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ABSTRACT. In this paper, we study results of well-posedness and regularity of higher order
in time abstract non-autonomous semilinear Cauchy problems associated with Newton’s
binomial theorem and the theory of sectorial operators. Our approach to parabolic problems
of arbitrarily order n apparently has never been addressed earlier in the existing literature.
Also, we present applications to evolutionary equations involving the fractional Laplacian
in bounded smooth domains of RV .
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1. INTRODUCTION

In this paper, we consider higher-order non-autonomous semilinear parabolic equations

d K d 1\ " " /n\ dF ek n n!
1.1 (— Aﬁ> = f(t,u), <— Aﬁ) = — A, =
(L) (g +A7) w= ) (G +4r) ; Hart " \k) T W=k
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with the initial conditions given by

dk n—k—1

(1.2) %fj(to):uke)(iﬁ Cfork=0,1,...,n—1,
where ¢ty € R, X is a separable Hilbert space and A : D(A) C X — X is a linear, closed,
densely defined, self-adjoint, and positive definite unbounded operator with A~! being a
compact operator on X. From this, we conclude that A is a sectorial operator in the sense
of Henry [19, Definition 1.3.1].

This allows us to define the fractional power A= of order a € (0, 1) according to Amann
[T, Formula 4.6.9] and Henry [19, Theorem 1.4.2] by
sin(ar)

(1.3) AT = / A+ A) .
0

T
Moreover, it follows from Amann [, Proposition 4.6.3] that for any 0 < o« < 14+m, m € N,

sin(am) m!
T (I1—-a)2-—a)

—a __ —a+m —m—1
(14) A ---(m—a)/o AT 4 A) L,

This operator A~ is bounded and injective, which allow us to define A% as the inverse of
A see e.g. Henry [19, Theorem 1.4.2]. Additionally, A% is a closed, densely defined linear
operator and we denote by X* = D(A%) for a € [0,1), taking A := I on X" := X when
a = 0. Recall that X* is dense in X for all a € (0, 1], for details see Amann [I, Theorem
4.6.5]. The fractional power space X endowed with the graph norm

- = 1A - [lx

is a Banach space, see [12, (3.0.24)]. It is not difficult to show that —A® is the generator of a
strongly continuous analytic semigroup on X, which we will denote by {exp(—tA®) : ¢t > 0},
see Kato [2I], Theorem 2] for any a € [0,1]. With this notation, we have X ~* = (X®)', the
dual space of X2, for all @ > 0, see Amann [I] for the characterization of the negative scale.

We require the nonlinearity f to be a map defined in [ty, 00) x X " taking values on X
fulfilling the Holder condition in the variable ¢ and the Lipschitz continuous condition in the
variable u on every bounded subset of [tg, 00) x X = g

Higher-order differential equations have already been extensively studied in the literature
in different contexts, see e.g. the works of Balakrishnan [2] on fractional powers of closed

operators, where the author mentions the equation

dn
1.5 (— + A) w=0,
with n > 2 as the main motivation to study fractional powers of closed operators, to order of
obtaining results of well-posedness for (|1.5)) in some sense, under suitable spectral conditions
on the linear operator A. In [I5] [16], 17] the solvability of the equation
dTL

(ﬁ"‘A)UZO,
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is considered on linear topological spaces under suitable spectral conditions on the linear op-
erator A, in the sense of theory of strongly continuous semigroup of bounded linear operators
and cosine family. In [29] 30}, 31] the author consider the equation

dr ar— 1
(1.6) (dt" T o Aut Z dth’““
and results on solvability of ((1.6)) under suitable spectral conditions on the linear operators
Aand By for k=0,1,2,...,n— 2. In these articles, the author consider a matrix approach

and this also will use here. We also can quote the references [22, 24, 25], 26| 27] and [37],
where the authors consider linear higher-order differential equations as and results of
well-posedness and regularity are obtained in different contexts. In particular, for third-order
differential equation we recommend [0, [7], see also [11], 14], 20 23] 34}, [35], 136].

