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The dual action of a locally compact abelian group, in the context of C*-algebraic bundles, 
is shown to satisfy an integrability property, similar to Rieffel's proper actions. The tools 
developed include a generalization of Bochner's integral as well as a Fourier inversion formula 
for operator valued maps. 

1. Introduction. The goal of this paper is to initiate a study of a new notion of integra­
bility for an action a of a locally compact group r on a C•-algebra B . In the literature, 
several notions of integrability can be found, and they primarily deal with the study of 
elements b E B for which one can make sense of the integral 

l a,(b)dx. 

The main difficulty is, of course, that the integrand has constant norm and hence, when 
the group is not compact, the integral will not converge. In order to attribute meaning 
to this, authors have mostly resorted to the weak topology and thus, one would speak of 
elements b for which l ef>(a.,(b))dx 

converges for all continuous linear functionals ef> on B. See, for example, [1], (2), (8) and 
(10, 7.8.4). 

More rf'cently, llieffel (11) introduced a notion of "proper" actions in which a similar 
integrability condition plays a crucial role. There, llieffel requires, among other things, 
that for all elements a and b of a fixed dense *-subalgebra Bo of B, one has that 

l aa.,(b)dx and l a.,(b)adx 
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are integrable in the sense of Bochner. Under suitable extra hypothesis, he shows that 

one can then make sense of a "generalized fixed point algebra" and he obtains a powerful 

version of the Ta.kai-Takesaki duality. R.ieffel's condition have a strong smell of the strict 

topology, since integrability is obtained only after one performs a multiplication with 

another element of the algebra, although the role of that topology is not made explicit. 

My interest in understanding R.ieffel's notion of properness steams from a desire to 

study a rather general class of actions of locally compact abelian groups, obtained as 

dual actions on cross sectional algebras of C•-algebraic bundles. However I have found it 

difficult to work with Rieffel's conditions in an abstract sense, mainly because the dense 

subalgebra Bo, mentioned above, comes about in a somewhat ad hoc way. The main 

motivational force behind the present work is, therefore, to attempt a reformulation of 

Rieffel's ideas in which the set of "integrable" elements arises in a more natural way. We 

think we have succeeded in doing so, although it is not clear for us, at the moment, what is 

the exact logical relationship between our notion of integrable actions and R.ieffel's proper 

actions. 
In developing our theory we have been forced to understand two critical additional 

phenomena. The first one is the concept of unconditional integration. This notion gen­

eralizes Bochner's theory of integration in the same way that unconditional summability 

for series in a Banach space generalizes the notion of absolute summability. The study of 

unconditional integrability is t! ., content of section (2), below. 

The second fundamental phenomena subjacent to our work is the Fourier inversion 

formula for operator valued maps, which states that if p: G ..... 23(.f.J) is a compactly 

supported, continuous, positive-type map, defined on a locally compact abelian group G, 

and taking values in the operators on a Hilbert space f.J, then 

fr (t,x)p(x)dx = p(t), 

where r is the Pontryagin dual of G and "J" is the unconditional integral mentioned above. 

The topology with respect to which the convergence of this integral takes place depends 

on the continuity properties of p. The proof of this result is accomplished in section (3) 

below. 
In the next two sections, (4) and (5), we apply these results to show our main result 

(5.5), which we would now like to briefly describe. Given a c•-algebraic bundle B over 

the locally compact abelian group G (see [4J for a comprehensive study of C•-algebraic 

bundles), we consider a natural action of the dual group r on the C• -cross sectional algebra 

C•(B), which we call the dual action. The content of our main theorem says, among other 

things, that there is a dense subset of the positive cone of C•(B), whose elements satisfy 

a certain integrability property. Namely, if pis in this subset then, for all a in C•(B), the 

maps :i: .-+ aas(P) and :r .-+ ar(p)a are unconditionally integrable. 

In the following section (6), we conduct a brief study, from an abstract point of view, 

0£ the integrability property which turned out to be the conclusion of our main theorem. 

A Cew comments are then presented in section (7), and an open question is posed, with 

respect to the possible characterization of dual actions by means of integrability properties. 
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Last but not least, I would like to express my thanks to Beatriz Abadie, who took an 
active role in the early stages of the project which culminated with the present work. 

2. Unconditional Integration. Let (S,rot,µ) be a measure space and X be a Banach 
space. The well known Bochner's theory of integration discusses the conditions under 
which one can define the integral of functions /: S -+ X. According to that theory, a 
strongly measurable/ is integrable if and only if (see [12, V.5]) 

Is llf(-')lldµ(s) < oo. 

In the special case of the counting measure on a set S, one therefore sees that a nec­
essary and sufficient condition for / to be Bochner-integrable is that the series E.es /(.,) 
be absolutely summable. However, in many situations, the point can be made that the 
most natural notion of summability for series in a Banach space is that of unconditional 
summability. 

It is the goal of the present section to present an integration theory which generalizes 
Bochner's theory in the same way that unconditional summability generalizes the notion 
of absolute summability. 

