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Abstract— Magnetic resonance imaging (MRI) is of great
interest in medicine because it provides high quality images
without exposing the patient to ionizing radiation. However,
MRI images are susceptible to intrinsic degradation of the
acquisition process, such as the addition of noise, which can
impair medical diagnosis. Image processing techniques can filter
the noise and improve image quality, making them useful tools
in the medical field. Denoising performance depends on the
accurate modeling of the noise characteristics in the images.
Many works in the literature report different techniques for
denoising MRI images, however, very few use the correct
and accurate model for the different acquisition modalities,
such as the number of coils, the reconstruction algorithm
and the use or not of parallel (accelerated) acquisition. Thus,
this work presents different methods to remove noise from
MRI images, in which the correct noise model is adopted
according to the acquisition mode. In addition, this work
shows how a variance stabilization transformation can be used
before the image processing, improving the performance of the
denoising algorithm. The validation procedures were conducted
using synthetic MRI images of a human brain (BrainWeb
phantom) corrupted by different noise patterns, generally
observed in clinical MRI exams. Noisy images were processed by
different denoising algorithms and the results showed improved
performance when the adequate model for each acquisition
modality was considered.

Keywords— Magnetic Resonance Imaging, Image Processing,
Image Denoising, Rician Noise

I. INTRODUCAO

Ruido € um problema presente na maioria das modalidades
de imagens utilizadas na medicina. Imagens corrompidas
por ruido podem dificultar o diagnéstico médico e, por esse
motivo, técnicas de processamento de imagens, visando a
remocgdo dessas distor¢des, sdo de suma importancia. No
caso das imagens de ressondncia magnética, o ruido &
provocado principalmente pela interacdo do objeto com o
campo magnético e pelo efeito térmico devido a eletronica
presente no sistema de aquisicao [1].
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Estatisticamente falando, o ruido em MRI pode ser
modelado por uma distribuicio de probabilidade Riciana
ou Non Central Chi. Essas diferentes distribui¢des estdo
diretamente relacionadas com o processo de aquisicio do
sinal, mais especificamente, com o nimero de bobinas e
também com o algoritmo utilizado para a reconstrucdo da
imagem final [1, 2].

Apesar de essas caracteristicas estatisticas serem bastante
exploradas na literatura [1, 3, 2, 4], ¢ comum ainda a
existéncia de trabalhos reportando a ado¢do de um modelo
de ruido gaussiano, branco e aditivo (AWGN - Additive
White Gaussian Noise) para filtragem do ruido presente
em imagens de MRI. Isso se deve ao fato de que, em
regides com alta relacdo sinal-ruido (SNR - Signal to
Noise Ratio), as distribui¢des Riciana e Non Central Chi
tendem a se comportar como uma distribui¢do Gaussiana [5].
Todavia, existe um grande viés nessa premissa. A tendéncia
Gaussiana, por si s6, ndo contempla todas caracteristicas
de um ruido AWGN; mais especificamente, que o ruido é
homoscedastico, ou seja, que é independente e igualmente
distribuido (i.i.d) em toda a imagem [6]. Dessa forma, mesmo
quando o ruido pode ser aproximado por uma distribui¢ao
Gaussiana, sua varidncia, e consequentemente o desvio
padrio, podem nao ser igualmente distribuidos ao longo da
imagem, pois podem ser dependentes da intensidade e/ou da
posi¢do espacial do pixel, ou seja, o ruido é heterosceddstico.
Esse € o caso encontrado na grande maioria das imagens
produzidas por equipamentos de MRI. Sendo assim, assumir
um modelo AWGN para filtragem de imagens de MRI, pode
prejudicar significativamente o desempenho dos algoritmos
de filtragem de ruido e comprometer a qualidade da imagem
final processada.

Para o caso de imagens corrompidas por outros tipos de
ruido, como no caso de MRI, a abordagem mais utilizada
€ a de desenvolver métodos de filtragem especificos para
cada tipo de ruido [7, 8]. No entanto, uma alternativa a
essa abordagem € a de transformar o ruido heteroscedastico
em homoscedastico, antes da filtragem do ruido, utilizando,
para isso, uma transformada de estabilizacdo de varidncia
(VST - Variance Stabilization Transformation) [3]. Assim,

a proposta deste trabalho € utilizar o conceito de



VST para transformar matematicamente o ruido Riciano,
heterosceddstico, presente nas imagens de MRI, em ruido
homocedastico aproximadamente Gaussiano, antes da etapa
de filtragem. A grande vantagem dessa abordagem & o fato
de que o ruido de varidncia constante, homoscedastico,
¢ mais facil de ser removido da imagem e, além disso,
existem diversos trabalhos e algoritmos de filtragem com
resultados excelentes focados nesse tipo de ruido [9], muito
mais comum do que métodos de filtragem desenvolvidos
especificamente para ruido Riciano ou Non Central Chi.

