imagem
(um dos motivos para os longos tempos de exame). Essa
abordagem visa a diminuição do ruı́do por meio de médias
das amostragens realizadas. Ao utilizar o algoritmo de
filtragem, no entanto, o número de amostras poderia ser
reduzido, uma vez que o ruı́do seria removido por meio do
processamento posterior da imagem.
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