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1. Introduction

In this paper, we consider higher-order non-autonomous semilinear parabolic equations as

(1.1)
( d
dt

+ A
1
n

)n
u = f(t, u),

( d
dt

+ A
1
n

)n
u =

n∑
k=0

(
n

k

)
dk

dtk
A

n−k
n u,

(
n

k

)
=

n!

k!(n− k)!
,
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with the initial conditions given by

(1.2)
dku

dtk
(t0) = uk ∈ X

n−k−1
n , for k = 0, 1, . . . , n− 1,

where t0 ∈ R, X is a separable Hilbert space and A : D(A) ⊂ X → X is a linear, closed,
densely defined, self-adjoint, and positive definite unbounded operator with A−1 being a
compact operator on X. From this, we conclude that A is a sectorial operator in the sense
of Henry [19, Definition 1.3.1].

This allows us to define the fractional power A−α of order α ∈ (0, 1) according to Amann
[1, Formula 4.6.9] and Henry [19, Theorem 1.4.2] by

(1.3) A−α =
sin(απ)

π

∫ ∞
0

λ−α(λI + A)−1dλ.

Moreover, it follows from Amann [1, Proposition 4.6.3] that for any 0 < α < 1+m, m ∈ N,

(1.4) A−α =
sin(απ)

π

m!

(1− α)(2− α) · · · (m− α)

∫ ∞
0

λ−α+m(λI + A)−m−1dλ.

This operator A−α is bounded and injective, which allow us to define Aα as the inverse of
A−α, see e.g. Henry [19, Theorem 1.4.2]. Additionally, Aα is a closed, densely defined linear
operator and we denote by Xα = D(Aα) for α ∈ [0, 1), taking A0 := I on X0 := X when
α = 0. Recall that Xα is dense in X for all α ∈ (0, 1], for details see Amann [1, Theorem
4.6.5]. The fractional power space Xα endowed with the graph norm

‖ · ‖Xα := ‖Aα · ‖X

is a Banach space, see [12, (3.0.24)]. It is not difficult to show that −Aα is the generator of a
strongly continuous analytic semigroup on X, which we will denote by {exp(−tAα) : t > 0},
see Kato [21, Theorem 2] for any α ∈ [0, 1]. With this notation, we have X−α = (Xα)′, the
dual space of Xα, for all α > 0, see Amann [1] for the characterization of the negative scale.

We require the nonlinearity f to be a map defined in [t0,∞)×X n−1
n taking values on X

fulfilling the Hölder condition in the variable t and the Lipschitz continuous condition in the
variable u on every bounded subset of [t0,∞)×X n−1

n .
Higher-order differential equations have already been extensively studied in the literature

in different contexts, see e.g. the works of Balakrishnan [2] on fractional powers of closed
operators, where the author mentions the equation

(1.5)
( dn
dtn
± A

)
u = 0,

with n > 2 as the main motivation to study fractional powers of closed operators, to order of
obtaining results of well-posedness for (1.5) in some sense, under suitable spectral conditions
on the linear operator A. In [15, 16, 17] the solvability of the equation( dn

dtn
+ A

)
u = 0,
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is considered on linear topological spaces under suitable spectral conditions on the linear op-
erator A, in the sense of theory of strongly continuous semigroup of bounded linear operators
and cosine family. In [29, 30, 31] the author consider the equation

(1.6)
( dn
dtn

+
dn−1

dtn−1
A
)
u+

n−2∑
k=0

dk

dtk
Bku = 0,

and results on solvability of (1.6) under suitable spectral conditions on the linear operators
A and Bk for k = 0, 1, 2, . . . , n− 2. In these articles, the author consider a matrix approach
and this also will use here. We also can quote the references [22, 24, 25, 26, 27] and [37],
where the authors consider linear higher-order differential equations as (1.6) and results of
well-posedness and regularity are obtained in different contexts. In particular, for third-order
differential equation we recommend [6, 7], see also [11, 14, 20, 23, 34, 35, 36].

This paper contributes especially to the study of the case n > 3, since the matter of
solvability, regularity and fractional approximations of (1.1) for n = 1 or n = 2 are well
known, see e.g. [3], [4], [5], [13]. Nevertheless, for higher order cases, the semilinear Cauchy
problems associated with (1.1) have not yet been addressed in the literature with a sectorial
operator approach, as we propose here.

