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Abstract

In this work we describe the complete construction process of subspaces
that are left invariant by linear I'-reversible-equivariant mappings, where I' is
a compact Lie group of all the symmetries and reversing symmetries of such
‘mappings. These subspaces are the o-isotypic components, first introduced by
Lamb and Roberts in {14] and that correspond to the isotypic components for
purely equivariant systems. In addition, by representation theory methods,
two algebraic formulae are established for the computation of the o-index
of a closed subgroup of I'. The results obtained here are to be applied to
general reversible-equivariant systems, but are of particular interest for the
more subtle of the two possible cases, namely the non self-dual case. A series
of examples is presented.

Keywords: symmetry, reversing symmetry, invariant subspaces, Haar integral, char-
ecter theory.

2000 AMS Classification: 35832; 37G40

!Email address: phbaptistelli@uemn.br
2Email address: miriam@icmc.usp.br



Resumo

Neste trabalho descrevemos o processo completo de construgao dos subespagos que
sao deixados invariantes por aplicagoes lineares ['-reversiveis-equivariantes, onde I é
um grupo de Lie compacto de todas as simetrias (equivariancias) e anti-simetrias {re-
versibilidades) de tais aplicagoes. Estes subespagos sao as componentes o-isotipicas,
introduzidas inicialmente por Lamb e Roberts em [14] e que correspondem as compo-
nentes isotipicas para os sistemas puramente-equivariantes. Além disso, por métodos
da teoria de representagao de grupos, duas expressoes algébricas sao estabelecidas
para o célculo do o-indice de subgrupos fechados de I'. Os resultados obtidos aqui
se aplicam a sistemas reversiveis-equivariantes em geral, mas sao de particular in-
teresse ao caso mais complicado dentre os dois casos possiveis, a saber, o chamado
caso nao auto-dual. Apresentamos uma série de exemplos.

Q]



1 Introduction

Reversible-equivariant dynamical systems are characterized by the simultaneous oc-
currence of symmetries {equivariances) and reversing symmetries. In their mathe-
matical formulation, the set I' of these elements have a group structure, this group
acting linearly on the space of the variables. We shall assume throughout hat I is
a compact Lie group. In the dynamics point of view, trajectories of such systems
are taken into trajectories of the same systems preserving direction in 4ime by the
symmetries and inverting <direction in time by the reversing symmetries. The re-
sults of this paper were obtained motivated smainly by the interest in the analysis of
reversible-equivariant bifurcation problems.

The effect of symmetries in dynamical systems has become an important area
of research during the last thirty years. We mention the important contributions
in the systematic study of symmetries in bifurcation theory given by Sattinger [15],
Vanderbauwhede [17] and Golubitsky, Stewart and Schaeffer [10], among many oth-
ers. The effect of reversing symmetries in local and global dynamics has been firstly
investigated in the context of purely reversible dynamical systems by Arnol’d {2],
Devaney [8] and Sevryuk [16]. After that, a lot of attention has been given in this
direction. See Lamb and Roberts {13] for a historical survey and comprehensive
bibliography.

The interest onzeversible-equivariant systems is more recent and, as in the purely
equivariant case, the main techniques applied to the description of the vector fields
as well as to the study of global and local dynamics fall into group representation
theory and singularities. The first impulse to the subject came from the classi-
fication of the T-reversible-equivariant linear systems by Lamb and Roberts [14],
where they consider the two possible representations of I' that can occur in the
reversible-equivariant setting, namely the self-dual and non self-dual representa-
tions (Definition 2.3). Methods of singularity theory were developed in [4], in the
same lines as Golubitsky et al. [10], for the analysis and classification of steady-state
bifurcations in the self-dual case. The main point in that case is the existence of
a reversible-equivariant isomorphism that establishes a one-to-one correspondence
with an associated purely equivariant bifurcation. Antoneli et al. [1] present an
algorithm for finding the general form of I'-reversible-equivariant vector fields by
employing algebraic techniques of invariant theory. Others recent results in this
direction are also found in [3, 6, 7]. The starting point for the study of systems that
are-simuitaneously equivariant and reversible is to introduce a group homomorphism
o : ' — Zy = {£1} that defines the symmetries and the reversing symmetries of
the problem in question, an element v € T being a symmetry if o{y) = 1, and a
reversing symunetry if o{y) = —1. The present paper uses representation theory
of compact Lie groups for the investigation of two subjects for those systems: the
g-isotypic decomposition and the o-index.

