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1. Preliminaries. Let C be a vector space over an arbitrary field F,
and let A and & ,be F-linear maps, O : C—>CQRC ,E: C—>F . We say
that the triple (C,A,¢g) is a coalgebra, if the maps verify the follo-
wing equations: (A® id)A= ( id ®A)A, and (id@ €)A = (€ ® id)A= id.
Here,id stands for the identity map. The map Ais called the comultiplica-
tion of the coalgebra,and the map € is called the counit. A coalgebra C
is said to be coaugmented,if there is an element ]C in C,such that

A(]C) =1 ® 1, and £(1.) = 1., where 1p stands for the identity of F.
Let M be a vector space over F,a linear map XM: M—=M@®C , is called a
C-comodule structure on M,'ifXM satisfies the following equations:

(XM ® id)?(M = (1d ®A)Xy and (id @)X = id.

We denote by CM(C) the abelian category of all C-comodules and all C-
comodule maps,these being defined in the obvious way. We demote by M(F),
the category of F-vector spaces.

In {13, we observed that CM(C) has enough injectives,(C is an injective
object when considered as a C-comodule with structure A }>and defined a
connected sequence of functors,denoted by Hi(C,-),from CH(C) to M(F).
The functors Hi(C,-) are the derived functors of the functor HO(C,M)=MC,
¢ as:Mc=§_m €M /X y(m)=m & ]C}'

*
For any vector space V,defined over F,V denotes its dual space. If C is

where for any C-comodule M we define M

a coalgebra 'coaugmented or not),C* has a natural structure of associati-
ve algebra f,g€ C*,we define fgé¢ c* as(fg)(x)_ =Z f(xi)g(yi),where
A(x) =in ®y1. . Clearly & is an identity of the product defined above,
thus C* becomes an associative algebra with identity.

In a similar way,any C-comodule M can be endowed with a C*-module struc-
ture.If f&€C  and m€ M,f.m=Zf(ci)m1.,where ?(M(m) =Zm1. ® c;. It follows
immediately that £€.m = m.

There is a finiteness condition built up in the very defim‘tibn of a C-

*
comodule structure,that forces M,when considered as a C -module,to be

locally finite. Recall that if R is an F-algebra with identity and M an
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R-module,we say that M is a locally finite R-module,if for every m in M,
the dimension of Rm,when considered as an F-space,is finite.

In the situation of C-comodules, if m& M,and 'XM(m) =Zm1. ® C;.we have
that C*mc,spanF(m],...mt),i.e.,M is locally finite when considered as

a C*-module.

*
Conversely,let M be an arbitrary C -module,and let me¢M.let m be

R L
_ X |
a basis of the subspace C m. There are elements Al,...xtec ssuch that

for every f¢& C*, fm=2f21(f) m, .

Definition 1.In the notation above,we say that the locally finite C*-

module M is of type C,if for every m,the functionals ki defined above,

are in fact elements of C. (Here we are identifying C with its image in
C**).It is clear that if we take another basis for C*m,the new functionals
will still be elements of C.

Thus, in the case that M is a locally finite C*—module of type C,we
can find for every m in M and every basis Myse. My of C*m,elements o in
C such that f.m =:£f(ci)mi‘ It is a matter of routine fo check,that in
that rase the map XM: M—>M® C ,defined asXM(m)=Im1. ® c;s is a C-co-
module structure on M.

The observations above guarantee that the category CM(C) is naturally
equivalent with the category of locally finite C*-modules of type C.

Let M(CT), Me(C") and M(C",C) .denote the abelian categories of the
C*;modules,locally finite C*-modules and locally finite C*-modu4es of
type C,respectively.It is well known,and easy to prove that all the three
categories above,have enough injectives.