To better present our results, we introduce some notation and terminology. Consider the
phase space

Y = X
n−1
n ×X

n−2
n ×X

n−3
n × · · · ×X

which is a Banach space equipped with the norm given by

‖ · ‖2
Y = ‖ · ‖2

X
n−1
n

+ ‖ · ‖2

X
n−2
n

+ ‖ · ‖2

X
n−3
n

+ · · ·+ ‖ · ‖2
X .

Here, we consider distinct norms on each factor of the product space Y due to the dissipativity
theory of linear operators in the theory of strongly continuous semigroups in Banach spaces,
see e.g. Amann [1] and Pazy [33]. Moreover, the choice of this particular phase space Y
becomes clear once we pose the problem as a system of n equations, discussed in the sequel.

We can restate the initial value problem associated with (1.1) in X as a semilinear Cauchy

problem in Y , letting v1 = u, v2 = du
dt

, v3 = d2u
dt2

, . . . , vn = dn−1u
dtn−1 ,

u =

 v1
v2
v3
...
vn

,
and we consider the problem

(1.7)


du

dt
+ Λnu = F (t,u), t > t0,

u(t0) = u0 = (u0, u1, u2, . . . , un−1) ∈ Y,

where the unbounded linear operator Λn : D(Λn) ⊂ Y → Y is defined by

(1.8) D(Λn) = X1 ×X
n−1
n ×X

n−2
n × · · · ×X

1
n ,
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and

Λnu =


0 −I 0 ··· 0 0
0 0 −I ··· 0 0
0 0 0 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 0 −I
A (n1)A

n−1
n (n2)A

n−2
n ··· ( n

n−2)A
2
n ( n

n−1)A
1
n




v1
v2
v3
...

vn−1
vn



:=


−v2
−v3
−v4
...
−vn

Av1+(n1)A
n−1
n v2+(n2)A

n−2
n v3+···+( n

n−2)A
2
n vn−1+( n

n−1)A
1
n vn

,
(1.9)

for

u =

 v1
v2
v3
...
vn

 ∈ D(Λn).

The nonlinearity F in (1.7) is given by

(1.10) F

t,
 v1
v2
v3
...
vn

 =

 0
0
0
...

f(t,v1)

.
From now on, we denote

Y 1 = D(Λn) = X1 ×X
n−1
n ×X

n−2
n × · · · ×X

1
n .

In order to get the well-posedness of equation (1.1), it will be necessary to study the
properties of the linear operator Λn, such as the description of its inverse, the localization
of its spectrum, sectoriality, and, in consequence, generation of an analytic semigroup. We
can then connect that information with the evolutionary equation (1.7) using the semigroup
theory applied to PDEs as in [33].

A similar approach to semigroup generation by matrix operators was performed by Nagel
in [28]. However, the author focus on 2 × 2 matrix operators. Our approach to parabolic
problems of arbitrarily order n apparently has never been addressed earlier in the existing
literature.

This paper is organized as follows. In Section 2 we study the spectral behavior of the
unbounded linear operator Λn and we prove the main results of this paper which treats the
sectoriality of Λn for any n ∈ N and the well-posedness of the semilinear Cauchy problems
(1.7) and consequently (1.1). Finally, in Section 3 we present applications to evolutionary
equations involving the fractional Laplacian in bounded smooth domains of RN .

2. Spectral behavior

In this section, we study the spectral behavior of the unbounded linear operator Λn and
the semilinear Cauchy problem (1.7) in Y .
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Proposition 2.1. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then the
following hold.

i) Λn is closed and densely defined;
ii) 0 ∈ ρ(Λn), where ρ(Λn) denotes the resolvent set of the operator Λn, and

Λ−1
n u =


(n1)A

− 1
n (n2)A

− 2
n ··· ( n

n−2)A
2−n
n ( n

n−1)A
1−n
n A−1

−I 0 ··· 0 0 0
0 −I ··· 0 0 0
...

...
...

...
...

...
0 0 ··· −I 0 0
0 0 ··· 0 −I 0




v1
v2
v3
...

vn−1
vn



:=


(n1)A

− 1
n v1+(n2)A

− 2
n v2+···+( n

n−2)A
2−n
n vn−2+( n

n−1)A
1−n
n vn−1+A−1vn

−v1
−v2
−v3
...

−vn−1

,
for any

u =

 v1
v2
v3
...
vn

 ∈ Y.
Moreover, Λ−1

n is a compact operator on Y and Λn has compact resolvent.