Regarding the first subject, we observe that the structure of the representation
of T' on afinite-dimensional vector space V allows the decomposition of this space
in a direct sum of irreducible representations. This guarantees the existence of the
isotypic components, each one combining all the irreducible representations that are



in a fixed isomorphic class, that are invariant by any purely equivariant linear map-
ping. Correspondingly, the construction of components that are left invariant by any
reversible-equivariant linear mapping is of great importance in the systematic study
of reversible-equivariant systems. These are the o-isotypic components, introduced
by Lamb and Roberts in [14]. The first purpose of the present paper is to com-
plete the construction of those subspaces given therein and to detail a comparison
between them.

Regarding our second subject, we observe that a I'-reversible-equivariant map-
ping on V can be viewed, with appropriate actions of I' on the source and target,
as an equivariant mapping. More specifically, the action of I' on the target, denoted
by V,, is the dual action of I on the source V (Definition 3.1). Hence, for ¥ C '
a subgroup, every ['-reversible-equivariant mapping maps the fixed-point subspace
of ¥ in V, Fixy(X) , to the fixed-point subspace of ¥ in its dual V,, Fixy, (Z).
The o—indez of ¥ in V, denoted by sy (X), is then defined as the difference be-
tween the dimensions of Fixy(X) and Fixy, (¥) (Definition 2.7). The knowledge
of this number through the isotropy lattice of I" has its interest in the analysis of
the bifurcation diagrams in ['-reversible-equivariant problems. In fact, according to
Buono et al. [6], the structure of the set of equilibria in an open neighborhood of a
generic equilibrium with isotropy subgroup ¥ of a reversible-equivariant vector field
must be decribed to obtain its bifurcation diagrams. They establish the dimension
of families of reversible-equivariant equilibria with a given isotropy subgroup ¥ in
terms of sy/(¥) and obtain results about the bifurcation structure of some families.
The second purpose of the present work is to establish two alternative formulae
for the direct computation of sy (X), without knowing the values of the dimensions
of Fixy{X) and Fixy, (X). One of these expressions is given by using the charac-
ter of the representation of the normal subgroup ¥, formed by all symmetries of
¥, in terms of a Haar integral over ¥.. Now, the symbolic computation packages
GAP [9] and SINGULAR [12] have the character function implemented in their li-
braries. Hence, for examples where one uses those programmes, the usage of our
expression for sy (X) make its computation much faster and simpler. Although the
formulae are general, they turn out to be particularly useful for the class of non
self-dual representations of I'. In fact, when V is a self-dual vector space, sy(X) is
zero, for all ¥ C I'. However, sy(X) can be either zero, positive or negative if V' is
non self-dual, so its value must be investigated.

The paper is organized as follows. In Section 2 we recall some concepts and
results from group representation theory and equivariant theory of compact Lie
groups. In Section 3 we describe the complete process of construction of the o-
isotypic components of a vector space V' that represents the space of variables of a
reversible-equivariant system. In Section 4 we present an algebraic expression for
sy(Z), where & C I is a closed Lie subgroup. This shall be given in terms of a Haar
integration over ¥,. We end with Subsection 4.1, where we use the structure of the
isotypic decomposition of V' to obtain another expression for sy (X) for a special
type of representations.



2 Preliminaries
We start this section by presenting the definitions and some basic results on repre-
sentation theory of compact Lie groups and of reversible-equivariant theory.

2.1 Group representation

Let I' be a compact Lie group and V a finite-dimensional vector space. We start by
recalling that to a linear action of I" on V,

I'xV —» V
(7,x) — 7=,

there corresponds a group homomorphism from I' to the group GL(V') of invertible
linear transformations,
p: I — GL(V)
v = p(7)

p(y)(z) = z, called a representation of I' on V. We shall denote by (p, V) the
vector space V under the representation p.

Being compact and a Lie group, I' admits an invariant measure, denoted by d-y,
which is unique up to a constant multiple. Then, for f : I' — R continuous, we
consider the Haar integral of f over I', which is denoted by f7 er S (7)dy. We assume

)

that the integral has been normalized, so that fr 1dy = 1. We refer to Brocker and
tom Dieck [5] for the definition and a proof of existence of the Haar measure on
a compact Lie group. Using the Haar integral, we construct a I'—invariant inner
product on V (see Golubitsky et al. [10, Proposition XII 1.3]). As a consequence,
we can identify I" with a closed subgroup of the orthogonal group O(n) . Hence,
with no loss of generality, we assume I' acting orthogonally on V.