This paper contributes especially to the study of the case n > 3, since the matter of
solvability, regularity and fractional approximations of forn =1 or n = 2 are well
known, see e.g. [3], [4], [5], [I3]. Nevertheless, for higher order cases, the semilinear Cauchy
problems associated with have not yet been addressed in the literature with a sectorial
operator approach, as we propose here.

To better present our results, we introduce some notation and terminology. Consider the
phase space

Y =X x X% x X% x--xX
which is a Banach space equipped with the norm given by
D12 = 12 s 1 e 1 s - I

Here, we consider distinct norms on each factor of the product space Y due to the dissipativity
theory of linear operators in the theory of strongly continuous semigroups in Banach spaces,
see e.g. Amann [I] and Pazy [33]. Moreover, the choice of this particular phase space Y
becomes clear once we pose the problem as a system of n equations, discussed in the sequel.

We can restate the initial value problem associated with (|1.1)) in X as a semilinear Cauchy

2
problem in Y, letting v; = u, vy, = il;;, VU3 = Cfitg, R fltn—,?,
U1
v2
v3

Un

and we consider the problem

du
(L.7) — + A= F(t,u), t>t,
(to) = Uy — (uo,ul,u2, Ce ,Unfl) c Y,

where the unbounded linear operator A,, : D(A,,) CY — Y is defined by
(1.8) D(A) = X" x X" x X" x oo x X,



4 M. BELLUZI, F. D. M. BEZERRA, M. J. D. NASCIMENTO, AND L. A. SANTOS

and
R 0 0 u
0 0 0 0 0 v
Au = : :
0 0 0 0 ~I oy
AAT (AT o ()ak (r)an] Lo
(1.9) e
T
T
= . Y
o
Ao+ () AT v+ (5) AT gt (") AR on 1 +(," ) AT on
for

U1
V2
U3

Un

<
N
o

(1.10) ot | =
vn f(twr)

From now on, we denote
Yi=D(A,) = X" x X" x X" X oo x X,

In order to get the well-posedness of equation , it will be necessary to study the
properties of the linear operator A,,, such as the description of its inverse, the localization
of its spectrum, sectoriality, and, in consequence, generation of an analytic semigroup. We
can then connect that information with the evolutionary equation using the semigroup
theory applied to PDEs as in [33].

A similar approach to semigroup generation by matrix operators was performed by Nagel
in [28]. However, the author focus on 2 x 2 matrix operators. Our approach to parabolic
problems of arbitrarily order n apparently has never been addressed earlier in the existing
literature.

This paper is organized as follows. In Section [2] we study the spectral behavior of the
unbounded linear operator A, and we prove the main results of this paper which treats the
sectoriality of A, for any n € N and the well-posedness of the semilinear Cauchy problems
and consequently . Finally, in Section |3| we present applications to evolutionary
equations involving the fractional Laplacian in bounded smooth domains of RY.

2. SPECTRAL BEHAVIOR

In this section, we study the spectral behavior of the unbounded linear operator A,, and
the semilinear Cauchy problem ((1.7) in Y.
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Proposition 2.1. Let A, be the unbounded linear operator defined in (1.8)-(1.9)). Then the
following hold.

i) Ay is closed and densely defined;
i1) 0 € p(A,), where p(A,) denotes the resolvent set of the operator A,,, and

(T)A_% (Z)A_% (nL)AQ?Tn (nL)AliTn ATt 51
-1 0o - 0 0 0 v
Ay = 0 N S 0 0 0 ‘
n . . . . .
6 o - i 6o | [t
0 0 - 0 -1 0

(M)A T (3) A Foatt (7o) AT vt (")) AT v +A 0,
s
—v3 Y

—Un—1

for any
U1

u= || ey
n

Moreover, A, Lis a compact operator on'Y and A,, has compact resolvent.

