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1. INTRODUCTION 

Composite materials are of general use nowadays, which may be justified by their resistances 

to corrosion and fatigue, as well as their specific stiffness and strength [1]. However, their structural 

integrity depends on failure mechanisms initiating at the material microstructure, which, in turn, lead 

to macrostructural effects [2], that is, effects at the coupon or component levels [3], therefore 

supporting the use of multiscale simulations. 

These simulations require a microstructural model, regarded as a representative volume 

element (RVE), whose size must be sufficiently large to appropriately represent the microstructure, yet 

sufficiently small to represent a point at the macrostructure [4]. Said RVE can be regular, as the one 

shown in Fig. 1a, or not (Fig. 1b) – both figures present bidimensional microstructures, as cross-

sections with a plane perpendicular to the fiber length. 

 

      
                                                    (a)                                                                  (b) 

 
Figure 1 – Composite microstructural models: (a) regular; (b) irregular. 

 

Regular microstructures (Fig. 1a) tend to be less computationally expensive, because they can 

be reduced to much simpler fiber–matrix arrangements. However, real microstructures are normally 

irregular, being also influenced by the manufacturing process [6]. As local stress concentrations 

depend on the fiber arrangement [7], the necessity of analyzing irregular microstructures is clear. 

Such microstructures may be interpreted as point patterns (random distributions of objects 

throughout specified areas called windows), which may be described through Point Process Statistics 

techniques, as done in [7], for example; this effectively considers the fiber centers as said randomly 

distributed points. These spatial distributions, although not regular, also fail to exhibit complete spatial 
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randomness (CSR) [8,9], in which a given point can be in any location within the window with equal 

probability and independently from all the other points [7]; furthermore, the simple imposition of 

constraints on fiber centers to ensure fiber impenetrability in random arrangements (simple hard-core 

model) is also unsuitable for real microstructures [10]. 

As CSR and simple hard-core models are ruled out as possible models for irregular 

microstructures, many procedures have been proposed in the literature for the generation of those fiber 

arrangements. Said procedures may be grouped in two broad categories: numerical generation or 

image processing [5]. The first category involves fully computational methods [6,10-12], whereas the 

second necessarily employs experimental images of the real microstructure and image processing 

techniques [8,9], even if the final microstructure is to be computationally generated; this is especially 

true if the final algorithm performs pattern reconstruction, i.e., generation of a pattern whose statistical 

summary characteristics are as close as possible to those of the real pattern [13]. 

The optimization algorithm for pattern reconstruction presented in [13] is employed here, 

having been implemented in R [14] with package “spatstat” [15], with adaptations for generating fiber 

arrangements. The following sections outline the final algorithm and preliminary verification results. 

 

2. METHODOLOGY 

2.1. Theory 

Prior to presenting the employed algorithm, it is important to define the Point Process 

Statistics tools employed herein for pattern characterization and reconstruction; as these tools are 

functions, parametrized in coordinate 𝑟, they are denoted functional statistics. The ones employed in 

this work are defined below, according to [13], with 𝒫 denoting probability, ℰ representing an 

expected value, 𝑁 being the number of points in a given set, 𝜇 being the point density (number of 

points per unit area, commonly denoted pattern intensity), and 𝒷(𝒐, 𝑟) representing a circle of radius 𝑟 

centered at a position of coordinates 𝒐. Also, the subscript 𝑜 denotes that a probability or expected 

value is calculated given that there is a point pattern at coordinates 𝒐, whereas the symbol {𝑜} 

represents a set containing only said point. 

• Spherical contact distribution function, 𝐻(𝑟): cumulative probability distribution of 

the minimum required radius 𝑟 for a circumference centered at the origin to touch a 

point of the pattern, according to Eq. 1. 

 

𝐻(𝑟) = 1 − 𝒫{𝑁[𝒷(𝒐, 𝑟) = 0]} (1) 

 

• Nearest neighbor distance distribution function 𝐷(𝑟): cumulative probability 

distribution of the distance between a typical point and its nearest neighbor, according 

to Eq. 2. In the case of fibers in a matrix, this distance is taken between fiber centers. 

 

𝐷(𝑟) = 𝒫𝑜{𝑁[𝒷(𝒐, 𝑟) ∖ {𝑜}] > 0} (2) 

 

• Ripley’s K-function 𝐾(𝑟) and Besag’s L-function, 𝐿(𝑟): the former is related to the 

mean number of points inside a circle of radius 𝑟 centered at a typical point (which, in 

turn, is not counted), according to Eq. 3, whereas the latter is closely related to 

Ripley’s K-function through Eq. 4. 