We now fix a homomorphism of Lie groups
o:' = Zy =2 {£1}. (1)

Notice that o defines a unidimensional representation of I, with corresponding action
on R given by (v, z) — o(v)z.

Let us denote by I', = kero and I'_ the complement of I', in I'. Motivated by
the study of reversible-equivariant dynamics, the following definition is given:

Definition 2.1 Consider the homomorphism o given in (1). An element in Iy, =
ker o is called a symmetry of I' and an element in " _ is called a reversing symmetry
of I'. When I'_ is non-empty, I' = ', U I'_ is called a reversing symmetry group.

The product of two symmetries or two reversing symmetries is a symmetry,
and the product of a symmetry and a reversing symmetry is a reversing symmetry.
Also, if 7y is a symmetry (reversing symmetry), then y~! is a symmetry (reversing
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symmetry). When o is non-trivial, ', <T is a normal subgroup of I'. In this case,
we choose an arbitrary § € I' _ and writeI'_ = ¢ I', so I is decomposed as a disjoint
union ' =T, U4 ;.

Definition 2.2 Let p be a representation of I on V. Given the homomorphism o in
(1), we define the dual representation of p as

pe : I' = GL(V) @)
v = o()p(y).

Notice that (p,), = p. In what follows, the representation (p,, V') shall also be
denoted by V.

Let us now recall the notion of equivalence between two representations of T'.
If p and n are two representations of I' on V and W, respectively, then the two
representations are equivalent, or said to be isomorphic, if there exists a linear
isomorphism T : (p,V) — (n, W) such that T'(p(y)z) = n(y)T(z), for all v €
I', z € V. As mentioned in Section 1, the recognition of those representations that
are isomorphic to its dual is the crucial point for the systematic study of a class of
reversible-equivariant vector fields. These are the representations defined as follows:

Definition 2.3 A representation p of I' is called self-dual if it is isomorphic to p,.
In this case, we say that (p,V) is a self-dual space.

We end this section presenting a result, Corollary 2.5, that shall be used in
Section 4 to establish a formula for the o-index of a subgroup ¥ C I'. This result
is an immediate consequence of the theorem below, which is concerned with the
integration over a compact Lie group given by an iteration of integrals.

Theorem 2.4 (“Fubini”) Let I' be a compact Lie group, A a closed subgroup.
Let d(yA) denote the normalized Haar measure on the quotient I'/A. For any
continuous real-valued function f on T,

/Pf(v)dv = /F/A (/A f('m)dn> d(vA) .

Proof. See Brocker and tom Dieck [5, Proposition I 5.16]. O

If I admits a reversing symmetry ¢ and if ¥ C I' is a subgroup with ¢ € X, then
Y =3X,UZ_, where 2_ =X NT_and £, = X NT,. In this case, &/Z; = Zy, so
the theorem above reduces to the following:

Corollary 2.5 LetT' be a reversing symmetry group and let ¥ C I' be a closed Lie
subgroup with § € ¥ a reversing symmetry. If f : 3 — R s a continuous function,

then
JRE =%Uz+f('7)d7 +/E+f(57)d7]~



2.2 Character of a representation

Character theory is an essencial tool in invariant theory and sustain important prop-
erties of group representations. We refer to Brocker and tom Dieck [5] or James and
Liebeck [11] for details.

Given a representation p of I' on V, the character of p is the function yy : I' — R,
xv(7) = tr(p(7)),
where tr(p(7)) denotes the trace of the matrix of p(7). Notice that if v, € I", then
xv{(v0y™h) = xv(9),

so xv 1s constant on the conjugacy classes of I'. In addition, isomorphic representa-
tions have the same character. We also have:

Lemma 2.6 Let I' be a reversing symmetry group and V a self-dual vector space.
Then, xv(y) =0, for any reversing symmetry «y .

Proof. See Antoneli et al. {1]. O

Let ¥ C I' be a subgroup. The fized-point subspace of ¥ is the subspace of V
given by
Fixy(X) ={z €V : p(y)z =1z, Vye I}

We now define the object of Section 4, which gives the difference between the
dimensions of the fixed-point subspaces of ¥ in V' and in its dual V.

Definition 2.7 Let ¥ be a subgroup of I'. We define the c—indez of ¥ in V as
sy(X) = dimFixy (X) — dim Fixy, (2).