If R is an arbitrary augmented algebra with augmentation a : R—F,for
any R-module M,we define M? as Ma={rn€hd/ rm = a(r)m%for every r in R .
In the case in which C is a coaugmented coa]gebra,C* becomes an augmented
algebra with augmentation a(f) = f(]c). In this particular case for every

C-comodule M,we have that MC

a a . *
= M° . Take m&M®,then for every f in C ,
fm = f(1:)m =Zf(c1.)m1.. As m =§£(ci)mi,we have that
:Z-f(ci)mi = :Z'F(lc) [4 (ci) m .If we choose the m to be linearly inde-

*
pendent over F,we deduce that for every f in C ,f(ci) = f(lc) E(Ci)’
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Then,we have that c; = lcg(ci),i.e., X(m) =Z m, (X)E.(ci)]C = m®1c.
Conversely,let meMC, as ?((m) =m® 'IC , for any f in C"r we have that
f.m = f(]c) m= a(f)m,i.e. m belongs to M3,

Thus,our cohomology theory appears as a locally finite version of
Hochschild's cohomology of augmented algebras.We recall the basic de-
finitions.

Let A be an associative F-algebra,with identity denoted as 1,and
augmentation a.If M is an arbitrary F-space and N a right A-module,then
HomF(N,M) has a natural structure of left A-module as follows:
(r.f)(n) = f(nr). In particular if N=A with the cannonical right A-mo-
dule structure,the left A-module HomF(A,M),is injective. This is be-
cause if @:X~>Y is an injective left A-module map,and t is an arbitra-
ry left A-module map from X to HomF(A,M),we can define T from Y to
HomF(A,M) as : t(y)(r) = t((3(ry))(1),where P is an arbitrary F-linear
splitting of ¢ . It is easy to verify that T is a left A-module map
and that ft{)= t.

Moreover,if M is a left A-module,the map 'SM: M —> Homg(A,M),defined
as glw(m)(r) = rm, is an injective left A-module map.

One defines the Hochschild cohomology functors in the category of left
A-modules,as the derived functors of the functor M—> M?,where
Ma=én1QM / rm = a(rhn}fbr every r in A

We say that the (left) A-module M is locally finite,if for every m in
M,Am is a finite dimensional vector space.Givén an arbitrary A-module
M,we define Mf as the maximal locally finite A-submodule of M.It is
clear that the correspondence that associates Mf to M,is functorial in
the sense that if f:M->N is a map of A-modules,f maps Mf into Nf.

We denote by M(A) ,the abelian category of (left)A-modules and by
gf(A) »the abelian cagfbry of locally finite A-modules. If I is an in-
jective object in [‘;_’l(A),If is an injective object in gf(A). Let X and

Y be objects of gf(A), ?:X-rY an injective A-module homomorphism,and



t: X > If an arbitrary A-module homomorfism. As I is injective as, A-mo-
dulejthere is an A-module map £ :Y —>1,such that f<?= i t,where i stands
for the inclusion of I into I. As Y=Y, f(Yf)=f(Y)c I.. Consequently
If is injective in Mf(A). Thus ,we can also derive the functor M-a-Ma,
in the category gf(A). We denote by H}(A,-) the derived functors con-
sidered above.Clearly for any M in gf(A),there are natural homomorfism
from HE(A,M) into H'(A,h).

Suppose that C,isa coaugmented coalgebra,and call C*=A. There are
three categories that are relevent in this case.These are: gf(c*,C),
gf(c*) and g(c*). A11 three of them have enough injectives,the first
one because it is equivalent to CM(C),and the last two because of what
we just observed. Thus,we can derive the functor M—>M? in the three
categories,obtaining three cohomology theories.Thus,if M is a C-como-
dule,we have for every izo,naturally defined maps from Hi(C,M) into
H}(C*,M),and from H}(C*,M) into Hi(C*,M),that for § = 0 are isomor-

fisms.
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2.Extension of Comodules. We beguin with some general considerations
on comodules.Let C be a Hopf algebra,with mu]tip]ication/& unit 1C,comu1-

tiplication A ,counit € and antipode '7 . We call u the map from F to
C that sends )\ to hc,for every /\eF. If M and N are C-comodules,we en-
dow Homz (N,M) with a C-comodule s'cructur'e?(N’M as follows (we ca]]XN
and (XM the comodule structures on N and M respectively):