Let us start by considering a measure space (S, rot,µ) where, as usual, rot is the 
o--algebra of measurable subsets of S, and µ is a o--additive positive measure defined on 
rot. 

An important ingredient of our theory is the notion of a local family, which we describe 
below. 

2.1. Definition. Given a measure space (S,rot,µ), we say that a subset£~ rot is a 
local family if the following conditions hold: 

i) .C is closed under finite unions. 
ii) If L E £ and B is a measurable subset of L then B E .C (that is, £ is hereditary). 

Once a local family is fixed we will say that its members are the local sets. 

To avoid trivialities it is often interesting to assume that .C also satisfies 
iii) If LE£ then µ(L) < oo. 
iv) For every measura,,le set B, one has that µ(B) = sup{µ(L): LE .C, L ~ B}. 

However, we will find it unnecessary to assume that these last two properties hold for the 
local families in consideration in this section. 

Note that (ii) implies that .C is closed under countable intersections. 
An example of local family would be, of course, the collection of all sets of finite mea­

sure. In case we are speaking of a regular Borel measure on a locally compact topological 
space, a natural choice for a local family is the collection of all measurable, relatively 
compact subsets. 

Throughout this chapter we will fix a measure space ( S, rot,µ) equipped with a fixed 
local family .C. 

Let X be a Banach space. 
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2.2. Definition. We say that a function /: S -+ X is locally integrable (with respect to 

J!) if f is Bochner-integrable over every local set. 

Observe that J! is an ordered set under set-inclusion, which is clearly directed in the 

sense that given L1 and L2 in£, there is an Lin£, bigger than both Li and L2 (namely 

their union). This allows us to use .C as the index set for nets. In particular, given a locally 

integrable function /, we can form the net 

( ff dµ) . 
jL Le£ 

2.3. Definition. We say that a function f; S -+ X is unconditionallv integable (with 

respect to £ ), or just u-integrable, if the above net converges in the norm topology of X. 

In this case we set 
(u/ / = lim / / dµ. 

'ls Le.ClL 

The Cauchy condition for convergence of nets, when applied to ours, gives the follow-

ing. 

2.4. Proposition. A function f: S -+ X is u-integrable if and only if, for every £ > 0, 

there exists an Lo in £ such that, given any D in .C, which is disjoint from Lo, one has 

llf0 fdµII<£. 

It is easy to show that, for an u-integrable /, one has that the supremum of II h I dµII, 

as L ranges over all local sets, is finite. However, this condition does not imply uncon­

ditional integrability. Nevertheless, the functions satisfying this property are relevant for 

our study as well. 

2,5. Definition. A locally integrable function f: S -+ X is said to be pseudo-integable 

if 
sup 11 / f dµII < oo. 
Le£ jL 

For the special case of scalar valued functions we have the following. 

2.6. Lemma. If f: S -+ C is pseudo-integrable then 

sup 11/(s)I dµ(s) < oo. 
Le£ L 

Proof Assume, initially, that J is real valued and let M = supLe.C I Ji f dµI. Given L in 

.C let L+ = {s E L:/(s) 2: O} and£_={-' E L:/(s) < 0}. Since/ is locally integrable 

it is, in particular, measurable when restricted to local sets. Hence both L+ and £_ are 

measurable sets, and therefore belong to £. We have 

f lf(s)ldµ(s) = f f(s)dµ(s)- ( f(s)dµ(s) = 
JL lL+ JL_ 
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=11 /(~)dµ(s)l+I f f(s)dµ(s)l~2M. 
L+ jL_ 

In the general case, it is clear that both the real and imaginary part of f are pseudo-
integrable and therefore the conclusion holds for them, and therefore also for J. □ 

Observe that we have entirely avoided the question of integrability of lfl. In fact, it's 
worth noticing that it is not even clear if, under the hypothesis above, f is measurable! 
However, it is one of the main features of our theory that only the local behavior of 
functions be under analysis. 

In the following we let L 00(S) be the classical space of bounded, measurable functions 
on S, with the essential supremum norm. 

2.7. Proposition. Let f: S -+ X be pseudo-integrable. Then there exists a positive 
constant M such that for all¢, in L00(S) and, for all Lin .C, 

II i ¢,f dµII :5 Mllef>II-

Consequently ¢, f is also pseudo-integrable. 

Proof. Let x' be a continuous linear functional on X. Then, clearly, x' of is a pseudo­
integrable scalar valued function on S, and hence, by Lemma (2.6), we have that 

N :== sup / lx'(f(s))ldµ(s) < oo. 
LE£jL 

Let L be a local set and pick ¢, in L 00(S) with 11¢>II $ 1. Then 

Ix' ([ 4>! dµ) I :5 i l4>(s)l lx'(f(s))I dµ(s) :5 11¢>II i lx'(f(s))I dµ(s) :5 N. 

This shows that the set 

is weakly bounded, and hence bounded in norm, from which the conclusion follows. D 

We would like to thank Carmetn Cardassi for a suggestion which helped simplify our 
original proof of (2. 7). 