Proof: i) Firstly, note that the inclusion Y 1 ⊂ Y is dense (the inclusions Xα ⊂ Xβ are

dense for α ≥ β ≥ 0). Secondly, the operator Λn is closed. Indeed, if uj =

 v1,j
v2,j
v3,j

...
vn,j

 ∈ D(Λn)

with uj → u =

 v1
v2
v3
...
vn

 in Y as j → ∞, and Λnuj → ϕ =

 ϕ1
ϕ2
ϕ3

...
ϕn

 in Y as j → ∞, then for

each k ∈ {2, . . . , n}

vk,j → vk in X
n−k
n , vk,j → −ϕk−1 in X

n−k+1
n , as j →∞

and consequently, for each k ∈ {2, . . . , n} we have vk = −ϕk−1 ∈ X
n−k+1
n .

Therefore, u = [v1 v2 · · · vn−1 vn]T is such that v2 ∈ X
n−1
n = X

n−k+1
n , v3 ∈ X

n−2
n , · · · ,

vn−1 ∈ X
n−(n−1)+1

n = X
2
n and vn ∈ X

1
n . It remains to check that v1 ∈ X1 in order to conclude

that u ∈ Y 1.
Next, we have

Av1,j +

(
n

1

)
A

n−1
n v2,j +

(
n

2

)
A

n−2
n v3,j + · · ·+

(
n

n− 2

)
A

2
nvn−1,j +

(
n

n− 1

)
A

1
nvn,j

converges to ϕn in X as j →∞; that is,

A

(
v1,j +

(
n

1

)
A−

1
nv2,j +

(
n

2

)
A−

2
nv3,j + · · ·+

(
n

n− 2

)
A

2−n
n vn−1,j +

(
n

n− 1

)
A

1−n
n vn,j

)
converges to ϕn in X as j →∞.
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Moreover

v1,j +

(
n

1

)
A−

1
nv2,j +

(
n

2

)
A−

2
nv3,j + · · ·+

(
n

n− 2

)
A

2−n
n vn−1,j +

(
n

n− 1

)
A

1−n
n vn,j

converges to

v1 +

(
n

1

)
A−

1
nv2 +

(
n

2

)
A−

2
nv3 + · · ·+

(
n

n− 2

)
A

2−n
n vn−1 +

(
n

n− 1

)
A

1−n
n vn

in X as j →∞, and consequently, since A is a closed operator, we conclude that

v1 +

(
n

1

)
A−

1
nv2 +

(
n

2

)
A−

2
nv3 + · · ·+

(
n

n− 2

)
A

2−n
n vn−1 +

(
n

n− 1

)
A

1−n
n vn

belongs to X1, which allows us to conclude that v1 ∈ X1 and

A

(
v1 +

(
n

1

)
A−

1
nv2 +

(
n

2

)
A−

2
nv3 + · · ·+

(
n

n− 2

)
A

2−n
n vn−1 +

(
n

n− 1

)
A

1−n
n vn

)
= ϕn.

Therefore, u ∈ D(Λn) and Λnu = ϕ.
Item ii) follows from the definition of Λ−1

n which takes bounded subsets of Y into bounded
subsets of Y 1, the latter space being compactly embedded in Y . �

Proposition 2.2. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then −Λn
is not a dissipative operator in Y , according to Pazy [33, Definition 4.1, Chapter 1].

Proof: Let u =

 v1
v2
v3
...
vn

 ∈ Y 1. Then

〈
− Λn

 v1
v2
v3
...
vn

 ,
 v1
v2
v3
...
vn

〉
Y

= 〈v2, v1〉
X
n−1
n

+ 〈v3, v2〉
X
n−2
n

+ 〈v4, v3〉
X
n−3
n

+ · · ·+ 〈vn, vn−1〉
X
n−1
n

− 〈Av1 +

(
n

1

)
A

n−1
n v2 +

(
n

2

)
A

n−2
n v3 + · · ·+

(
n

n− 2

)
A

2
nvn−1 +

(
n

n− 1

)
A

1
nvn, vn〉X .

In particular, if v1 = v2 ∈ X1 and v1 6= 0 and vj = 0 for j ∈ {3, . . . , n}, then〈
− Λn

 v1
v2
v3
...
vn

 ,
 v1
v2
v3
...
vn

〉
Y

= ‖v1‖2

X
n−1
n
> 0.