XN,M: Homg (N,M)—> Hom_(N,M) ® C = Hom (N,M ® C) is defined by the
formu]aXN’M(f) = (1d x ) ( 1d @@ id) (X, ® 1d)(f x id)X . It is an
easy computation to verify that XN,M is a C~comodule structure for
HomF(N,M). We want to identify HomF(N,M)C. Take f in HomF(N,M)C. Then f
veriftes the following equality:(id @/A)(id 9 ® id)(XMD id)(fo® id)?(N=
f® ]C' Applying (id ®/A)(XM® id) to the equality above we get:

(1d Sp ) (Ay ® id)(id ®p)(id @M@ id) Xy @ id)(f ® id)Xy =X ,f.
.Changing the order of the composition factors in the right hand side we
ggt:
(id@un)(id ® id ®Iu)(id ® id ®0)® id)(ﬂM ® id ® 1’d)(XM ® id)(f® id)XN=
‘9(»1 f.
u~ing the fact that'XM is a C-comodule strucutre,we deduce that:
(id Q) (id @ id ®p)(id ® id ©® id)(id ®Ap id)(xM ® id)(f ® id)’xN =
=X .
Then : (idop)( id @p(id @M)A @ id)(Xy @ 1d)(f ® id )K= X, f.
By the definition of antipode,we have that u(id @%)A = ue .
Then (id ®p)( id ® pr(id ®N)A® 1'd)(XM ® id ) = id ® id . Thus,
(f® id )X N X m f . Thus f is a C-comodule map. We have proved that
HomF(N,M)CC Hom~(N,M). Lonversely,if f is in Hom.(N,M) ,we have that
(fF@®id)X y = 7(M f.* Thus,
Ky if)= (id Gp)(ig @M@ id)(Xy ® id)X,, f =
=(id @) (id ®@m® id)(id ®@A)X , f =( id ®pu(Me id)A )y f =
=(id ® ug )Xy f-
Tf ('XM f)(n) =2m1. ® Ci» We deduce that 'XN’M(f)(n)=5mi ® a(ti)lc =



= f(n) ® 1.. Then f belongs to HomF(N,M)C.
The construction of a C-comodule structure on HomF(N,M) is functorial

in both variables in the following sense:(we just explain the situa-
tion for the second variable). Let o:M—>M' be a morphism of C-comodu-
les.Then o(*:HomF(N,M)—> Homg(n,M"'),given by composition with « ,is
a morphism of C-comodules,when we endow the spaces of linear maps ,with
the structures defined above.
et C be a Hopf algebra over F. If M and N are C-comodules,we en-
dow M @ N with a C-comodule structure as follows.Call XM and XN the
structures on M and N respectively,and call s the switching map that
sends x ® y into y ® x. Define,XM [X}XN =(1'd®'id8>})k)(1'Ck35®id)0(M @XN).
It is easy to see thatXM [X_\XN is a C-comodule structure on M ® N.
When endowed with such an structure,the vector space M® N will be
denoted by MR N. In the case that N=C,we have the following result.
LemmaZ. If C is a Hopf algebra,then for any C-comodule M,M mc
and M® L, are isomorfic as C-comodules.This last one,endowed with the
C-comodule structure id ®A.
Proof. Consid~r the map\y: MR C—=>M® C, Y=(id ®/*)(7§® id)
where 'X stands ° . the structure map on M. The map \1) is a C-comodule
map. This amounts to prove that:
(Y® id )(1d @ 1d ®p)(id ®s ® id)(A®D)=( id ®A) .
The left hand side of the above equality is
LHS=( id @ u® id)(Xegid ® id )(id ® id @ p)(id ®s @ id)(1d®ided) (X© id)=
=(1dep@id)(ideideidop ) (id®ides@id) (ideid®ided) Xoideid) (X oid)=
=(idopop)(id @id ® seid)(id @AB®A) (X ® id).
The right hand si-2z of the above equality is:
RHS=( id @A) (id gp)(X® id). Asbp =(u@u)(id® s @ id)(A®b),
see [ 3] ,Chapter 3 ; we deduce that LHS=RHS.
The map §: M® C > MyC, defined by ¥= (id ®))(1d @M@ 1d) (X ®id),

is a two sided inverse of Y.