Serd apresentada nesse trabalho uma andlise comparativa
e objetiva entre os resultados da filtragem de imagens de
MRI quando o modelo AWGN ¢é adotado, com os resultados
obtidos pela abordagem proposta nesse trabalho, na qual
um modelo mais adequando é utilizado para transformar o
ruido da imagem antes da filtragem, por meio de uma VST
desenvolvida especificamente para estabilizacdo da variancia
de ruido Riciano [3].

II. TEORIA

Antes de abordar as especificidades do ruido presente em
imagens de MRI, algumas propriedades gerais dos diferentes
comportamentos de um ruido serdo apresentadas a seguir:

A. Ruido homosceddstico
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Um ruido é dito do tipo homoscedastico quando a
variancia de sua distribuicdo, em diferentes realizacdes, €
constante, ou seja, independe da intensidade do sinal original
bem como da posicdo espacial do mesmo. Trazendo essa
definicdo para caso de imagens digitais, isso significa que,
independentemente da intensidade e da localizacdo espacial
do pixel, a variancia da distribuicdo serd constante. O termo
homoscedastico estd diretamente relacionado, entdo, com o
termo independente e igualmente distribuido (i.i.d.) [6].

A distribuicdo caracteristica de ruidos desse tipo € a
Gaussiana (ou Normal). Mais especificamente, temos a
denominacdo AWGN, em referéncia a um ruido aditivo
branco gaussiano. O termo branco se dd pelo fato de que
afeta todas as frequéncias do sinal original de igual maneira.
Ja o termo aditivo se da pelo fato de o ruido ser adicionado
ao valor do sinal original, conforme equagéo 1, em que M (x)
¢ a imagem ruidosa nas coordenadas espaciais x, A(x) é a
imagem original sem ruido e N(x) é o ruido aleatério que
segue uma distribuicdo Gaussiana com média 0 e variincia
constante 62, N(0,07). Esses dois termos juntos definem o
conceito de homoscedasticidade [6].

M(x) = A(x) +N(x) (1)

Importante ressaltar que esse tipo de ruido ja foi bastante
estudado na literatura e grande parte dos algoritmos de
filtragem se baseiam nessa distribui¢@o caracteristica. Sendo
assim, trabalhar com esse tipo de distribuicdo tende a garantir
uma melhor performance no resultado final [6, 10].

B. Ruido heterosceddstico

O termo heteroscedastico ¢ atribuido quando a variancia
do ruido ndo é a mesma em toda a imagem. Isso pode ocorrer
quando a variancia do ruido depende da intensidade do pixel
ou quando depende da sua posi¢do espacial; ou, também,
quando a variancia é dependente dos dois fatores a0 mesmo
tempo: intensidade e posi¢do. Dessa forma, esse ruido nao
pode mais ser modelado como AWGN [6]. Ruidos desse
tipo estdo relacionados a diversas distribui¢des, dentre elas
a Riciana, caracteristica de imagens de MRI. Esse tipo de
ruido € mais complexo que 0 AWGN e deve ser modelado
corretamente de forma a ndo haver erros nos algoritmos de
filtragem de ruido.

C. Ruido Riciano estaciondrio

Primeiramente, antes de descrever os detalhes
matemadticos e estatisticos do ruido presente nas imagens
de MRI, vale ressaltar que a teoria apresentada neste
trabalho segue o contexto geral de aquisicio em MRI.
Sendo assim, assume-se que: os dados sdo adquiridos no
espaco-k utilizando a trajetéria Cartesiana regular; diferentes
contribui¢des do ruido sdo tratadas de forma independente,
de modo que o ruido total no sistema ¢ advindo da
contribui¢do individual de cada fonte; pds-processamento
e técnicas de correcdo ndo sdo aplicadas [5]. Dessa forma,
alguns casos ndo sdo considerados, tais como: interpolacdo
devido a amostragem Nao-Cartesiana; pds-processamente
para correcdo de artefados para protocolos de aquisicdo
especificos como EPI (Echo-plannar Imaging), dentre
outros. Muitos desses cendrios sdo especificos de alguns
fabricantes e modelos de equipamentos de MRI ou dependem
de uma sequéncia de pulsos especifica. As caracteristias do
ruido mudariam drasticamente e estudos aprofundados se
tornam necessarios para esses casos [5].