�
Explicitly, this means that −Λn is not an infinitesimal generator of a strongly continuous

semigroup of contractions in Y . As a matter of fact, as we shall see in the sequel, we will be
able to prove that −Λn generates an analytic semigroup in Y and we will obtain the estimate

‖(λ− Λn)−1‖Y ≤
M

|λ|
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for the resolvent of Λn in a given sector for some M > 0. The fact that −Λn does not
generate a semigroup of contraction in Y means that this constant M is strictly greater than
1.

Proposition 2.3. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then

σ(−Λn) =
{
λ ∈ C : λ = −µ

1
n
j , µj ∈ σ(A), j ∈ N

}
,

where σ(−Λn) and σ(A) denote the spectrum set of −Λn and A, respectively.

Proof: Note that

(λI + Λn)u = 0⇔


λv1−v2
λv2−v3
λv3−v4

...
λvn−1−vn

λvn+Av1+(n1)A
n−1
n v2+(n2)A

n−2
n v3+···+( n

n−2)A
2
n vn−1+( n

n−1)A
1
n vn

 = 0.

From the n− 1 first lines of the above equality, we obtain vj = λvj−1, where j ∈ {2, ..., n}.
Therefore, vj = λj−1v1. It follows from the last line of the matrix equality above that

λ(λn−1v1) + Av1 +

(
n

1

)
A

n−1
n λv1 +

(
n

2

)
A

n−2
n λ2v1 + · · ·+

(
n

n− 2

)
A

2
nλn−2v1 +

(
n

n− 1

)
A

1
nλn−1v1 = 0,

which is equivalent to (λI + A
1
n )nv1 = 0.

Therefore, (λI+Λn) is injective if and only if (λI+A
1
n )n is injective. Since Λn has compact

resolvent (Proposition 2.1), its spectrum consists entirely of isolated eigenvalues and

σ(−Λn) = {λ ∈ C : (λI + A
1
n )n is not injective}

= {λ ∈ C : (λI + A
1
n ) is not injective}

= {λ ∈ C : λ = −µ
1
n
j , µj ∈ σ(A)}.

�
Recall that A is positive definite, self-adjoint and has compact resolvent. Its spectrum is

given by σ(A) = {µj : 0 < µ1 < µ2 < ... < µj < ...}. It follows from the above proposition

that Λn has a spectrum given by σ(Λn) = {µ
1
n
j : 0 < µ1 < µ2 < ... < µj < ...}.
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Proposition 2.4. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then for
each λ ∈ ρ(−Λn) we have

(λI + Λn)−1 =

∑n
k=1 (nk)λk−1A

n−k
n

∑n
k=2 (nk)λk−2A

n−k
n

∑n
k=3 (nk)λk−3A

n−k
n ··· λI+nA

1
n 1

−A
∑n
k=2 (nk)λk−1A

n−k
n

∑n
k=3 (nk)λk−2A

n−k
n ··· λ2I−nλA

1
n−1 λI

−λA −
∑2
k=1 ( n

k−1)λk−1A
n−k+1
n

∑n
k=3 (nk)λk−1A

n−k
n ··· λ3I−nλ2A

1
n−1 λ2I

...
...

...
...

...
...

−λn−3A −
∑2
k=1 ( n

k−1)λk+n−5A
n−k+1
n −

∑3
k=1 ( n

k−1)λk+n−6A
n−k+1
n ··· λn−1I+nλn−2A

1
n−1 λn−2I

−λn−2A −
∑2
k=1 ( n

k−1)λk+n−4A
n−k+1
n −

∑3
k=1 ( n

k−1)λk+n−5A
n−k+1
n ··· −

∑n−1
k=1 ( n

k−1)λk−1A
n−k+1
n λn−1I


· (λI + A

1
n )−n·

= [ei,j] · (λI + A
1
n )−n,

where

eij =



n∑
k=j

(
n

k

)
λk−j+i−1A

n−k
n , if i 6 j,

−
j∑

k=1

(
n

k − 1

)
λk−j+i−2A

n−k+1
n , if i > j,

Proof: This result is an immediate consequence of (1.8)-(1.9). �

As the main result of this subsection, we show that (1.1) is a parabolic equation, thanks
to the same arguments used in the proof of [36, Theorem 2.5.2]. Namely, the same circular

sector of the sectorality of A
1
n allows for ensuring the sectorality of the operator Λn.

Theorem 2.5. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then Λn is
a sectorial operator.