2.8. Proposition. If f is u-integrable and q, is in L 00(S), then tpf is also u-integrable. 
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Proof. Assume, initially, that rf, is the characteristic function of a measurable set B. By 

the Cauchy condition (2.4 ), for each £ > 0, let Lo be a local set such that each D in .C 

which is disjoint from Lo, satisfies II JD f dµII < £. Then 

II I rf,f dµII = II I I dµII < £, 
lo lonB 

which says that the Cauchy condition holds for t/> f as well. Hence rf, f is u-integrable. If 

we now 11SSume that rf, is a linear combination of characteristic functions, i.e, a simple 

function, then the conclusion obviously holds, i.e, rf,f is u-integrable. 

To deal with the general ip, let M be such that 

11 [ 1"! dµII ~ MlltJ,11, "'E L00(S),L E .c, 

as in (2.7). Now, given £ > 0, choose rf,0 in £ 00(5) to be a simple function satisfying 

lie/> - <Poll < t:/2M. Next, applying the Cauchy condition to tf,0 /, which we already know 

is u-integrable, pick a local set Lo such that for any local set D, disjoint £rom L 0 , 

So, for all such D we have 

This shows that the Cauchy condition holds for rf,/ and hence that it is integrable. D 

2.9, Lemma. If f is u-integrable, then, for any positive E, there exists a local set Lo, 

such that for all local sets D, disjoint from Lo, 

Proof. Arguing by contradiction, suppose that there exists £ > 0 such that for any local 

set Lo there is a local set D, which does not intercept Lo, and a rf, in L00(S) such that 

II L t/>J dµII > ell</ill-

Using this, pick a local set D 1 and a unit vector t/>1 in L00(S) such that II JD rf,if dµII > 

£. Then, letting D1 play the role of Lo above, pick a local set D2 , disjoint fr~m D1 , and 

t/>2 in L00(S) with unit norm, such that II f Di t/>d dµII > e. Continuing in this fashion, we 
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obtain a pairwise disjoint sequence of local sets ( D,. ),. and a sequence ( q,,. ),. of unit vectors 
in L00(S) with 

Now define <P = En <PnXD .. , where XD .. is the characteristic function of D,.. Clearly q, is 
in L00(S), so that, by (2.8}, <Pf is u-integrable and hence, by (2.4) there is a local set Lo 
such that II JD <Pf dµII < t:/2 for any local set D, disjoint from £0 • 

So, for all n we have 

s; innLo ll<P(s)J(s)II dµ(s) +; ~ lnnLo IIJ(s)II dµ(s) + ;. 
which implies that 

f IIJ(s)II dµ(a) > ~-
lv"nLo -

Now, by the assumption that f is locally integrable, and hence Bochner-integrable 
over Lo, we have that fLo IIJ(a)II dµ(s) < oo. So 

t l.nLo 11/(a)lldµ(a) < oo, 

which conflicts with the conclusion of the previous paragraph. D 

Let U(S, X) denote the space of all u-integrable functions from S to X. Observe that 
each fin U(S,X) defines a bounded linear transformation 

T1: ¢, E L00(S) 1-t (Ui ¢,f EX. 

(The boundedness of Ti is a consequence of (2. 7)). In fact, since by definition, 

(U/ ef,J = lim f ¢,J dµ 1s r.e£1r. 

we see that IIT1II is precisely given by 

nr,11 = sup { II [ q,f dµII: LE£, llef>II ~ 1}. 

This provides a way to equip U(S,X) with a norm, namely 11/11 := IIT1II, for f E 
U(S, X). Actually, this is in general only a semi-norm, and hence, to form a normed space 
one needs to mod out the vectors of zero norm. 
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2,10, Proposition. The subset of U(S, X) formed by the locally supported functions f 

(i.e vanishing outside some local set) is dense in U(S, X). 

Proof. Let/ be in U(S,X). For E > 0 let Lo be as in Lemma (2.9). Then, if /o denotes 

the product off by the characteristic function on Lo, we have for any¢, in L00(S) and all 

local sets L, 

II / t/>(f - fo)dµII = II f ti>/ dµII::; tllt/>11, 
}L jL\Le 

This says that II/ - /o 11 ::; e, concluding the proof. D 

3. Fourier Inversion Theorem. Let G be a locally compact topological group. Also 

let f., be a Hilbert space, and denote by m(SJ) the algebra of all bounded linear operators 

on f.,. 

3.1. Definition. A function 

is said to be of positive-trpe if, for every Jlnite set {t1 , t 2 , • •. , tn} ~ G one has that the 

n x n matrix (p(t11t;)) . . is a positive element of the c•-algebra Mn(m{SJ)). ,., 
One of our main tools in dealing with positive-type maps is Naimark's theorem (7J, 

(9, 4.8), which we state below. We'd like to thank Fernando Abadie for having brought 

this result to our attention. 

3,2. Theorem. Ifp: G-+ m(SJ) is a positive-type, weakly continuous map then there is 

a strongly continuous unitary representation u of G on a Hilbert space SJ1 , and a bounded 

linear operator V: SJ -+ SJ 1 such that 

p(t) = V"u(t)V, t E G. 