Proof: i) Firstly, note that the inclusion Y C Y is dense (the inclusions X* C X? are

vl,]
V2,5
dense for o > 5 > 0). Secondly, the operator A, is closed. Indeed, if u; = US”] € D(A,)
Vnj
V1 Y1
V2 ®2
. v, . . . .
withu; wu= || inY asj — oo, and A,u; — p = 1 inY as j — oo, then for
’L).n San

cach k € {2,...,n}

Vg = U in X v v — —ppin X v as j — 00

and consequently, for each k € {2,...,n} we have vy = —py_1 € X

Therefore, u = [v; vy -+ v,_1 v,)T is such that vy € X5 = X%M, vy € X5, e,
Up_1 € X e X= and v, € X . Tt remains to check that v; € X' in order to conclude
that u € Y'!.

Next, we have

n\ | n-1 n\ | n—2 n 2 n 1
Avy; + (1)A n Vg5 (2>A w3t (n - 2)A"Un1,j + (n - 1>A"vn,j

converges to ¢, in X as j — oo; that is,

n _1 n _2 n 2-n n 1-n
A (Ul,j+ (1)14 "5 + (2)14 U3+t (n—Q)A " Up—1,5 + (n—l)A n Un,j)

converges to ¢, in X as j — oo.
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Moreover

n _1 n _2 n 2-n n 1-n
v1,; + <1)A nUg; + <2)A nvg; + o+ <n_2>A n Up-1,j + <n_ 1>A " Un,j

converges to

n 1 n 2 n 2—n n 1-n
A n A n A7 v A
U1+<1) U2+<2) 'U3—|— +(n_2> Un, 1+<n_1> Un,

in X as j — oo, and consequently, since A is a closed operator, we conclude that

v + " A_%UQ‘{— " A_%vg+---+ " A%Tnvn_rl— " Al:znvn
1 2 n—2 n—1

belongs to X!, which allows us to conclude that v; € X' and

A<U1+(n>A_71LU2+<n>A_TQL03+"'+( " )AQan)n_l—i‘( " )Alznvn>:g0n
1 2 n—2 n—1

Therefore, u € D(A,) and A,u = ¢.
Item 77) follows from the definition of A ! which takes bounded subsets of Y into bounded
subsets of Y, the latter space being compactly embedded in Y. O

Proposition 2.2. Let A, be the unbounded linear operator defined in (1.8)-(1.9). Then —A,
is not a dissipative operator in'Y , according to Pazy [33, Definition 4.1, Chapter 1].

U1
v2

Proof: Let u= | ? | € Y. Then

vn

v1 v1

Vo Vo

v v,

- [ELTEDS
: : Y
Vn Un

= <U2’U1>X"T’1 + <U3’U2>X”T’2 + (v, Us>Xan3 +-+ <’Un7,Un—1>X"T*1

— (Avy + <711) An;lfug + (Z) Aan?vg 4+t (n i 2) A%vn,l + (n ﬁ 1) A%vmvn)x.

In particular, if v; = vy € X! and v; # 0 and v; = 0 for j € {3,...,n}, then

1 1

V2 v2
v v

< — M :3 ’ :3 >Y = ”U1||§(% > 0.
'U.n v.n

O

Explicitly, this means that —A,, is not an infinitesimal generator of a strongly continuous
semigroup of contractions in Y. As a matter of fact, as we shall see in the sequel, we will be
able to prove that —/,, generates an analytic semigroup in Y and we will obtain the estimate

M

IO = An) My < 7
RY



A HIGHER-ORDER NON-AUTONOMOUS SEMILINEAR PARABOLIC EQUATION 7

for the resolvent of A, in a given sector for some M > 0. The fact that —A, does not

generate a semigroup of contraction in Y means that this constant M is strictly greater than
1.

Proposition 2.3. Let A, be the unbounded linear operator defined in (1.8))-(1.9). Then
o(—A,) = {)\ €C:A=—pl, pjeo(A), je N},

where o(—A,) and 0(A) denote the spectrum set of —A,, and A, respectively.