The following lemma provides an algebraic expression for the dimension of Fixy (2)
by means of the Haar integration over ¥ and the character function.

Lemma 2.8 Let I' be a compact Lie group acting on V and let ¥ C T" be a Lie
subgroup. Then,

dim Fixy (%) = / xv(y)dy . (3)
Proof. See [10, Theorem XIII 2.3]. O

If ¥ is finite, then (3) becomes

5 ey 1
dimFixy (X)) = ] Z xv (7).
yeED
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2.3 Equivariant mappings and isotypic components

Let I' be a compact Lie group acting linearly on two finite-dimensional vector spaces
V' and W, with representations (p, V) e (n, W).

A mapping g: (p, V) — (n, W) is ' —equivariant if

9(p(7)z) =n(v)g(z), vy €T, zeV. ()

When (n, W) = (p, V), we say that g in (4) is purely equivariant (or simply equivari-
ant) and, in this case, I' = ', is the symmetry group of g. One important aspect
of I'-equivariant mappings is that they send fixed-point subspaces into fixed-point
subspaces, 1.e.,

g(Fixy (%)) C Fixw (),

for any subgroup ¥ CI'.

We say that a subspace U C V is I'-invariantif yu € U forallu € U,y € T". If, in
addition, the only I'-invariant subspaces of U are {0} and U, then the representation
of I' on U is called irreducible and U is called a I'-irreducible subspace of V. A
I'—invariant subspace admits a complement in V' which is also I'—invariant (see
Golubitsky et al. [10, Proposition XII 2.1]). As a consequence, we have the following
result:

Theorem 2.9 Let ' be a compact Lie group acting on V.

(a) Up to isomorphism, there ezists a finite number of I'-irreducible subspaces
U.CV,k=1,...,m, U not isomorphic to U; if k # j.

(b) Let Vy be the sum of all I'—irreducible subspaces of V that are isomorphic to

Ui. Then,
VZ‘G@"'EBVm- (5)
(c) If T : V — V is a I'-equivariant linear mapping, then T(V}) C Vi, for all
k=1,...,m.
Proof. See Golubitsky et al. [10, Theorems XII 2.5 and 3.5]. O

Definition 2.10 The subspaces Vj. given in Theorem 2.9 are called isotypic compo-
nents of V. The decomposition (5) is called isotypic decomposition.

By definition, the isotypic components are unique and can be decomposed as a
direct sum of isomorphic I'-irreducible subspaces. Hence, if U is a I'—irreducible
subspace of V, then U C V,, for a unique k € {1,...,m}.

oo



3 Reversible-equivariant mappings and the o—iso-
typic decomposition

We start this section with the definition of mappings that model systems in the
presence of symmetries and reversing symmetries, for which the results of this paper
are devoted for.

Definition 3.1 Let T be a compact Lie group and assume that its one-dimensional
representation o given on (1) is non-trivial. We say that a mapping g : V — V is
[’ —reversible-equivariant if

g(p(m)z) =o(v)p(1)g(z), Yy eT, zeV. (6)

The reversibility-equivariance condition (6) can be written as

9(p(M)z) = ps(7)9(), (7)

where p, is the dual representation of I' on V defined in (2). It follows that a
" —reversible-equivariant mapping is I'—equivariant from (p, V') to (p,, V), that is,
when the action of I' on the target is the dual of its action on the source. If o is
trivial, then g in (7) is purely equivariant. When I' ~ Z; and the identity is the
unique symmetry of I', g in (7) is called purely reversible.

The purpose of this section is to describe the construction of subspaces that are
left invariant by any I'—reversible-equivariant linear mapping. This process corre-
sponds to the construction of the isotypic components of V' in the purely equivariant
case (Definition 2.10).

Let p be a representation of I" on V and let {(p1, U1), - . ., (pm, Um) } be the set of
irreducible representations of I', with px = Ply, > such that each isomorphism class of
irreducible representations contains precisely one of the Uy’s, k = 1,...,m. In what
follows, we write Uy to denote (pi,Ux) and (Uy), to denote the dual ((px)e,Us),
where (pr), = Poly,

Firstly, we note that the decomposition of V' into isotypic components under the
representation p coincides (up to isomorphism) with the decomposition of V' into
isotypic components under its dual representation p,. This is directly verified by
observing that :

(i) a subspace Uy is irreducible under p if, and only if, it is irreducible under p,;

(ii) two subspaces Uy and U, are isomorphic if, and ony if, their duals (Uy), and
(U;)s are isomorphic (by the same isomorphism).