Observe that, as a consequence, any such p must necessarily be strongly continuous 

and bounded in norm. 
Throughout this section we shall fix a positive-type, weakly continuous map 

p: G - m(SJ), 

and we will let u, S:, 1 and V be as above. 
Let us assume, from now on, that G is abelian. Also, let r be the Pontryagin dual 

of G. We will fix the Haar measures on G and r with the normalization convention (5, 

31.1) which yields Plancherel's theorem (5, 31.18) as well as the Fourier inversion Theorem 

(5, 31.17). The duality between G and r will be denoted by (t,z), fort E G and z E r. 
That is, the value of the character z on the group element tis denoted (t,z). On the other 

hand, the inner product of vectors { and '1 in the Hilbert spaces under consideration will 

be denoted by {{, 11). 
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By Stone's theorem on representations of locally compact abelian groups, (6, 36E] it 
follows that there exists a projection valued measure Eon r such that 

u(t) = fr(t,x)dE(x). 

In the following result we will use the Fourier transform of a complex valued, integrable 
(with respect to the Haar measure) function g on G. Our convention for the Fourier 
transform will be 

g(x) = L(t,x)g(t)dt, XE r. 

3.3. Proposition. If g is an integrable function on G and e, T/ are in Jj, then 

Proof. We have 

L g(t) (p(t)e, 77) dt = L g(t)(u(t)Ve, V71) dt = 

= Lu(t) (fr(t,x)d{E(x)Ve, V77)) dt = [ (L(t,x)g(t)dt) d{E{x)Ve, V71) = 

= [ g(x)d(E(x)Ve, Vr,) = ,l g(x)dE(x)Ve, v.,,) · □ 

From now on we will assume that p has compact support. We may, therefore, define 
its Fourier transform by 

p(x)= L<t,x)p(t)dt, xer, 

where we understand the integral with respect to the strong topology. By this we mean 
that p(x) is the bounded linear operator on jj given by 

Observe, in particular, that for fixed e in Jj, the map 

X E r ....... p( X )e E Jj 

is continuous, since it is the Fourier transform of p(-)e . Sop is a strongly continuous map 
from r into !l3(i)). It is also easy to see that pis bounded in norm. 

Given that p has compact support, it follows from the Plancherel Theorem that 

X E r ....... (p(x )e, r,} 
is a function in L2(r). This fact is used below. 
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3.4. Proposition. If g is in L1(r) n L2(r) then, for all e and 11 in$), 

Proof. Lei h(z) = g(z). Then it is easy to see that g(x- 1 ) = h(x). The left hand side 

above then equals 

t g(z- 1
) {p(x){, 11) d:r. = t h(x) (p(x )e, 11) dx = L h(t) (p(_t){, 11) dt = 

= Lg(t)(p(_t)e,11) dt(~) (ig(x)dE(x)Ve,v11). □ 

3.5. Corollary. For every { and 11 in$), (p(:z:-1 ){,11) dx and d{E(x)V{, V11) agree as 

measures on r. 
Proof. Note that the map t....,. (p(_t){,{) is a continuous scalar valued, positive-type map of 

compact support. So, by the scalar Fourier inversion Theorem (5, 31.17], its Fourier trans­

form is in L1(r). By the polarization formula it follows that the first measure cited in the 

statement is of finite total variation, the same being true with respect to d{E(x)V{, V11). 

Both measures then define continuous linear functionals on C0 (r). Now, if g is in 

L1(r) n L2(r), we have seen that 

So, our measures coincide on a dense subset of Co(r) and hence everywhere. □ 

3.6. Theorem. It p is a weakly continuous, compactly supported, positive-type function 

from G to~($)) then, for eveiy t in G and every measurable subset L of the dual group 

r, with finite measure, one has 

Proof. We have already observed that pis strongly continuous and norm-bounded. There­

fore, since L has finite measure, the integral on the left hand side above is well defined 

with respect to the strong operator topology. Fix { and 17 in .S:,. Then 

(L (t,x)p{x)dx {,'7) = {<t,x-1 )(p(x){,11) dx = 

= f (t,z) (p(x- 1 ){1 11) cu (~l f (t,x)d{E(x)V{, V71) = 
lL- 1 lL-• 
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= (fi_, (t,z)dE(z)V{, V11) = ( v• {_, (t,x)dE(x)V {,11) ._ 
Next observe that for any measurable set B ~ r 

ls (t,z)dE(z) = E(B)u(t). 

Using this in the above calculation we obtain 

Now, since e and 11 are arbitrary, we obtain the desired conclusion. a 
From this point on we will let .C be the local family of all measurable, relatively 

compact subsets ofr (see (2.1)). This said, a local set will henceforth mean any measurable, 
relatively compact subset of r. As before we will consider .C as a directed set. 

This brings us to the Fourier inversion Theorem for weakly continuous, positive-type, 
operator valued maps. 

3. 7. Theorem. It p is a weakly continuous, compactly supported, positive-type function 
from G to 23(J:,) then, for every { in jj, 

(uifr (t,z)p(z){dz = p(t){. 