 

𝐾(𝑟) =
1

𝜇
ℰ𝑜{𝑁[𝒷(𝒐, 𝑟) ∖ {𝑜}]} 

(3) 

 

𝐿(𝑟) = √
𝐾(𝑟)

𝜋
 

(4) 
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• Pair correlation function 𝑔(𝑟): contains the same statistical information as Ripley’s K-

function and Besag’s L-function, according to Eq. 5, being related to the probability of 

a point existing between two infinitesimally close circles of radius 𝑟 centered at a 

typical point. 

 

𝑔(𝑟) =
1

2𝜋𝑟

𝑑𝐾(𝑟)

𝑑𝑟
 

(5) 

 

Functions 𝐻(𝑟), 𝐷(𝑟), 𝐾(𝑟) and 𝑔(𝑟) are illustrated in Figures 2a through 2d below. 

 

      
                                                    (a)                                                                  (b) 

 

      
                                                    (c)                                                                  (d) 

 
Figure 2 – Functional statistics for pattern characterization and reconstruction: (a) 𝐻(𝑟); (b) 𝐷(𝑟); (c) 𝐾(𝑟);  

(d) 𝑔(𝑟) 

 

2.2. Pattern reconstruction algorithm 

The algorithm presented in [13] starts from a first trial pattern having already the final number 

of fibers with distances between one another no greater than the minimum one measured from the 

reference pattern. This first trial pattern, in contrast to the final one, can be a simple hard-core one, and 

is, indeed, generated as such by spatstat through a simple procedure. 

Afterwards, the statistics of the trial pattern are compared to those from a reference pattern, 

providing a value for some cost functional. Following that, the trial pattern is optimized by randomly 
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moving its fiber centers, in order to minimize the cost functional, i.e., to make the trial pattern 

statistics as close as possible to those of the reference pattern. This reference pattern is preferably 

obtained from experiments, but, in the verification results presented here, pattern “cells” [16], already 

present in spatstat, was employed. 

The algorithm follows the flowchart in Fig. 3. As hypotheses, the pattern is assumed to 

continue far beyond the RVE while keeping its statistical characteristics; also, the arrangement is 

assumed statistically homogeneous (translation-invariant), isotropic (rotation-invariant, which implies 

a transversely isotropic composite), and periodic. 

 

 
 

Figure 3 – Microstructure generation algorithm flowchart. 

 

In each iteration, a random point (fiber center) is selected and moved to a random position 

within a mesh, whose resolution is given before the run. Moreover, uniform random noise (up to 40% 

of the spacing between mesh locations) is added to this trial position to prevent point superposition. 

Four characteristics are employed as optimization criteria: 𝐷(𝑟) – as it affects the material 

stresses [7]; 𝐿(𝑟) – as it describes longer-range interactions between points and is more tractable than 

Ripley’s K-function [13]; 𝐻(𝑟) – as it complements the information provided by the other two 

functions [13]; and the minimum distance between fibers (𝑟𝑚𝑖𝑛) – penalizes patterns not respecting its 

admissible value, given before the run. Nevertheless, for the optimization procedure, 𝐿(𝑟) is 

normalized so that its maximum is 1,0, which is already true for the other two functions. The three 

functional statistics, collectively referred to as 𝑓𝑘, are calculated with appropriate edge corrections 

(because of the finite RVE size): 𝐻(𝑟) and 𝐷(𝑟) are calculated in reduced windows, whereas 𝐿(𝑟) 

takes periodicity into account. Thus, the cost functional, ℱ is written Eq. 6, adapted from [13]: 

 

ℱ = ∑ ∑[𝑓𝑘(𝑟𝑖𝑘) − 𝑓𝑘
0(𝑟𝑖𝑘)]

2
+

1

𝑟𝑚𝑖𝑛
0

〈𝑟𝑚𝑖𝑛 − 𝑟𝑚𝑖𝑛
0 ⟩

𝑁𝑘

𝑖=0

 

3

𝑘=1

 

 

(6) 

 