Proof: Note that

Av1—v2
Avg—v3
Av3—v4

(M +A)u=0<« : =0.
AVUp—1—Vn

Mon+ Avy (T A" vat (D) AT vt (7)) AR vn_a (") Ao

From the n — 1 first lines of the above equality, we obtain v; = Av,;_y, where j € {2,...,n}.
Therefore, v; = M~ tvy. It follows from the last line of the matrix equality above that

)\()\”*101) + AUl + " Aanl)\Ul + n A%/\2U1 + -+ " A%/\”_%l + " A%)\"_lvl = O,
1 2 n—2 n—1

which is equivalent to (A 4+ Aw)"v; = 0.
Therefore, (A +A,) is injective if and only if (A +A# )™ is injective. Since /A, has compact
resolvent (Proposition , its spectrum consists entirely of isolated eigenvalues and

o(—A,) ={ eC: (A\[+ A%)" is not injective}
={AeC: (\[+ A%) is not injective}
={AeC: \=—p}, pjco(A)}.

OJ
Recall that A is positive definite, self-adjoint and has compact resolvent. Its spectrum is

given by 0(A) = {p; : 0 < g < po < ... < p; < ...}. It follows from the above proposition
1
that A, has a spectrum given by o(A,) = {p} : 0 < py < pip < ... < gy < ..}
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Proposition 2.4. Let A, be the unbounded linear operator defined in (L.8))-(1.9). Then for
each X € p(—A,,) we have

1
A
A2T

)\n—l[ ]

M+ A4,) " =
S e S ranab
A Shia (A ATE fs (re2a™st AT -nAATT
—AA =y (AT nt k=3 (Z)/\k’lA"T_k NI nA2ATT
—An'_SA _Zi 1( n ))\k+n 5An ki1 _Zi 1( n ))\k-!-n 6An ltl )\n—1[+n>ln—2An%I )\n;2I
i _An—24 72]@ 1( ))\kJrn 4An ki1 7219 1( )/\k+n oAn ktl ,Zz;ll( n ))\k 1An ki1
(A4 An)™"
= leig] - (M 4+ An)™"
where
- n s n—k
(k) NI ATE ifi<j
€ij = k:]j
n > n—k+1 o .
- Z Ty Zfl > 7
("
Proof: This result is an immediate consequence of (|1.8)-(1.9). d

As the main result of this subsection, we show that (1.1)) is a parabolic equation, thanks
to the same arguments used in the proof of [36, Theorem 2.5.2]. Namely, the same circular
sector of the sectorality of Ax allows for ensuring the sectorality of the operator A,.

Theorem 2.5. Let A, be the unbounded linear operator defined in (1.8)-(1.9). Then A, is
a sectorial operator.

Proof: In this proof, K will denote a positive constant, not necessarily the same one. First,
1 1 . oy . .

we note that the operator An : D(Aw) C X — X is a positive sectorial operator; that is,

there exist ¢ € (0, %) and M > 1 such that the resolvent set p(Aw) contains the sector

S5 = {A € €50 < Jarg(V)] < 7

and for any A € X,
M

< =

Y

It follows that, for each k =1,2,3,..., (Al — A= )~* is a bounded linear operator on X and
Mk

S

for any A € ¥,;. Moreover, for each A € ¥, we have the following identity

(2.2) An (M — An) ™ = —(A — An)~0"D 4 NAT — An) ™"

M = An) Y ox

(2.1) IO =A%) 7| ¢(x)
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and from this we deduce

(2.3) A (N — An)™ = (AL — An)~=2) _ 2\(AT — An) (D 4 N2(A] — Aw)™™.
Using and we derive

o) An(M — An) ™" = — (M — A%)‘(”‘S) 43N — Aw) (D _3X2(A] — An) (D)
+ NN — An)™,

and following with this argument we obtain

: 1 b k ; k k!
_ w(N — An)" = —1) Nt (N — An)~(n—1) -
(2.5) An (A — Ar) ;< ) (Z) ( ) (@> ik — )
forany k=1,2,...,n— 1.
Thus, for each £k = 1,2,...,n — 1, the linear operators AE()\I — A%)’" are bounded on
X, and

K

(2.6) | A% (AT = A%) ™ ) < D=3

Using the expression for the resolvent of A, obtained in Proposition [2.4, we have, for
U1
u2

us
)\62¢ and u = . €Y with Htug 1,

The estimates (2.6 are applied in each ¢, above, and we obtain

lorll oo < 2
901 X"Tfl\l)\”

| =

2l yn=2 <

>

| =

lps]] (n=s <

>

K
len—1ll 2 < N

?