Proof. Follows from (3.6) and the fact that (E(L))L .C converges to the identity in the 
strong operator topology, a fact which will be provedtelow. □ 
3.8. Lemma. Let u be a strongly continuous unitary representation of the locally com­
pact group G on the Hilbert space J:,1 , with corresponding spectral measure E, on the 
dual group r. Let V be a bounded operator from jj to J:,1 . If 

Then 

In addition, ife is in '11, then 

Proof. Let/ E L1(G) and set 

lim nv - u(t)VII = o , ..... c 

lim nv - E(L)VII = 0. 
LE£ 

lim ne - E(L)ell = o. 
Le£ 

1'(/) = la f(t)u(t)dt = l /(z)dE(z). 
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Note that for any measurable B ~ r 

ll1r(f) - E(B)ir(f)II = II / /(z)dE(x)II = sup lf(x)I. 
Jr\B ser\B 

12 

t 

This, together with the Riemann-Lebesgue Lemma (5, 28.40}, which says that [is in Co(f), 

implies that 

Let 

lim ff,r(/) - E(L),r(f)U = 0. 
Le.£ 

6 = {Te ~(i.>,i.>i): lim IIT- E(L)TII = o}. 
LeJ! 

The argument above gives that any operator of the form T = ,r(f)S, with/ in L1(G) and 

Sin ~(JJ,.f.>1), is in 6. On the other hand it is easy to show that 6 is norm-closed. So, 

out strategy for proving that V is in 6 will be to show that V is the norm limit of operators 

of the form 1r(f)V, with fin L1(G). Pick any f such that/~ 0 and fa f(t)dt = 1. For 

any neighborhood U of the unit in G we have 

IIV - ,r(f)VII = 11 fa f(t) (V - u(t)V) dtll $ 

$ { /(t)IIV - u(t)VII dt + { /(t)IIV - u(t)VII dt S 
lu la\U 

$ sup IIV - u(t)VII + 2IIVII / f(t) dt. 
,eu law 

which can be made arbitrarily small, under a suitable choice off. 

The last part of the statement is a consequence of what we have already done, for the 

special case of the operator V: 1J1 -+ .f.>1 defined by V(71) = (11,{) {. D 

Our previous result is used below, to prove the Fourier inversion Theorem for norm­

continuous, positive-type, operator valued maps. 

3.9. Theorem. If pis a positive-type, compactly supported function from G to !B(i)), 

which .is norm-continuous then 

(U3/r (t,x)p(x)dx = p(t), t e G. 

Proof. Representing p(t) = V•u(t)V as we have been doing, observe that 

IIV - u(t)Vll2 = n(V· - v·u(tr) (V - u(t)V)II = 
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= IIV*V - V*u(t)V - V*u(t)*V + v·vn ~ llp(e) - p(t)II + llp(t)* - p(e)II, 

which converges to zero, as t --+ e, in virtue of the fact that p is norm-continuous at e. So 
(3.8) applies and thus E(L)V--+ Vin norm. Hence 

cul (t,x)p(x)dx = lim / (t,x)p(x)dx (~) lim V*u(t)E(L- 1 )V = 
1r . Le.ClL Le.C 

= V*u(t)V = p(t). □ 

4, Multiplier valued positive-type functions. Throughout this section we will let 
G be a locally compact abelian group. Like before, we will denote by r its dual, and by .C 
the local family of measurable, relatively compact subsets of r, which will again be viewed 
as a directed set. Also, let A be a c• -algebra, considered fixed throughout. 

The main object of study in this section will be a function p from G into the multiplier 
algebra M(A), which will be assumed to have compact support and to be continuous with 
respect to the strict topology of M(A). Given such a p, we can define its Fourier transform 
by 

p(_x) = l(t,x)p(t)dt, z Er, 

which should be understood with respect to the strict topology. Precisely, for ea.ch a in A, 
we have that both fa(t, x)ap(t) dt and fa(t, x)p(t)adt are well defined Bochner integrals, 
and hence define the left and right action, respectively, of the multiplier p( x ). It is easy to 
see that the map 

XE r I-+ p(x) E M(A) 

is continuous with respect to the strict topology. 

4.1. Definition. The function p: G --+ M(A) is said to be of positive-type if, for every 
finite set {t1,t2, ... ,tn} ~Gone has that then x n matrix (p(ti 1t1 )};,; is a positive 
element of Mn(M(A)). 

4.2. Proposition. Given a strictly continuous, compactly supported function p: G -
M(A) of positive-type then, for any a in A and tin G, 

u-lim f (t,x)p(x) = p(t). 
Le£1L 

where u-lim stands for strict-limit. 

Proof. Let's suppose that A il:I represented as a non-degenerated C*-algebra of operators 
in !B(SJ), for some Hilbert space jj. It is then clear that p becomes a weakly continuous, 
operator valued positive-type map. We may then apply (3.6) to conclude that 
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and i (t,z)ap(z)dz = av• E(L- 1 )u(t)V 

for each a in A, where u, V and E are as in (3.2). 
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Proving the statement, thus amounts to showing that lim Le.C E( L) Va = Va, in norm. 