We will check that f@=id.
BY = (id op)(id B ® 1d)(X® id)(id @) (Ao id)-
=(id @p )(id ® id ®}x)(id ®Y® id @ id)(id @A® id)(X® id)=
(id @u)(idOun(m® id )A® id )(X® id ) = id
The verification that YY'= id, is analegous.

M®C*

Q.E.D.

If X is an arbitrary F-space,any comodule of the form: X®C ,with
structure id @A, is called a coinduced comodule. In[1] ,we proved
that any induced comodule is 1injective

Corollary 3. Let C be a Hopf algebra over F,let I and M be C-como-

dules with I injective.Then MM is an injective C-comodule.

Proof. In [1], we proved that any C-comodule can be embedded in a
coinduced one. As I is injective I is a direct summand of a coinduced
C-comodule. Then there is a C-comodule J and a vector space X,such
that 1@ J TX@C. Then: ME( X ®C)¥ (M@ X)@C =

= (MRI)®(MEJ).
In the expression above the C-comodule structure on M® X is given by
5(: M®X>M@®X®C, 5(= (id®s )(X® id ).
By Lemma 2 (M ® X) X1 C is isomorphic to a coinduced comodule and con-

sequently injective.Then M I , is injective.
Q.E.D.

We go back now to the case in which C is an arbitrary coaug-

mented coalgebra.
Let M and N be C-comodules and let Oﬂ'M35M0§3M]... » be an injective
resolution of M by C-comodules.
Consider the complex:

C(N,M) : Homc(N,MO)iHomc(N,M]) ..., and define Ext{(N,M) to be
the n-th homology group of the complex C(N,M).

In other words,we consider for a fixed C-comodule N,the functor from
the category of C-comodules to the category of vector spaces that sends
M to HomC(N,M). This functor is righ exact and Extg(N,M) is its n-th

derived functor.



In the case in which N is the base field F,with the comodule structure
Xet F>FOC,X(1) = 1. ® 1. . the map from Hom. (F,M) to M that
sends f to f(lF), establishes an isomorphism from HomC(F,M) onto MC.
Then,we have that Extg(F,M)= H"(C,M). Thus ,the cohomology functors
defined in §l,are a particular case of the Ext functors.

In the case in which C is a commutative Hopf algebra,and N a finite
dimensional C-module,we can obtain the Ext from the cohomology, in the
following fashion.

We endow N* with the dual C-comodule structure as follows. Let Nyeeshys

be an F-basis of N,and let f],..,f be the dual basis of N*. Then the

£?
comodule structure ?<N of N defines elements (Cij)’ by the formulae:
Q(N(nj) =an®cjk . He define ’X*: N'— N*®C, as
X*(fi) = Zf‘:@ '7(ck1.). It is clear that X* » defines a C-comodule
structure on N .
In that situatio~,Lemma 4.1 of []] » guarantees that for any C-comodule
My (KR M = Hoag (N,M).

Theorem 4.Let C be a commutative Hopf-algebra,and 1et N and M be C-

ccmodules,the first one finite-dimensional. Then H'(C,N" ®IM)= Extl(N,M),

for every i3 0.

Proof.Let O-VM-a»MO—e-Ml—y ... 5 be an injective resolution of M
by C-comodules, then 0—->N*[EM—+N*D_QM0——> N*mM] «..s 1S an in-
Jective resolution of N*mM by C-comodules,(s e Corollary 3). If we
call E the complex obtained by taking the C-f%xed part of the last
resolution and deleting the first term,we have that H (C, N XIM) is

isomorphic to the homology of C Now,the complex g.1§ isvmorphic, to

the complex: 0->HomC(N,M0)-+ Homc(N,M])-y...,, whose homology is,by

definition,Extg (N,M). Q.E.D.