Above, 𝑁𝑘 represents the number of values 𝑟𝑖𝑘 in which each 𝑓𝑘 is calculated. Quantities 

calculated for the reference pattern are marked with a “0” superscript, whereas their values for the trial 

pattern are left with no superscript; in particular, 𝑟𝑚𝑖𝑛
0  is the minimum admissible distance between 

fibers, which can come from the reference pattern or be given arbitrarily. In addition, the symbol “〈⟩” 
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represents adapted Macaulay brackets, shown in Eq. (7). Furthermore, to ensure periodicity (fiber 

impenetrability at the RVE edges), the distance 𝑟𝑚𝑖𝑛 was calculated with the torus metric [13]: said 

metric, 𝛿, measures the distance between two points 𝐴 = (𝑥1
𝐴, 𝑥2

𝐴) and 𝐵 = (𝑥1
𝐵, 𝑥2

𝐵) according to Eq. 

(8) [13], considering a rectangular RVE with sides of lengths 𝑙1 and 𝑙2. 

 

⟨𝑦⟩ =
1

2
(|𝑦| − 𝑦) = {

0,   𝑦 ≥ 0
−𝑦,   𝑦 < 0

 
(7) 

 

𝛿 = √(min{|𝑥1
𝐴 − 𝑥1

𝐵|, 𝑙1 − |𝑥1
𝐴 − 𝑥1

𝐵|})
2

+ (min{|𝑥2
𝐴 − 𝑥2

𝐵|, 𝑙2 − |𝑥2
𝐴 − 𝑥2

𝐵|})
2
 

(

(8) 

 

3. RESULTS 

The algorithm was employed for reconstruction of the pattern cells [16], having 42 points 

(considered as fiber centers), with a clear minimum distance between them, in a unit rectangle 

window. Here, the minimum admissible distance between fibers, 𝑟𝑚𝑖𝑛
0 , was set to be 0.06 for 

convenience, which is smaller than the minimum distance between points in the reference pattern, 

whether measured through the Euclidean metric (0.084) or the torus metric (0.063). In other words, 

this means that the fibers represented by the pattern could have a diameter (when supposed uniform) 

of up to 𝑟𝑚𝑖𝑛
0 , in which case they would be allowed to at most contact one another through a single 

point. 

The final pattern and the reference one are presented in Fig. 4. 

 

      
                                                    (a)                                                                  (b) 

 
Figure 4 – Point patterns for algorithm verification: (a) reconstructed; (b) reference. 

 

The total runtime was 1.12 hours, and the final cost functional was 0.204; the respective cost 

contributions are given in Tab. 1: as it can be seen from said table, 𝑟𝑚𝑖𝑛 had no contribution to the 

final cost, meaning that the minimum distance between fibers in the final pattern was satisfactory, 

considering the chosen value for 𝑟𝑚𝑖𝑛
0 . 

 
Table 1 – Optimization cost contributions 

 

Cost contribution 𝑯(𝒓) 𝑫(𝒓) 𝑳(𝒓) 𝒓𝒎𝒊𝒏 

Absolute 0.007 0.123 0.074 0.0 

Relative (%) 3.43 60.29 36.27 0.0 
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Figures 5 through 8, produced in R [14], compare 𝐻(𝑟), 𝐷(𝑟), 𝐿(𝑟) and 𝑔(𝑟) for the reference 

and the reconstructed patterns; in the former three figures, the cost contributions presented in Tab. 1 

can be seen graphically. 

 

 
 

Figure 5 – 𝐻(𝑟) for the reference and reconstructed patterns. 

 

 
 

Figure 6 – 𝐷(𝑟) for the reference and reconstructed patterns. 
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Figure 7 – 𝐿(𝑟) for the reference and reconstructed patterns. 

 

 
 

Figure 8 – 𝑔(𝑟) for the reference and reconstructed patterns. 

 

From the figures, the final produced pattern presented functional characteristics arguably close 

to those of the reference point pattern. 

 

4. CONCLUSION 

The proposed algorithm has been capable of satisfactorily reconstructing a given point 

pattern, although further tests are necessary to verify its performance when applied to fiber 

distributions with greater fiber volumetric fractions. In addition, the isotropy hypothesis is currently 

being studied, to verify more rigorously if it holds for both the reference and the reconstructed patters. 



 

 

 
 

 

8 

2nd Ibero-American Conference on Composite Materials – IAMaC 2023 

Sao Carlos School of Engineering – University of Sao Paulo  
20th – 21st July, 2023 

V. Tita and R. De Medeiros (Editors) 

Future works include extending the procedure to the generation of microstructures with voids, 

effectively reconstructing patterns with more features. 
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