This will follow from (3.8) once we show that limt-c IIVa-u(t)V all == 0. For that purpose 

note that 

IIVa - u(t)Vall2 = na•v·va - a·v·u(t)Va - a•v·u(ttVa + a•v•van ~ 

s lla*p(e)a - a·p(t)all + 11a•p(t)*a - a·p(e)all 

which converges to zero, as t -+ e, because p is strictly continuous. D 

5. C*-Algebraic Bundles. This is the main section of the present work. The goal 
which we will reach here is the proof that the dual action of a locally compact abelian 
group satisfies an integrability property related to certain conditions which have often 
appeared in the literature, as, for example in [1], [2], [8], [10, 7.8.4] and [11]. 

The most general context in which the concept of dual action of an abelian group can 

be defined is that of c•-algebraic bundles. The reader interested in reading about c•­
algebraic bundles is referred to Fell and Dore.n's book [4], which is also our main reference 

in what follows. 
Let B be a C•-algebraic bundle over the locally compact abelian group G. The fiber of 

8 over each t will be written Bt. We shall denote by C*(B) its cross sectional C•-e.Igebra 

[4, VIII.17.2), by £1(8) the Banach *-algebra of the integrable sections [4, VIII.5.2}, and 

by Cc(B) the dense sub-algebra of £ 1(8) formed by the continuous, compactly supported 
sections [4, II.14.2]. We remark that our notation differs from [4) with respect to Cc(8). 
Under the usual identifications, we will regard L1(8) as a subalgebra of C•(8). 

As before, Jet us denote the dual of G by r, and the local family of measurable, 

relatively compact subsets of r, by .C. For each z in r, let o., be the transformation of 
L1(8) given by the formula 

Or(/)lc = (t,z)f(t), f E L 1(8),t E G. 

It ill easy to see that O:z is a well defined automorphism of £1(8), which therefore 

extends to an automorphism, also denoted by o.,, of its enveloping C•-algebra, namely 

c•(B). In addition it is clear that the map 

o: % E r - Or E Aut(C*(8)) 

is a strongly continuous group action of r on c•(B). 

5.1. Definition. The dual action of r on c•(B) is that which has just been defined. 
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Observe that, in case 8 is the semi-direct product bundle [4, VIIl.4.2J constructed 
from an action T 0£ G on a c•-algebra A, then c•(B) is isomorphic to A Xr G, in such a 
way that the dual action we have defined corresponds to the usual dual action [10, 7.8.3) 
on the crossed product. 

Let f be in Cc(B). It will be fruitful to view f both as an element of C*(B) and as a 
map from G into he multiplier algebra of C•(B) in a way we will now describe. 

Initially note that each element u in Bt (recall that this means the fiber of overt) 
defines [4, VIIl.5.8) a multiplier of the algebra L1(8), by the formulas 

(ug)I, = ug(C1s), s E G, 

and 
(gu)I, = g(st- 1 )u, s E G, 

for each g in L1(8). Now, by [4, VIll.1.15) one can extend the above to a multiplier of 
C*(B). Thus, a function / in Cc(B) defines a map 

F: G _, M(C*(B)) 

which is given, for gin £ 1(8), by 

(F(t)g)I, = f(t)g(t- 1s), s E G 

and 
(gF(t))I, = g(sC 1 )f(t), s E G. 

5.2. Proposition. If f is in Cc(B), then the corresponding Fis continuous with respect 
to the strict topology. 

Proof. Fixing g in Cc(B) and to in G, consider the map 

.\:(t,s) E G 1-+ ll/(t)g(t-1s)-/(to)g(t01s)II, 

where the norm used is that of the fiber B,. It is a consequence of the continuity of the 
norm and the other bundle operations, that ,\ is continuous. 

Let V be a compact neighborhood of t0 • It is easy to see that, for t in V, one has 
that >.(t,8) = 0 unless., E V • supp(g), which is a compact subset of G. An often used 
topological argument now shows that lim1- 10 sup,ea .\(t, s) = 0, which, combined with the 
fact that g has compact -,upport, implies that 

lim f ll/(t)g(t-1 s)-/(to)g(t01s)II =0, 
1-10}0 

which, in tum, can be interpreted as saying that the map 

t E G >-+ F(t)g E L1(8) 

is continuous at to. 
Since the inclusion of L 1(8) in C•(B) is continuous, we have that lim,-10 F(t)g = 

F(t0 )g in the norm of C*(B). A similar reasoning shows that lim1-10 gF(t) = gF(to), 
Finally, observing that / is bounded, we can show the above continuity, even if g is replaced 
by an arbitrary element of C•(B}, thus proving F to be strictly continuous. □ 
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5.3. Lemma. Let f be in Cc(8), and denote by F the corresponding map into M( C•( 8)). 

Since we now know that F is strictly continuous, we may define the Fourier transform F 
of Fas in the beginning of section (4). Then, for all :r in r, we have that F(x) E C•(B) 

and 
F(x) = Or(/). 