We also have long exact sequences,one in the first and the other in
"the second variable of Ext,in the same way than in the case of the

ordinary Ext functor in the category of R-modules.



In particular we deduce that.a C-comodule J is injective if and
only if Exté(N.J) = 0 for every C-comodule N.

We finish this section showing that Exté(N.M) can be identified
with the set of equivalence classes of short exact sequences of C-co=

modules.We skip most of the details because they are similar to the

“classical" case.

<. . .. . .
—‘-.M2 -..5 1S an injective resolution of M
%

b A
and HomC(N,MO)J-» Homc(N,M]) —-{’a HomC(N,MZ) is the associated complex,
we have that Exté(N,M)= Ker'fzr /Imﬁ .

¥
If 0N LMO_% My

If 0 M-J;E-:EN-aO is a short exact sequence of C-comodules, as M0 is
injective, the map ¥ :M—> M0 s can be extended to a map f:E—rMO » that
defines a map ¢ from N into MO/D’(M). The map T], factors through

T (M),inducing a map i]:MO/X(M)——» My. Now,the map ilg is an ele-
ment of Ker“dz » then it defines an element of Exté(N,M).
Conversely,an element of Ker‘ﬂz s is a C-comodule map from N to M],
such that composed with KZ gives the zero map. Then, its image is
contained in the Keer,this kernel is isomorphic to My/Im ¥.

Thus,an element of Kerlf; can be thought as an element h of

Home (N,Mo/Im¥ ). Define Ef{ (n.x)E N@My / h(n) = x +Im§{ . We endow
Eh with the direct sum comodule structure and define i and j as:
i:M—>Eh i(m)=(0, T(m)) , j:Eh->N j(n,x)=n. If we start with an ele-
ment KIOL from Imx;c Ker?f'é, the corresponding h from N into MO/ImU s

is just 1™l :N—>M0->M0/Im‘o’. In this case Eh--{(n.)i) AmeM with q(n)-x=m}.
The mape:Eh-'* M®N ©(n,x)=(m,n) establishes an isomorphism of ex-
tensions between 0> M- E > N->0 and 0>M>M @ N — N—=~0 . This shows
that the corrcop-ndence given above,factors through Im‘(i;r » and thus

it defines a map from Exté(N,M) into the isomorphisms classes of ex-
tensions.

It is a matter of routine to verify that the above constructions are

inverses of each other.



3.Normal maps and spectral sequences.Suppose that C and D are

coalgebras over a field,and let f¥:C—>D be an arbitray coalgebra map.
We define a functor W,: CM(C)—> CM(D), as follows. If (M,}h) is a
C-comodule,we define Ta(M,Ay) to be (M,(id dNKy) -

In particular it follows easily from the definitions that if N and M
are C-comodu]es'ﬁ;(HomF(N,M),xNM )= (HomF(N’M)’XL(N)ﬁ;(M))'

Suppose now that C is a commutative Hopf algebra defined over
a field.The map ©:C—>C ® C, defined as O0=(M@®p)(Ap® id)A, is
called the conjugate comodule structure on C.(See[1], for the mo-
tivation of that definition). If C and D are a pair of Hopf algebras
that are commutative,and M is a surjective bialgebra map from C to D,
we say that the map 7 is normal if ©(Kersq) CKermw® C.

The following Lemma, is contained,though not in explicit form
in[]],we state it without proof because it is an obvious consequen-
ce of results proved in the mentioned paper.

Lemma 5 .Let C,D and TW be as above,and let M be an arbitrary
C-comodule.Then ﬂ;(C)D is a subHopf algebra of C.Moreover'lT'*(M)D is
aTT*(C)D-comodu]e in such a way that when considered as a C-comodu-
le via the inc]usion‘ﬂ;(C)D->C, it becomes a sub C-comodule of M.
o)vr*(C)D e

We also have that (m (M) » and if f:M>M' is a mor-

phism of C-comodules f restricted to'n'*(M)D is a morphism of m;(C)D-

comodules into 7, (M')P.