Based on that, we generalize to the reversible-equivariant context two useful re-
sults [10, Lemma XII 3.4 and Theorem XII 3.5]) in representation theory of compact
Lie groups. These are Lemma 3.2 and Theorem 3.5 below.



Lemma 3.2 Let D be a reversing symmetry group acting on V. Let L : V — V be a
['-reversible-equivariant linear mapping and let W C V be a T’ —irreducible subspace.
So L(W) is T'—invariant and either L(W) = {0} or the representations of ' on W
and on L(W) are isomorphic.

Proof. It is a direct adaptation of the proof of [10, Lemma XII 3.4] to reversible-
equivariant linear mappings. O

Next we present two results that derive from Lemma 3.2 above.

Proposition 3.3 Let Uy e U; be non-trivial I'—irreducible subspaces of V' and let
T : Uy — Uj be a I'—reversible-equivariant linear mapping. Then, T is non-zero if,
and only if, it is an isomorphism.

Proof. The sufficiency is obvious. For the necessity, we take a I'-reversible-
equivariant extension of the non-zero T' : U, +— U; to V and apply Lemma 3.2.

g

Remark 3.4 From Proposition 3.3, it follows that for a given I'-irreducible Uy C
V, k € {1,...,m}, a necessary and sufficient condition for the ezistence of an
irreducible U; C V' isomorphic to the dual of Uy is the existence of a non-zero I'-
reversible-equivariant T : V' — V such that T(Uy) # {0}. In other words, for any
[-reversible-equivariant linear L : V. — V| we have that L(Uy) = {0} if, and only
if, there is no j € {1,...,m} such that Uy is isomorphic to (U;),.

Theorem 3.5 Let I' be a reversing symmetry group and let L : V — V be a I'-
reversible-equivariant linear mapping. Decompose V into isotypic components V}'’s
as in (5), each corresponding to the I'-irreducible Uy, k = 1,...,m. Then,

(a) If Uy is self-dual, then L(V}) C Vj.

(b) If Uy is non self-dual and there exists a I'-irreducible U; which is isomorphic
to (Uk)o, then L(Vi) C V;, for j # k.

(c) If Uy is non self-dual and there is no I'-irreducible U; which is isomorphic to

(Uk)o, then L(Vi) = {0}.

Proof. For k € {1,...,m}, write V; as a direct sum of I'—irreducible subspaces
that are isomorphic to Uy,

Vi=Win @ - & Wi (8)
Let ¢ € {1,...,a(k)}. I there is U; isomorphic to (Uy)s, then Wi, is isomorphic

to (U;)s. By Lemma 3.2, either L(Wy) = {0} or L(W4) is isomorphic a U;. In
both cases, L(Wy,) C V; and, by linearity, it follows that L(V;) C V;. By the same
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argument, L(V;) C V,. Hence, we conclude parts (a) and (b), with j = k for the
first case and 7 # k for the second.

If there is no U; isomorphic to (Ux),, then L(Wy) = {0} (see Remark 3.4). By
linearity, L(V;) = {0}. O

Remark 3.6 As claimed in [14], each isotypic block Vj is self-dual if, and only if,
the correspondent I'—irreducible Uy is self-dual. Here we ratify this claim, taking
now into account the three possible cases (a)-(c) of Theorem 3.5 that can occur:
write Vi as in (8). If Uy is self-dual, then Wy is self-dual, for all ¢ € {1,..., a(k)}.
Therefore Vy. is self-dual. On the other hand, suppose that Uy is non self-dual. Then,
any I'-reversible-equivariant linear mapping L : V — V satisfies either L(V}) C V},
j # k, or L(Vy) = {0} (cases (b) and (c) of Theorem 8.5, respectively). In both
cases, the isotypic block V. is non self-dual.

The following result establishes the desired construction of the invariant sub-
spaces and it is now an immediate consequence of Theorem 3.5.

Corollary 3.7 Let V be decomposed into isotypic components Vi.’s as in (5), k =

1,...,m. Then, there exists an order-2 permutation w of {1,...,m} such that the
subspace R
V= Vet Vs ()

is left invariant by any I'—reversible-equivariant linear mapping, where w(k) = k
for cases (a) and (c) of the Theorem 8.5 and w(k) = j for case (b), for some
je€{l,...,m}, j #k.