Proof. Viewing both F(x) and or(/) as elements of M(C•(B)), all we need to do is show 

that, for every gin Cc(B) and :r in r, one has .F(:r)g = o,.(J) * g. We have, fort in G, 

(a,.(/) •g)l1 = L Otr(/)(s)g(s-1t)ds = L(s,x)f(s)g(s-1 t)ds = 

= l(s,x)(F(s)g)(t)ds = (fa(s,x)F(s)gds)(t). 

The last equality following from (4, II.15.19J. This shows that 

A last preparatory result, before we can prove our main theorem, is in order. 

D 

5.4. Lemma. Let f be in C.(B) and put p = J- * f. Denote by P the corresponding 
map into M(C•(B)). Then Pis of positive-type. 

Proof. Let C•(8) be faithfully represented on a Hilbert space .Sj under a non-degenerated 
representation. Choose finite sets {t1,t2, ... ,tn} ~ G, {a1,a2, ... ,an} ~ Cc(B) and 
{{1,6, ... ,{n} ~.Sj. Then 

r (P(ti'"1t;)a;{;,a;{;) = r L (F(st;t F(st;)a;{;,a;{;) ds = 
,,, ,,, 

D 

We are now ready to present our main result. 

5.5. Theorem. Let 8 be a C•-algebraic bundle over the locally compact abelian group 

G with dual r, and let p be of the form p = r • f, where f e Cc( 8). Then, for all a in 
C•(B), the maps 

:r Er...,. ao,.(p) E C*(B) 

and 
:i: E f >-+ a,.(p)a E C*(8) 
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are unconditionally integrable. Moreover, for each tin Gone bas 

and 

(U)t (t,z)a,.(p)a = P(t)a, 

wbere Pis tbe corresponding map into M(C•(B)). 
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Proof. By (5.2) we know that P is strictly continuous, while the Lemma above tells us 

that P is of positive-type. Hence we are allowed to employ ( 4.2), and conclude that 

a-lim f (t,z).P(z) = P(t), 
Le.Cli 

which implies, for all a in C•(B), that 

Now, (5.3) tells us that P(x) = a.,(p), which, substituted in the above fonnula brings 
us to the conclusion. The case in which a is taken to multiply a.,(p) on the right is treated 
similarly. □ 

6. Unconditional Integrability for Group Actions. In this section we will conduct 
a brief study of abelian group actions on C•-algebras, from a point of view motivated by 
theorem (5.5). Our results in this section will be mostly of an exploratory nature, possibly 
paving the way for a future, more comprehensive study of the present phenomenon. 

Let us keep the notation of the previous section and hence G and f will be locally 
compact abelian groups, each being the other's dual. We will also retain the use of ..C, the 
local family of of all measurable, relatively compact subsets of r, with respect to which we 
will speak of unconditional integration. · 

Let us also fix a C*-algebra B and a strongly continuous action 

o: f-+ Aut(B). 

6.1. Definition. Let b be in B. We will say that b is o-integrable if, for all a in B, the 
maps 

:i: E f ,_ o.,(b)a E B 

and 
x Er.,... bo.,(b) EB 

are unconditionally integrable. 
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Employing the terminology just introduced, Theorem (5.5) is seen to state that the 
elements of the form p = f* • f (notation as in (5.5)) are a-integrable. Since the linear 
combinations of such elements form a dense subset of of C*(B), we get an abundance of 
a-integrable elements. 

Let b be an a-integrable element of B. Observe that, by (2.8), for any</> in L00(r) we 
may define 

L(a) = (U1/r </>(x)a.,(b)adx, a EA 

and 

R(a) = (Ui ip(x)aa.,(b)dx, a EA, 

both of which are well defined elements of B. It is clear that the pair ( L, R) is then a 
multiplier of B, which we will denote, simply, by 

(L,R) = l </>(x)a.,(b)dx. 

It is worth noticing that any a-integrable element satisfies the more usual notion 
of integrability (see the references given in the introduction), namely that, given an a­

integrable element b, there exists an element bo in M(B) such that, for any continuous 
linear functional / on B, one has 

To see this, note that by the Cohen-Hewitt factorization theorem [5, 32.22], any continuous 
linear functional / is of the form / ( b) = g( ab) for some functional g E B' and a in B. Then, 
letting bo = fr a.,(b)dx we have 

£ f(a.,(b))dz = i g(aa.,(b))dx = g(abo) = f(bo). 

6.2. Definition. Let b be an a-integrable element of B. The Fourier transform of b is 
the map b: G-+ M(B) defined by 

b(t) = l (t,x)a.,(b)dx. 

6.3. Proposition. The Fourier transform of each a-integrable element b is continuous as 
a map from G into M(B), with the strict topology. 
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Proof. Given a in B, we know that o.,(b)a is u-integrable and so, by (2.7), there exists a 

constant M > 0 such that 

n 14>(x)o.,{b)adxll $ Mll4>11, 4> E L00(r),L E .c. 