Proof: In this proof, K will denote a positive constant, not necessarily the same one. First,
we note that the operator A

1
n : D(A

1
n ) ⊂ X → X is a positive sectorial operator; that is,

there exist φ ∈ (0, π
2
) and M > 1 such that the resolvent set ρ(A

1
n ) contains the sector

Σφ = {λ ∈ C;φ 6 |arg(λ)| 6 π}

and for any λ ∈ Σφ

‖(λI − A
1
n )−1‖L(X) 6

M

|λ|
.

It follows that, for each k = 1, 2, 3, . . . , (λI −A 1
n )−k is a bounded linear operator on X and

(2.1) ‖(λI − A
1
n )−k‖L(X) 6

Mk

|λ|k
,

for any λ ∈ Σφ. Moreover, for each λ ∈ Σφ, we have the following identity

(2.2) A
1
n (λI − A

1
n )−n = −(λI − A

1
n )−(n−1) + λ(λI − A

1
n )−n,
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and from this we deduce

(2.3) A
2
n (λI − A

1
n )−n = (λI − A

1
n )−(n−2) − 2λ(λI − A

1
n )−(n−1) + λ2(λI − A

1
n )−n.

Using (2.2) and (2.3) we derive

A
3
n (λI − A

1
n )−n = −(λI − A

1
n )−(n−3) + 3λ(λI − A

1
n )−(n−2) − 3λ2(λI − A

1
n )−(n−1)

+ λ3(λI − A
1
n )−n,

(2.4)

and following with this argument we obtain

(2.5) A
k
n (λI − A

1
n )−n =

k∑
i=0

(−1)i
(
k

i

)
λk−i(λI − A

1
n )−(n−i),

(
k

i

)
=

k!

i!(k − i)!
,

for any k = 1, 2, . . . , n− 1.

Thus, for each k = 1, 2, . . . , n − 1, the linear operators A
k
n (λI − A 1

n )−n are bounded on
X, and

(2.6) ‖A
k
n (λI − A

1
n )−n‖L(X) 6

K

|λ|n−k
.

Using the expression for the resolvent of Λn obtained in Proposition 2.4, we have, for

λ ∈ Σφ and u =


u1
u2
u3
...

un−1
un

 ∈ Y with ‖u‖Y 6 1,

(λI + Λ3)−1u =


ϕ1
ϕ2
ϕ3

...
ϕn−1
ϕn

 .
The estimates (2.6) are applied in each ϕj above, and we obtain

‖ϕ1‖
X
n−1
n
6
K

|λ|
,

‖ϕ2‖
X
n−2
n
6
K

|λ|
,

‖ϕ3‖
X
n−3
n
6
K

|λ|
,

...

‖ϕn−1‖X 1
n
6
K

|λ|
,

‖ϕn‖X 6
K

|λ|
.
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Therefore ∥∥∥∥∥∥∥


ϕ1
ϕ2
ϕ3

...
ϕn−1
ϕn


∥∥∥∥∥∥∥
Y

6
K

|λ|
.

�
As a consequence of this last theorem, we have the following result.

Corollary 2.6. Let Λn be the unbounded linear operator defined in (1.8)-(1.9). Then −Λn
is the infinitesimal generator of an analytic semigroup in Y .

Proposition 2.7. Let F be the function defined in (1.10). Then, F fulfills the Hölder
condition in the variable t and the Lipschitz continuous condition in the variable u on every
bounded subsets of [t0,∞)× Y .

Proof: The results follows from the fact that the nonlinearity f to fulfill the Hölder condition
in the variable t and the Lipschitz continuous condition in the variable u on every bounded
subsets of [t0,∞)×X n−1

n . �

It follows from Proposition 2.3 and Theorem (2.5) that Λn is a sectorial operator with
Reσ(Λn) > 0. Therefore, existence results presented in [12, Theorem 4.3.3], or [19], can be
applied to the problem being studied here and we obtain the following results.

Theorem 2.8. Let Λn be the unbounded linear operator defined in (1.8)-(1.9), and let F be
the function defined in (1.10). Since F fulfills the Hölder condition in the variable t and the
Lipschitz continuous condition in the variable u on every bounded subsets of [t0,∞)×Y , for
each u0 ∈ Y , there exists a unique Y−solution u = u(t,u0) of (1.7) defined on its maximal
interval of existence [t0, τu0) such that

u ∈ C([t0, τ), Y ) ∩ C1((t0, τ), Y β) ∩ C((t0, τ), Y 1), β ∈ [0, 1), τ = τu0 ,

where Y α = D(Λαn) for α ∈ [0, 1) is the domain of the fractional power operator Λαn defined
as inverse of the bounded, injective and linear operator Λ−αn .