Seguindo, entdo, o contexto geral, sabe-se que uma
das principais fonte de ruido em aquisicdes de MRI € o
ruido eletronico (ou térmico), proveniente, como o proprio
nome ja sugere, dos componentes eletrdnicos existentes nos
equipamentos [1]. O sinal em MRI € adquirido diretamente
no dominio de Fourier, também chamado de espaco-k.
Matematicamente, no espaco-k (e somente no espago-k),
esse tipo de ruido é modelado como um ruido AWGN [5].
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Posteriormente, dois passos sdo executados: (1) transformada
inversa discreta de Fourier e (2) médulo da imagem resultante
no passo 1. Com isso, chega-se ao que se conhece como
imagem de magnitude, que sdo as imagens efetivamente
visualizadas pelos médicos durante o exame. Com isso,
o sinal no espago-k, corrompido por ruido Gaussiano
homoscedastico, passa a ser corrompido por ruido Riciano
heterosceddstico no dominio da imagem [5, 3].

Seja M (k) os dados amostrados no espago-k, tem-se:

M(k) = A(k) +N(k), )
em que A(k) = A,(k) + jAi(k) é o sinal complexo sem
ruido decomposto em parte real e imagindria, representados,
respectivamente, pelos indices r» e i. De forma andloga,
N(k) = N,(k) + jN;(k) representa o rdido complexo AWGN,
em que N,(k) e N;(k) seguem uma distribui¢do Gaussiana
com média zero e variancia 62, N(0,07).

Seja M(x), aimagem de magnitude ruidosa de MRI, obtida
apods aplicagdo dos passos (1) e (2) citados anteriormente,
tem-se:

M(x) = [iDFT (M(k))], 3)
em que iDFT(.) representa a transformada inversa discreta
de Fourier e |.| o médulo aplicado ao sinal apés a iDFT(.).
A partir das equagdes 2 e 3 e sabendo que hd uma relacio
direta entre a posi¢do k (no espaco-k) e x (na imagem de
magnitude), tem-se [5]:

M) = /(4@ TN 0P+ (A +N()? @)

A variincia de M(x), condicionada ao sinal sem ruido
A(x), é descrita por [3] :

g2 2 7o) (AW ’
sarM()JA),0) =203 + A - "L (550 )
em que L(y) = e2[(1 —y)I (=2) —yh (=3)L.y= 7/42(2;

I,, denota a funcdo Bessel modificada de ordem n. Para altos
valores de SNR, isto é, altos valores de A(x) em relagio a o,,,
a equagao pode ser aproximada por [3] :

o,
AT ©)

2
var(M(x)|A(x), 0,) =~ o) —
Percebe-se, pelas equacgdes 5 e 6, que a variancia do sinal
var(M(x)|A(x)) ndo é constante em toda a imagem. Mais
ainda, nota-se que ela depende diretamente da intensidade
do sinal sem ruido A(x) e da sua relagdo com oy, ou seja,
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o ruido Riciano é dependente do sinal, ou seja, é do tipo
heteroscedastico. Como a varidncia depende somente do
sinal, pode-se dizer, entdo, que o ruido é do tipo Riciano
estaciondrio. Em MRI, esse € o tipico caso de exames em
que se utiliza uma tnica bobina na aquisi¢do do sinal [5].

D. Ruido Riciano ndo-estaciondrio

Além da dependéncia do sinal, vista anteriormente, a
variancia do ruido Riciano pode ser também dependente
do espaco. Consequentemente, o ruido é dito do tipo
nao-estacionario. Em MRI, esse cendrio ocorre sempre
que tivermos aquisi¢io com multiplas bobinas (devido a
correlagdo espacial entre elas, gerando correlagdo do ruido
entre os dados em diferentes posicdes) e quando € utilizado
uma sequéncia acelerada ou paralela (devido a utilizagdo de
algoritmos de interpolacdo para os dados ndo amostrados,
gerando também correlacdo do rdido entre os dados em
diferentes posicdes) [S].Dentre os diferentes algoritmos de
aceleracdo, o Sensitivity Encoding (SENSE) e o Generalized
Autocalibration Parallel Aquisition (GRAPPA) sdao os mais
utilizados. Porém, o GRAPPA gera uma imagem com
distribuicdo Non Central Chi e nio serd abordado nesse
trabalho [5].