Definition 3.8 The subspaces Vk ’s given in (9) are called o-isotypic components of

V. The decomposition R R
V=Vi&...8V,

15 called o-isotypic decomposition of V.

We notice that the number g of subspaces 17,‘.’5 is at most m.

As mentioned before, the o-isotypic components have first appeared in [14].
The irreducibles considered in that paper for the construction of those components
correspond to cases (a) and (b) of Theorem 3.5 (see Subsection 3.2 therein). The
construction described above shows that, in addition to these two types, there is
one more case, namely (c), which appears in an extensive number of examples of
reversible-equivariant systems. A typical and very simple example is as follows:

Example 3.9 Consider the orthogonal group T' = O(2) acting on R3, with the
rotations 0 € SO(2) acting by rotating the (z,y)-plane and leaving the z-azis fized,
and the flip k € O(2) acting by the reflection with respect to the x-azis. Take
', = SO(2). The two isotypic components are

‘/1 = Ul = {(z,ya O)}a V2 = U2 = {(0703 Z)}

11



We have that V; is self-dual, so V; = Vy. Now, V, is non self-dual, with L(V3) = {0}
for all 0(2) reversible-equivariant linear mapping L (which falls in case (c)), so
Vg = V,. Hence, Vo 15 a o-1sotypic component that is not given by the sum of two

distmct zsotyplc blocks, which is the non self-dual case considered in [1/].

4 The o—index

The purpose of this section is to establish formulae for the computation of the o-
index of ¥ on V (Definition 2.7)

sy(Z) = dimFixy (2) — dim Fixy, (X), (10)

reducing the problem of finding dim Fixy (X) and dim Fixy, (X) to the direct com-
putation of the dimensional difference. Notice that the o-index is constant on the
conjugacy classes of I'. Moreover, as mentioned in the introductory section, if V/
is self-dual, then sy (X) = 0, for all ¥ C I'. Hence, the results of this section are
useful for the non self-dual cases, for which the o-index may assume any value (zero,
positive or negative).

In the theorem below we give an algebraic expression for sy (X) in terms of a
Haar integral over ¥, depending only on the character of its representation on V.
In Subsection 4.1, we obtain another explicit expression for sy () for a class of
representations in terms of the o-indices of ¥ on the non self-dual I'—irreducible
subspaces of V.

Theorem 4.1 Let I" be a reversign symmetry group and p a representation of T’
on V. If ¥ C T is a closed Lie subgroup with ¥_ non-empty, then for fized (but
arbitrary) § € X_

svi®)= [ xvlom)ar, (11)

PO

where xv is the character of (p,V).
Proof. It follows directly from Lemma 2.8 and Corollary 2.5. O

If ¥_ is empty, it is direct from (10) that sy (X) = 0. If ¥_ is non-empty and &
is finite, then (11) becomes

Sv(z

ZXV

| 24 | o=

for a § € ¥_ fixed. In this case, §7 runs over ¥ _ when -y runs over ¥, . In addition,

| By |= '—5—, so we rewrite the expression above as
” 2
(D) = 157 3 xvl0), (12)
yEX_

12



We now illustrate the usage of Theorem 4.1. With the aim of applying our results
to the analysis of branching of equilibria in reversible-equivariant bifurcations, we
compute sy (X) for ¥ an isotropy subgroup and ¥_ non-empty.

Example 4.2 Consider the standard action of the dihedral group D,, on C gener-
ated by the complex conjugation and by the rotation £ of angle 2;”

i21r

e Ez=¢€""n2z.

w|

RZ =

Take k as a symmetry and € as a reversing symmetry. This implies that n is even
and I'y = Dz (see Baptistelli and Manoel [3]). We have that tr(€) = 2cos(3T)
ts non-zero if, and only if, n # 4. Hence, such representation of D, on C is non
self-dual for n # 4 (Lemma 2.6). For n = 4, this representation is self dual, since

(3 )

1s the matriz of a Dy-reversible-equivariant linear map.

Up to conjugacy, ¥ is Zo(€k) or D,. Forn =4, sc(X) = 0. For n # 4, the
isotropy 7o (EK) is generated by a reversing symmetry which has null character, so
from (12) sc(Z2(€k)) = 0. Reversing symmetries of D,, which are reflections have
the form k€%, with 1 < k < n —1 odd, and have null trace. On the other hand,
reversing symmetries that are rotations are of the form £, with 1 <k <mn —1 odd,
and have trace equal to 2 cos[2X]. From (12),

n_y
2 — (dm + 2)m
sa(Dy) = - L cos [_7_7:_] .

m=0

Forn =2, sg(Dy) = —1. For n > 6,

2.37 o 2(n —3)w cos 2(n — l)7r> 0.
n

2 2
sc(Dn) = — <cos _777 + cos + .--+cos ~ + = _
n ?