K

lnllx <
RY
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Therefore

®1

©2

P3 K
. < —
: X .
- RY

Pn—1
Pn Y

O
As a consequence of this last theorem, we have the following result.

Corollary 2.6. Let A, be the unbounded linear operator defined in (1.8))-(1.9). Then —A,
is the infinitesimal generator of an analytic semigroup in 'Y .

Proposition 2.7. Let F be the function defined in (1.10). Then, F fulfills the Hdélder
condition in the variable t and the Lipschitz continuous condition in the variable u on every
bounded subsets of [ty,00) X Y.

Proof: The results follows from the fact that the nonlinearity f to fulfill the Holder condition
in the variable ¢t and the Lipschitz continuous condition in the variable u on every bounded
subsets of [to, 00) x X" . O

It follows from Proposition and Theorem (2.5) that A, is a sectorial operator with
Reo(A,,) > 0. Therefore, existence results presented in [I2, Theorem 4.3.3], or [19], can be
applied to the problem being studied here and we obtain the following results.

Theorem 2.8. Let A, be the unbounded linear operator defined in -, and let F' be
the function defined in . Since F' fulfills the Holder condition in the variable t and the
Lipschitz continuous condition in the variable u on every bounded subsets of [ty,00) X Y, for
each uy € Y, there exists a unique Y —solution u = u(t,uy) of defined on its mazximal
interval of existence [to, Tu,) Such that

uc C([tO’T)’Y) N Cl((toﬂ—)’yﬁ) N C((t()vT)?Yl)v B € [07 1)7 T = Tug,

where Y = D(AY) for a € [0,1) is the domain of the fractional power operator A% defined
as inverse of the bounded, injective and linear operator A, .

As a consequence of well-known results associated with fractional powers of linear oper-
ators, see [2I, Theorem 2|, with Reo(A2) > 0 for a € (0,1). Moreover, we also have the
following result for the fractional counterpart of (1.7)) given by

du®

2 %_FAguo‘:F(t?ua), t>ty), 0<a<l,

u®(ty) = ug,
namely
Theorem 2.9. Let A, be the unbounded linear operator defined in (1.8)-(1.9), and let F' be

the function defined in (1.10). Since F' fulfills the Holder condition in the variable t and the
Lipschitz continuous condition in the variable w on every bounded subset of [ty,00) X Y, for
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each for each uf €'Y, there exists a unique Y —solution u = u(t,uf) of (2.7) defined on its
mazimal interval of existence [ty, Tug) and such that

u e C([to, 7),Y) N C (Lo, 7), Y)Y N C((te, 7),Y?), B € [0,a), a € (0,1), 7= Tu,.

In the autonomous case, with f independent of ¢, thanks to results in [5] we can obtain a
result of convergence of the solution for (2.7) as & — 1~ on bounded subsets of Y.

3. APPLICATIONS

Let n > 3 be a natural number. We can consider a bounded domain 2 ¢ RY with smooth
(at least C**) boundary with N € N, N > 1 and the unbounded linear operator A = —Ap,
where Ap denotes the Laplacian operator with homogeneous Dirichlet boundary condition.
Its L*(Q2)-normalized eigenfunctions are denoted by w;, and its eigenvalues counted with
their multiplicities are denoted by p;; that is,

(3].) — ADU)]' = H;Wy.

It is well know that 0 < g3 < pro < -+ < py < ---, pj — 00 as j — 00, and that —Ap is
a positive self-adjoint operator in L*(Q2) with domain D(—Ap) = H?(Q) N H(Q), and that
Ap generates a compact analytic C%-semigroup in L?(f2), see Henry [19].
This allows us to consider the following application of our previous analysis. We consider
the semilinear evolution equation of third-order in time
n nk

(32 (0+(-ap)F) u= s, (0+(-Ap)7) u= 3 (k) O (~Ap) T u,

with initial conditions given by
(33)  w(0) =uno € X%, Qu(0) = upy € X% .., 0 u(0) = tppy € X,
where X = D((—Ap)®) for a € [0,1) (X = L?(Q)) is endowed with the graph norm
I Mlxe = [(=Ap)* - [|x,
and the nonlinearity f : R — R in is a continuously differentiable function satisfying

for some 1 < p < nN—n4—](V;l—1) the growth condition
(3.4) F(5) < C(L+ s,
The case n = 2 in refers to the semilinear strongly damped wave equation
(3.5) &Pu + 2(—=Ap) 20w — Apu = f(u),
with initial conditions given by
(3.6) u(0) = ugp € Hy (), Omu(0) = uyy € L*(N).