Para o caso nao-estaciondrio, o termo o, da equagdo 6
depende da posicdo espacial do pixel [1, 5]. Logo, tem-se
0,,(x). Dessa forma, podemos reescrever a equagdo 6 como
Gn(x)4

2A(x)%

var(M(x)|A(x), 6,(x)) =~ 0, (x)? @)
Nota-se, entdo, que a variancia agora depende ndo s6 do sinal
sem ruido A(x) como também do pardmetro oy (x) que varia
de acordo com a posicao espacial.

De forma resumida, podemos elencar os cendrios de ruido
em MRI conforme Tabela 1.

Tabela 1: Resumo das distribui¢des de ruido em MRI.

Bobinas Acelerada  Distribuicio Estacionario
Uma — Riciana Sim
Muiltiplas SENSE Riciana Nio

E. Transformada de estabilizacdo de varidncia

Conforme relatado, ao analisar a equag@o 6, nota-se que
a variancia do ruido depende do sinal original sem ruido
A(x). Para tratar dessa dependéncia do sinal, em [3], o autor
propde, por meio de métodos de otimiza¢do numérica, uma
VST capaz de transformar o ruido Riciano heteroscedastico,



presente em imagens de MRI, em ruido homoscedastico
aproximadamente Gaussiano, com média zero e variancia
constante.

Dessa forma, apés o uso da VST, a imagem ruidosa, agora
denominada M, (x), pode ser descrita como

M (x) R Ayst (x) —|—N(X) ®)
em que A,y(x) representa o sinal livre de ruido no
dominio da transformada e N(x) o ruido transformado
aproximadamente homosced4stico, Gaussiano, com média 0
e variancia constante 62, N (0, 0'2). Mais ainda, a proposta
em [3] otimiza o processo para que o ruido da imagem passe
a ter uma variancia préxima de 1. Dessa forma, a variancia de
M5 (x), condicionada & média A, (x) pode ser descrita como

var(Myg (x)|Avg (x)) = 6% ~ 1. )

Assim, no dominio da transformada, pode-se utilizar
qualquer algoritmo de filtragem desenvolvido para o modelo
AWGN para a remocao do ruido dessa imagem, o que é uma
grande vantagem, ja que o ruido AWGN ¢€ mais fécil de ser
removido.

Em termos de estimativa de pardmetros para que a
transformada possa ser realizada, um Unico parametro, G,
da distribui¢do Riciana necessita ser estimado. Em [3], o
autor também propde um algoritmo para essa estimativa.
Vale ressaltar que a estimativa e a propria VST foram
elaboradas para ruido Riciano estaciondrio. Para o caso
ndo-estaciondrio, no entanto, pode-se usar a estimativa da
matriz 6,(x) abordada em [1].

Finalizando o conceito de VST, deve-se mencionar que,
apds a filtragem da imagem estabilizada, uma transformada
inversa necessita ser aplicada, trazendo a imagem para
sua faixa de valores originais. Em termos de notacdo,
utilizaremos VST ~!.

Com isso, podemos estabelecer quatro passos para a
correta filtragem de ruido Riciano em imagens de MRI:

1. Estimar o, (para o caso estaciondrio) ou 0, (x) (para o
caso nao-estaciondrio);

2. Aplicar a VST;

Filtrar a imagem estabilizada;

4. Aplicara VST~ !;

e

I1I. MATERIAIS E METODOS

A partir do embasamento tedrico apresentado em II, nesse
item serdo abordados os materiais e métodos utilizados nesse
trabalho. Em termos de implementagao de c6digo, o software

utilizado foi o MATLAB (The Mathworks Inc.), versao
R2016a.

A. Banco de imagens do phantom BrainWeb

Para permitir uma andlise objetiva do desempenho dos
métodos de filtragem de ruido apresentados, utilizou-se o
banco de imagens do phantom BrainWeb [11]. O phantom
simula a aquisi¢ao do tipo T1 (TI-weighted) e as imagens
possuem dimensdo 217 x 181 pixels e quantizagdo em
8 bits. A vantagem do uso de imagens sintéticas é a
possibilidade de se usar métricas objetivas, que necessitam
de uma imagem de referéncia sem ruido (Ground Truth), para
avaliacdo da qualidade das imagens filtradas. Além disso,
pode-se controlar a intensidade e a distribuicdo espacial do
ruido Riciano a ser adicionado nas imagens (estaciondrio
ou ndo-estaciondrio) para uma avaliagdo mais completa dos
métodos apresentados.