Example 4.3 Consider the standard action of Zy & Zy on the plane generated by

the flips
(10 P
K1 = 0 —1 an Ko = 0 1 .

Take k1 a reversing symmetry and Ko a symmetry, so this representation is non
self-dual.

Here, ¥ is Zy ® Zy or Zy(k1). The isotropy Zq(k1) is generated by a reversing
symmetry with null trace. From (12), we get s(Zy(k1)) =0 and s(Zy ® Zy) = —1.

Pt
o



Example 4.4 Consider the action of O(2) on R® of Ezample 3.9, which is non
self-dual. The isotropy subgroups are O(2), SO(2), Zs(k) and 1. Here, ¥ is O(2)
or Zo(k). From (12), sr3(Zs(k)) = —1. From (11),

27

1
sr3(0(2)) = /so(o)XRB(Ke)de = Xr:(k0)d6 = —1.

27l_0

4.1 The o—index for a class of representations

Let ' be a reversing symmetry group acting on V. Consider V' decomposed into
isotypic blocks Vi, k = 1,...,m. If V admits at least one I'-irreducible subspace Uy,
self-dual, assume with no loss of generality that Uy is self-dual for k € I = {1,...,p}
and it is non self-dual for k € J = {p + 1,...,m}. Otherwise, [ is empty.

In Section 3 we have classified the I'-irreducible subspaces Uy’s into three types,
as given in Theorem 3.5. In this subsection, we give a formula for the o-index for
cases where the irreducibles satisfy {a) or (b) of that theorem, which - as mentioned
before - are the types considered by Lamb and Roberts [14]. More specifically, the
representations that we investigate here shall satisfy the following assumptions:

o JA£0D
e for all k € J, Uy is of type (b) of Theorem 3.5.

Let ¥ C I' be a subgroup such that ¥_ is non-empty. Our aim is deduce an
expression for sy (X) when V is a representation under the assumption above. We
obtain sy (L) in terms of sy, (), for £ € J . Notice that sy, (X) =0 for k € I. More
precisely, we have the following:

Theorem 4.5 Under all the conditions above,

m-p
2

sv(D) = Y (alk) —a(n(k))su, (), (13)

k=p+1

where  is the permutation of Corollary 3.7 and a.(k) is the number of I'—irreducible
subspaces that sum direct to give the isotypic block V.

Proof. Since Fixy(Z) = @}, Fixy, (), then
dim Fixy () = Y _ dim Fixy, (%),
k=1

so the o—index of ¥ C ' in V can be write as

W@ =3 =3 . (14)



By the existence of the permutation 7 of Corollary 3.7, m — p must be even, and
the o—isotypic decomposition of V' is given by

V=t19..0V,0Vue. &V, (15)

3

where Vk =V, for k € I, and 17;\ =Vi®Vawy, for ke {p+1,...,
(14) and (15),

2} C J. From

M|

m-p
2

(@) = 3 (sw(D) + 51,4 (D). (16)
k=p+1
Now, from (8), we have that dim Fixy, (¥) = a(k) dim Fixy, (). Also,
dim Fi}{U"(k) () = dimFix,), (),
forall k € {p+1,..., %2} Then,
5V, (E) = a(n(k)) <dim Fixw,), (¥) — dim Fixy, (E))

Hence, (16) becomes

M4

sv(®) = 3 (alk) - a(n(k)))su, (D),

k=p+1

as desired. O

Example 4.6 Consider the action of the group Zq on R® generated by the reflection

10 0
k=[01 0],
g 0 =l

which we take to be a reversing symmetry. Such a representation of Zq is non
self-dual. The two isotypic components are

1/1 = {(Zayao)}’ V? = {(0,0, Z)},
where Uy = {(z,0,0) : z € R}, Uy = {(0,0,2) : z € R} are distinct Zy—irreducible
subspaces and a(1) = 2a(2) = 2. We have that U, and U, are subspaces of type (b)
of Theorem 8.5, with w(1) = 2. Hence, we can use (13) to get that

SRs(Zg) = SUI(ZQ) — Ik

15



References

[1] F. Antoneli, P.H. Baptistelli, A.P.S. Dias and M. Manoel, Invariant theory and
reversible-equivariant vector fields. Submitted.