As a consequence of well-known results associated with fractional powers of linear oper-
ators, see [21, Theorem 2], with Reσ(Λαn) > 0 for α ∈ (0, 1). Moreover, we also have the
following result for the fractional counterpart of (1.7) given by

(2.7)


duα

dt
+ Λαnu

α = F (t,uα), t > t0, 0 < α < 1,

uα(t0) = uα0 ,

namely

Theorem 2.9. Let Λn be the unbounded linear operator defined in (1.8)-(1.9), and let F be
the function defined in (1.10). Since F fulfills the Hölder condition in the variable t and the
Lipschitz continuous condition in the variable u on every bounded subset of [t0,∞)× Y , for
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each for each uα0 ∈ Y , there exists a unique Y−solution u = u(t,uα0 ) of (2.7) defined on its
maximal interval of existence [t0, τuα0 ) and such that

u ∈ C([t0, τ), Y ) ∩ C1((t0, τ), Y β) ∩ C((t0, τ), Y α), β ∈ [0, α), α ∈ (0, 1), τ = τu0 .

In the autonomous case, with f independent of t, thanks to results in [5] we can obtain a
result of convergence of the solution for (2.7) as α→ 1− on bounded subsets of Y .

3. Applications

Let n > 3 be a natural number. We can consider a bounded domain Ω ⊂ RN with smooth
(at least C2,α) boundary with N ∈ N, N > 1 and the unbounded linear operator A = −∆D,
where ∆D denotes the Laplacian operator with homogeneous Dirichlet boundary condition.
Its L2(Ω)-normalized eigenfunctions are denoted by wj, and its eigenvalues counted with
their multiplicities are denoted by µj; that is,

(3.1) −∆Dwj = µjwj.

It is well know that 0 < µ1 6 µ2 6 · · · 6 µj 6 · · · , µj → ∞ as j → ∞, and that −∆D is
a positive self-adjoint operator in L2(Ω) with domain D(−∆D) = H2(Ω) ∩H1

0 (Ω), and that
∆D generates a compact analytic C0-semigroup in L2(Ω), see Henry [19].

This allows us to consider the following application of our previous analysis. We consider
the semilinear evolution equation of third-order in time

(3.2)
(
∂t + (−∆D)

1
n

)n
u = f(u),

(
∂t + (−∆D)

1
n

)n
u =

n∑
k=0

(
n

k

)
∂kt (−∆D)

n−k
n u,

with initial conditions given by

(3.3) u(0) = un,0 ∈ X
n−1
n , ∂tu(0) = un,1 ∈ X

n−2
n , . . . , ∂n−1

t u(0) = un,n−1 ∈ X,

where Xα = D((−∆D)α) for α ∈ [0, 1) (X = L2(Ω)) is endowed with the graph norm

‖ · ‖Xα := ‖(−∆D)α · ‖X ,

and the nonlinearity f : R → R in (3.2) is a continuously differentiable function satisfying
for some 1 < ρ 6 nN

nN−4(n−1)
the growth condition

(3.4) |f ′(s)| 6 C(1 + |s|ρ−1).

The case n = 2 in (3.2) refers to the semilinear strongly damped wave equation

(3.5) ∂2
t u+ 2(−∆D)

1
2∂tu−∆Du = f(u),

with initial conditions given by

(3.6) u(0) = u2,0 ∈ H1
0 (Ω), ∂tu(0) = u2,1 ∈ L2(Ω).

Results on regularity of solutions and smoothing estimates for strongly damped wave equa-
tions have been a subject of long studies, see e.g. [8, 9, 10, 13] and our analysis includes
some of these results for (3.5)-(3.6).
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For n = 3 in (3.2) we have the equation

(3.7) ∂3
t u+ 3(−∆D)

1
3∂2

t u+ 3(−∆D)
2
3∂tu−∆Du = f(u)

with initial conditions given by

(3.8) u(0) = u3,0 ∈ X
3
2 , u(0) = u3,1 ∈ X

1
3 , ∂tu(0) = u3,2 ∈ X.