A partir da imagem sem ruido, 100 realiza¢des ruidosas
foram obtidas utilizando-se dois diferentes padrdes de
distribui¢do de ruido tipicos de exames clinicos de MRI,
sendo um do tipo Riciano estaciondrio, com parametro G, =
20 (8% do valor maximo de intensidade) e outro do tipo
Riciano ndo-estaciondrio com o, variando de 6 a 20 em
valores absolutos (2% a 8% do valor maximo de intensidade).
Esse padrao de ruido variante no espaco € tipico de aquisi¢ao
com multiplas bobinas e acelerada SENSE [1, 5] e € ilustrado
na Figura 2 (parte superior).

B. Algoritmo para estimativa e filtragem do ruido

Para a filtragem das imagens de MRI, foi utilizado o
algoritmo proposto nesse trabalho (com VST) e também
uma abordagem em que foi assumido que o ruido €
aproximadamente AWGN. Para ambos os casos, o método
de filtragem de ruido utilizado foi o Block Matching and
3D filtering (BM3D), desenvolvido especificamente para
filtragem de ruido AWGN [9]. Vale ressaltar, porém, que
outros algoritmos podem ser utilizados para a filtragem.
Em termos de notagdo para esse trabalho, utilizaremos
VST_BM3D e AWGN_BM3D respectivamente.

C. Métricas objetivas

Para as imagens sintéticas do phantom BrainWeb, além
da inspecdo visual das imagens, duas meétricas objetivas
foram aplicadas para avaliacdo da qualidade das imagens
processadas. Elas sdo descritas a seguir:

e Raiz do erro médio quadratico normalizado pela
média (EQMn)[10]
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O célculo do EQMn é dado por

~ XX (A —A(x 2
EQMn(A,A) = lezl‘,); W , (10)

em que A é a imagem original sem ruido, Aéa
imagem filtrada, X e Y s@o as dimensdes da imagem. A
normalizacdo ¢ justificada como uma forma de medir o
erro localmente e de forma ponderada. Em se tratando de
filtragem de ruidos dependentes do sinal e/ou do espago,
deve-se entender que o objetivo € filtrar todos os niveis
de cinza, de todos os pixels, de modo uniforme.

o Indice de similaridade estrutural (SSIM) [12]

Essa métrica, bastante utilizada para avaliacdo da
qualidade de imagens, leva em conta parimetros da
imagem relativos ao sistema visual humano [12], como
luminancia, contraste e estrutura. Inicialmente, o SSIM
¢ calculado de forma local, em regides de tamanho 11 x
11 e, ao final, a média aritmética de todos indices locais
é obtida, chegando-se ao SSIM global da imagem sendo
avaliada.

Em relag@o aos valores nimericos do SSIM, quanto
mais préximo de 1, mais a imagem sendo processada (A)
é similar 2 imagem de referéncia (A), com 1 sendo o valor
maximo e representando o cendrio ideal, quando as duas
imagens sdo idénticas.

IV. RESULTADOS E DISCUSSAO

A. Inspecdo visual

As Figuras 1 e 2 mostram os resultados de filtragem
da imagem do phantom BrainWeb corrompida pelos
dois padrées de ruido, estaciondrio e ndo-estaciondrio,
respectivamente. Em ambos cendrios, o método VST_BM3D
foi superior ao algoritmo AWGN_BM3D, o que pode
ser verificado nas imagens ampliadas de uma regido de
interesse. A diferenca é mais evidente ainda no caso do
ruido ndo-estaciondrio. Nota-se bastante ruido residual na
imagem filtrada pelo método AWGN_BM3D, principalmente
no centro da regido de interesse, diretamente relacionado
com a distribuicdo espacial do ruido (ver Figura 2, parte
superior). Esse fato é explicado pois, conforme abordado
no item II, a variancia do ruido depende da intensidade do
sinal e da posi¢do espacial do pixel. Sendo assim, ao usar
um algoritmo que adota uma modelagem de ruido Gaussiano
homoscedastico (AWGN), as caracteristicas mencionadas
ndo sdo levadas em consideracdo, afetando negativamente o
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resultado do processo de filtragem.

B. Métricas objetivas

As Tabelas 2 e 3 mostram os resultados das métricas
objetivas para os resultados referentes as imagens do
phantom BrainWeb para ambos cendrios: ruido estaciondrio
e ndo-estaciondrio, respectivamente. Para o célculo desses
parimetros foram processadas 100 imagens de cada
distribuicdo de ruido e o valor médio, juntamente com o
desvio padrio, sdo apresentados nas tabelas.