Results on regularity of solutions and smoothing estimates for strongly damped wave equa-
tions have been a subject of long studies, see e.g. [8, O, 10, I3] and our analysis includes

some of these results for (3.5))-(3.6)).
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For n = 3 in (3.2]) we have the equation

(3.7) Bu+3(—Ap)3d2u+ 3(—Ap)idu — Apu = f(u)
with initial conditions given by
(38) u(O) = Uz € X%, U(O) =uz1 € X%, 8tu(0) = Uz2 € X.

Results on existence and regularity of solutions, as well as smoothing estimates for them,
have been a subject of studies in the last years and our analysis include some of these results

for (-5,

The following result is a direct consequence of (3.4]) via Mean Value’s Theorem.

Lemma 3.1. Let f be a real function of one real variable such that condition (3.4]) holds.
Then
[f(51) = f(s2)] <277 elst — sof (1 + [s1]"™ + [s2]"7),

for any sq1,s9 € R.
Moreover, we have the following result.

Lemma 3.2. Given s € [O,%), let f be a real function of one real variable such that
n—1

condition (3.4) holds with 1 < p < —2N+4s _  Then the Nemitskii operator f¢: X & — X ™=

nN—4(n—1)"
given by f¢(u)(z) = f(u(z)) for anyu € X" andz € Qs Lipschitz continuous in bounded
subsets of X5

Proof: Let B be bounded subsets of X% and uy,us € B. Since X7 < H2(Q) for any
~v > 0, we derive for all s € [0, %)

X ey H(Q) — Lav-m ().
Therefore LaN+i (Q) < X~=. Now by Lemma and Holder’s inequality with —228

2nN N niN-+4s’
nN—Z(n—l) and 2(S+n(n_1)) we obtain
17 (un) = F(u2)ll -5 < coll F(ua) = F )l g o
nN+4s
2nN 2nN
<o ([ clun =+ ™+ )R )
Q
2(s+(n=1))
<allu — |z Ot b+ gy emar)
< ajun 2ll vty ) i 1 2
S Cflur — Ug| 2 1+ (| oo + Juel” v
B 2” 1 2’|LHNE4(]¥L_1)(Q)< H 1”[1%(9) H 2"L2(31.\t,7.<(2_11)))(9) y
where ¢y > 0 is the embedding constant from L%(Q) to X .

From Sobolev embeddings

2(n—1) nN(p—1)

X5 Hw (Q) = L7GFemm (),
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forall 1 < p < %7 it follows that

-1 -1
1f(u1) = F(u2)ll x5 < Cllur —uaf| aa (1 + Hung’(anl + |IU2||;nT4),
for some constant C > 0. ]

Remark 3.3. Since LTV i1 (Q) = L*(Q) foralll < p < #J(\Z%U, it follows from the

proof of the Lemma that f¢ : X5 = L3(Q) is Lipschitz continuous in bounded subsets;
that s,

17°(w) = FE@)ll12@) < €llf(w) = f)

The scheme below describes this situation:

n < G — n—1.
Lm(m < cfu UHXTl

2(n—1)

X o HH(Q) o L (Q) TS pov=io=ms () < 12(Q).

A direct consequence of Lemma [3.2] and Remark [3.3]is the following result.
Corollary 3.4. If f is as in Lemma then the function F :Y — 'Y given by (1.10) is

Lipschitz continuous in bounded subsets of Y.

Now, Theorem 2.8 and [33, Theorem 1.4] guarantees local well posedness for the semilinear
Cauchy problem (1.7) on Y with A = —Ap and f as in Lemma
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