Results on existence and regularity of solutions, as well as smoothing estimates for them,
have been a subject of studies in the last years and our analysis include some of these results
for (3.7)-(3.8).

The following result is a direct consequence of (3.4) via Mean Value’s Theorem.

Lemma 3.1. Let f be a real function of one real variable such that condition (3.4) holds.
Then

|f(s1)− f(s2)| 6 2ρ−1c|s1 − s2|
(
1 + |s1|ρ−1 + |s2|ρ−1

)
,

for any s1, s2 ∈ R.

Moreover, we have the following result.

Lemma 3.2. Given s ∈ [0, nN
4

), let f be a real function of one real variable such that

condition (3.4) holds with 1 < ρ 6 nN+4s
nN−4(n−1)

. Then the Nemitskĭı operator f e : X
n−1
n → X−

s
n

given by f e(u)(x) = f(u(x)) for any u ∈ X n−1
n and x ∈ Ω is Lipschitz continuous in bounded

subsets of X
n−1
n .

Proof: Let B be bounded subsets of X
n−1
n and u1, u2 ∈ B. Since Xγ ↪→ H2γ(Ω) for any

γ > 0, we derive for all s ∈ [0, nN
4

)

X
s
n ↪→ H

2s
n (Ω) ↪→ L

2nN
nN−4s (Ω).

Therefore L
2nN
nN+4s (Ω) ↪→ X−

s
n . Now by Lemma 3.1 and Hölder’s inequality with 2nN

nN+4s
,

2nN
nN−4(n−1)

and nN
2(s+(n−1))

we obtain

‖f e(u1)− f e(u2)‖
X− s

n
6 c0‖f e(u1)− f e(u2)‖

L
2nN
nN+4s (Ω)

6 c0

(∫
Ω

[2ρ−1c|u1 − u2|(1 + |u1|ρ−1 + |u2|ρ−1)]
2nN
nN+4sdx

)nN+4s
2nN

6 c1‖u1 − u2‖
L

2nN
nN−4(n−1) (Ω)

(∫
Ω

(1 + |u1|ρ−1 + |u2|ρ−1)
nN

2(s+(n−1))dx

) 2(s+(n−1))
nN

6 c2‖u1 − u2‖
L

2nN
nN−4(n−1) (Ω)

(
1 + ‖u1‖ρ−1

L
nN(ρ−1)

2(s+(n−1)) (Ω)

+ ‖u2‖ρ−1

L
nN(ρ−1)

2(s+(n−1)) (Ω)

)
,

where c0 > 0 is the embedding constant from L
2nN
nN+4s (Ω) to X−

s
n .

From Sobolev embeddings

X
n−1
n ↪→ H

2(n−1)
n (Ω) ↪→ L

nN(ρ−1)
2(s+(n−1)) (Ω),
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for all 1 < ρ 6 nN+4s
nN−4(n−1)

, it follows that

‖f e(u1)− f e(u2)‖
X− s

n
6 C‖u1 − u2‖

X
n−1
n

(1 + ‖u1‖ρ−1

X
n−1
n

+ ‖u2‖ρ−1

X
n−1
n

),

for some constant C > 0. �

Remark 3.3. Since L
2nN

(nN−4(n−1))ρ (Ω) ↪→ L2(Ω) for all 1 < ρ 6 nN
nN−4(n−1)

, it follows from the

proof of the Lemma 3.2 that f e : X
n−1
n → L2(Ω) is Lipschitz continuous in bounded subsets;

that is,

‖f e(u)− f e(v)‖L2(Ω) 6 c̃ ‖f e(u)− f e(v)‖
L

2nN
(nN−4(n−1))ρ (Ω)

6 ˜̃c‖u− v‖
X
n−1
n
.

The scheme below describes this situation:

X
n−1
n ↪→ H

2(n−1)
n (Ω) ↪→ L

2nN
nN−4n+4 (Ω)

f(u)≈uρ7−→ L
2nN

(nN−4(n−1))ρ (Ω) ↪→ L2(Ω).

A direct consequence of Lemma 3.2 and Remark 3.3 is the following result.

Corollary 3.4. If f is as in Lemma 3.2, then the function F : Y → Y given by (1.10) is
Lipschitz continuous in bounded subsets of Y .

Now, Theorem 2.8 and [33, Theorem 1.4] guarantees local well posedness for the semilinear
Cauchy problem (1.7) on Y with A = −∆D and f as in Lemma 3.2.
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