[2] V.I. Arnol’d, Reversible Systems. Nonlinear and Turbulent Processes in Physics
3 (1984), 1161-1174.

[3] P.H. Baptistelli and M. Manoel, Some Results on Reversible-Equivariant Vector
Fields. Cadernos de Matemdtica 6 (2005), 237-263.

[4] P.H. Baptistelli and M. Manoel, The classification of reversible-equivariant
steady-state bifurcations on self-dual spaces. Math. Proc. Camb. Phil. Soc.,
To appear.

[5] T. Brocker and T. tom Dieck, Representations of Compact Lie Groups. Grad-
uate Texts in Mathematics 98, Springer-Verlag, New York, 1995.

[6] P.L. Buono, J.S.W. Lamb and R.M. Roberts, Bifurcation and Branching of
Equilibria of Reversible Equivariant Vector Fields. In preparation.

[7] C.A. Buzzi and J.S.W. Lamb, Reversible equivariant Hopf bifurcation. Arch.
Ration. Mech. Anal. 175 (2005), 39-84.

[8] R.L Devaney, Reversible Diffeomorphisms and Flows. Trans. Amer. Math. Soc.
218 (1976), 89-113.

[9] The GAP Group: GAP - Groups, Algorithms, and Programming.  Version
4.4.9, 2006. (http://www.gap-system.org)

[10] M. Golubitsky, I. Stewart and D. Schaeffer, Singularities e Groups in Bifurca-
tion Theory, Vol. II. Appl. Math. Sci. 69, Springer-Verlag, New York, 1985.

[11] G. James and M. Liebeck, Representations and Characters of Groups. 2nd ed.
Cambridge University Press, New York, 2001.

[12] G.M. Greuel, G. Pfister and H. Schénemann, SINGULAR 3.0. A Computer Al-
gebra, System for Polynomial Computations. Centre for Computer Algebra,
University of Kaiserslautern (2005). (http://www.singular.uni-k1l.de)

[13] J.S.W. Lamb and J.A.G. Roberts, Time-reversal Symmetry in Dynamical Sys-
tems: A Survey. Physica D 112 (1998), 1-39.

[14] J.S.W Lamb and R.M. Roberts, Reversible Equivariant Linear Systems. J. Diff.
Eq. 159 (1999), 239-279.

[15] D.H. Sattinger, Group Theoretic Methods in Bifurcation Theory. Lecture Notes
in Mathematics 762, Springer-Verlag, New York, 1979.

16



[16] M.B. Sevryuk, Reversible Systems. Lecture Notes in Mathematics 1211,
Springer-Verlag, New York, 1986.

[17] A. Vanderbauwhede, Local bifurcation and symmetry. Research Notes in Math-
ematics 75, Pitman, London, 1982.

17



289/2007

288/2007

287/2007

286/2007

285/2007

284/2007

283/2007

282/2007

281/2007

280/2007

NOTAS DO ICMC

SERIE MATEMATICA

CARVALHO, A.N.; DLOTKO, T.; NASCIMENTO, M.J.D. - Non
—autonomous semilinear evolution equations with almost
sectorial operators.

CARVALHO, A.N.; DLOTKO, T. - Dynamics of the viscous
Cahn-Hilliard equations.

BIASI, C.; MATTOS, D.; SANTOS, €.L. — Applications of the
non-standard Borsuk-Ulam theorem.

NABARRO, A.C.; TARI, F. - fFamilies of surfaces and
conjugate curve congruences.

FEDERSON, M. - Converse Lyapunov theorems for retarded
functional differential equations.

ANTONELI, F.; DIAS, A. P.; BAPTISTELLI, P. H.; MANOEL,
M. G. - Invariant theory and reversible-equivariant vector
fields.

TAHZIBI, A. - €Ergodic properties of dynamical systems
beyond uniform hiperbolicity (38" Iranian Mathematical
Conference) Zanjan-Iran.

LLIBRE, J.; OLIVEIRA, R.D.S. - Phase portraits of quadratic
polynomial vector fields having a rational first integral of
degree3.

BONOTTO, E.M.; GRULHA JR., N.G. - Lyapunov stability of
closed sets in impulsive semidynamical systems.

CARBINATTO, M.C.; RYBAKOWSKI, K.P. - On the
suspension isomorphism for index braids in a singular
perturbation problem.