AWGN_BM3D

AWGN_BM3D VST_BM3D VST_BM3D
Figura 1: Resultado de filtragem para o caso de ruido Riciano estaciondrio.
Na figura estdo exibidas as imagens sem ruido, ruidosa (linha superior)
e também os resultados de filtragem pelos métodos: AWGN_BM3D e
VST_BM3D (linha inferior). A esquerda, as imagens completas e 2 direita
uma regido de interesse ampliada (referente a drea delimitada em vermelho).
E possivel notar o melhor desempenho da proposta baseada em VST, em que
a imagem resultante apresenta menos ruido residual.

Tabela 2: Métricas objetivas. Ruido Riciano estaciondrio. Na coluna de
resultados, estdo destacados, em negrito, os valores referentes ao algoritmo
de melhor desempenho. A linha referente a imagem ruidosa foi mostrada
para melhor compreensdo do ganho obtido por meio dos métodos de
filtragem.

Algoritmo Métrica Resultado

Ruidosa EQMn 1.320 £ 0.060
AWGN_BM3D EQMn 1.120 + 0.040
VST_BM3D EQMn 0.430 + 0.070
Ruidosa SSIM 0.540 £ 0.002
AWGN_BM3D SSIM 0.840 + 0.003
VST_BM3D SSIM 0.858 + 0.003

Confirmando a analise visual, os resultados mostram, de
forma objetiva, o melhor desempenho do método baseado em
VST. O método obteve melhor desempenho na filtragem do
ruido para as duas métricas, EQMn e SSIM, para ambas as
distribui¢des de ruido abordadas nesse trabalho.



) AWGN_BM3D VST_BM3D

AWGN_BM3D VST_BM3D
Figura 2: Resultado de filtragem para o caso de ruido Riciano
nao-estaciondrio. Na parte superior, o padrdo de variacdo espacial do
pardmetro oy (x). A escala refere-se ao valor absoluto do parAmetro. Abaixo,
estdo exibidas as imagens sem ruido, ruidosa (linha mediana) e também
os resultados de filtragem pelos métodos: AWGN_BM3D e VST_BM3D
(linha inferior). A esquerda, as imagens completas e 2 direita uma regido
de interesse ampliada (referente a 4rea delimitada em vermelho). E possivel
notar o melhor desempenho da proposta baseada em VST, em que a imagem
resultante apresenta menos ruido residual.

Tabela 3: Métricas objetivas. Ruido Riciano ndo-estaciondrio. Na coluna de
resultados, estdo destacados, em negrito, os valores referentes ao algoritmo
de melhor desempenho. A linha referente a imagem ruidosa foi mostrada
para melhor compreensdo do ganho obtido por meio dos métodos de
filtragem.

Algoritmo Métrica Resultado

Ruidosa EQMn 0.980 + 0.005
AWGN_BM3D EQMn 0.829 + 0.004
VST_BM3D EQMn 0.363 + 0.006
Ruidosa SSIM 0.622 + 0.002
AWGN_BM3D SSIM 0.824 + 0.003
VST_BM3D SSIM 0.874 + 0.002

V. CONCLUSAO

Os resultados obtidos indicam as vantagens do uso da
metodologia baseada em VST para a filtragem de ruido
de imagens de MRI. Em todos os cendrios abordados,
fica clara a importancia do correto modelamento do ruido
bem como da estabiliza¢do da varidncia antes da filtragem.
Por ultimo, reforga-se a grande aplicagdo da técnica em
diversos subcampos de MRI. Diversos trabalhos fazem uso
de pré-processamento das imagens para posterior aplicacdo
em softwares de segmentacao (diffusion MRI, por exemplo).

Sendo assim, com o melhor resultado da remog¢ao de ruido
espera-se que melhores resultados em etapas posteriores
venham a ocorrer.

Além disso, outra consequéncia seria a reducdo do tempo
e custo de exame. Em geral, os equipamentos fazem vérias
amostragens durante o processo de aquisi¢do da imagem
(um dos motivos para os longos tempos de exame). Essa
abordagem visa a diminui¢do do ruido por meio de médias
das amostragens realizadas. Ao utilizar o algoritmo de
filragem, no entanto, o nimero de amostras poderia ser
reduzido, uma vez que o ruido seria removido por meio do
processamento posterior da imagem.
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