On the other hand, using (2.9), there exists, for each e > 0, a local set Lo ~ r such that 

Let to be in G and denote by V the neighborhood of to consisting of those t in G such 

that j(t,z) - (to,x)j < e, for all x in Lo . The reason why Vis a neighborhood of t0 is 

precisely the Pontryagin-van Kampen duality Theorem [5, 24.8). 
For each tin V we have 

II h ((t,x) -(to,x))o.,(b)adxll $ 

$ II f ((t,x) - (to,x)}o.,(b)adxll + 11 f ((t,x) - (to,x) )o.,(b)adxll :$ 
JLnL 0 JL\Lo 

$M sup l(t,x)-(to,x)l+e sup l(t,x)-(to,x)l$Me+2e. 
:1:ELnLo :1:EL\Lo 

Therefore, taking limit as LE .C, we conclude that llb(t)a - b(to)all s; Me+ 2e. A similar 

argument shows that llab(t) - ab(to)II also tends to zero as t approaches t0 • □ 

Every automorphism of B has a unique extension to an automorphism of the multiplier 

algebra M(B). This implies that there is an extension of the action o to an action off on 

M(B) (which may not be strongly continuous). For simplicity we will denote that action 

by a as well. For each t in G, let M(B) 1 be the subspace of M(B) given by 

M(B) 1 = {m E M(B): o,.(m) = (t,x)m}. 

6.4. Proposition. For each a -integrable element b in B. and each t in G, one has that 

b(t) E M(B),. 

Proof. The proof is a simple change of variable in the definition ofb(t). □ 

6.5. Lemma. Let a, b E B, let m, n E M(B) and let L be a local set. Then 
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Proof. Let us assume that B is faithfully represented on a Hilbert space SJ, and let { and 
'I be unit vectors in SJ. We then have 

I (1 m*Q.,(a'"b)ndx {,T/) I= 11 (o.,(b)n{,Q.,(a)mri) dxl :5 

:5 i 11a.,(b)n{ll l1Q.,(a)m11II dx :5 (fi na.,(b)n{ll2 dx) ½ (i 11Q.,(a)m11ll2 dx) ½ = 

= (1 (n*cr.,Wb)n{,{) dx) ½ (1 (m*Q,,(a*a)mlJ,IJ) dx )1 :5 

:511 l n•o,,(b•b)ndxll½ 11 h m'"or(a*a)mdxll½ . 

Since { and IJ are arbitrary, the proof is concluded. □ 
6.6. Proposition. The subset of B+ consisting of the positive, a-integrable elements is 
a hereditary cone in B. 

l'roof. Let O 5 h 5 k where k is a-integrable. Given c in B, using (6.5), where we set 
a = b = h ½, m = l and n = c, we obtain, for every local set L, 

111 Qi:(h)cdxll ~ 111 Qi:(h)dxll ½ 111 c•o.,(h)cdxll½ :5 

S II [ a.,(k)dxll½ 11 [ c"o.,(k)cdxll½. 

Next observe that the term llfio.,(k)dxll is bounded with respect to L, because k 
is a-integrable. This said, we see that the Cauchy condition (2.4) for the integrability of 
c•a.,(k)c implies the Cauchy condition for o,,(h)c. This concludes the proof. D 

T. Concluding Remarks. We have seen in Theorem (5.5) that, for the case of the 
dual action off on C*(B), the set of er-integrable elements is dense. This would seem to 
indicate that dual actions could be characterized via some sort of integrability condition, 
a question that Rieffel once suggested to us in private communication. Precisely, we feel 
that it would be interesting to be able to determine conditions over a given action of r on 
a C*-algebra B which would imply that Bis isomorphic to the cross sectional C*-algebra 
for some C*-algebraic bundle, under an isomorphism which puts in correspondence the 
given action on B and the dual action on C•(B). 

Consider, for example, an action for which the set of a-integrable elements is dense. 
For each tin G, define B 1 to be the subset of M(B) formed by the elements of the form 
b(t), where b ranges over the set of a-integrable elements. It is not hard to see that the 
B1'a form a C•-algebraic bundle over the group obtained by giving G the discrete topology. 
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In particular, if the action we are talking of happens to be a dual action, it would 
be interesting to decide what is the relationship between the bundle constructed from the 
action and the bundle which originated it. For example, consider the semi-direct product 
bundle obtained from the action of the circle group S1 on C(S1) by translation. The C•­
cross sectional algebra [4, VIIl.17.2) turns out to be isomorphic to the algebra of compact 
operators on 12(Z }, with the dual action of Z being the action obtained by conjugation 
by the powers of the bilateral shift. It can be proved, in this case, that Bo is precisely 
the set of Laurent operators with symbol in L,x,(S1 }, while the fiber of the original bundle 
corresponds to symbols in C(S1 ). That is, the hope that the bundle be exactly recovered 
via the a-integrable elements is not a reasonable one. However, Theorem (5.5) implies 
that, in the case of a general dual action, we always get the original fibers as a subspace of 
B1• The problem would then be to decide a selection criteria to determine which elements 
in B 1 correspond to the elements of the original fiber. This should, quite likely, resemble 
the Landstad conditions [10, 7.8.2]. 

Among other things, the interest in being able to show an action to be equivalent to a 
dual action, is that C*-algebraic bundles can be characterized via twisted partial actions 
[3]. The achievement of this goal would allow one to gain a deep understanding of the 
action in question. 
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