Suppose that N and M are C-comodules.From the considerations

above we deduce that HomD(m;(N),ﬂ;(M))=7r*(HomF(N,M))D, can be endowed

with a structure of ﬂ;(C)D-comodule,in such a way that
,(c)°
HomD(?r*(N),ﬂ;(M)) % = Homc(N,M)
Moreover if oL : M»M' is a morphism of C-comodules,the induced map
uf:HomF(N,M)-r HomF(N,M') is also a morphism of C-comodules with

*
the corresponding structures, then o ,when restricted to

10.



Tz

Homp (7 «(N), W4 (M)), is a morphism of 7, (C) -comodules from
Homp (1 (N), T, (M)) into Homp (T, (N), T, (M')).

Finally we reca]l,see[]], that in the situation above,the D-
comodule T, (C) is injective.That implies that the functor T, carries
injective objects into injective objects.

If 0-7M-#X0-9X]—>.., is an injective resolution of M by C-co-
modules,

0—7ﬂ;(M)<yn;(xo)—%ﬂ;(xl)-v..., is an injective resolution
of mw, (M) by D-comodules.
We take now an arbitrary C-comodule N,and construct the complex
Homp (T (N) \T, (X)) = Homp (T (N), 7 (Xq)) > ...,
this is a complex in the category of W;(C)D-comodules,whose homo-
logy coincides with Extg(vr*(N),ﬂ;(M)).

Inf1].,§3,we observed that if Ay A, >A .., is a complex in
the category of X-comodules where X is an arbitrary coalgebra,its
homology groups have a natural structure of X-comodules in such a
way that all the morphisms that appear in the long exact sequence of
homology,are also morphisms of X-comodules.

In our especial case,ExtB(N,M) inherits a natural structure
of?T*(C)D- comodule , in such a way that for n=0 it coincides with
the natural structure of ﬂ;(C)D-comodule on HomD(w;(N),ﬂ;(M)).

We summarize the above considerations in the following Lemma.

Lemma 6.Let C and D be commutative Hopf'algebras over a field
F,and let ™ be a surjective normal bialgebra map from € to D.Then
for any pair of C-comodules N and M,there is a natural ﬂ;(C)D—como-
dule structure iﬁ on Extg(ﬂ;(N),m;(M)) such that:

a) io is the natura]TT*(C)D-comodule structure in

™, (Homg (N,M))0.

b)If 0-M]—~M2-°M3-a 0 is an exact sequence of C-comodules,



the maps in the long exact sequence:
Extp p(Ta(N), T (M])) — ExtD('tr'*(N) Te(My)) = ExtD('rr (N) Ty (My)) —
Ext"”(vr*(u) T (M]))—> Ext™ T (m, (), M) enn.
are T, (C) -comodu]e maps.
c) If 0->N]—>N2—9N3-+0 is an exact sequence of C-comodules,
the maps in the long exact sequence:
EXtD(Tr*(N3) Tr*(M))-rEXtD('lT*(N ) Ta(M))—> Ext (Ta Ny )T (M) —
Ext"d ! (my (N, (M))——>Ext"”('rr,,(Nz),'n‘*(M))-r...,

are'T*(C) ~comodule maps.

The basic machinery of Groethendieck's spectral sequence,see
2 , yields the following result:

Theorem 7. Let C and D be commutative Hopf algebras over

a field F,and let m:C—»D be a surjective bialgebra map from C onto
D.Let X be an object in gg(ﬂ;(C)D) and M and N objects in cM(C).
Call i the inclusion of'ﬂ;(C)D into C. Thereis a third quadrant
spectral sequence{Epq ¢ ssuch that :

EPY = Ext’;_(c)D(X Extd (m, (N) ,m (M) => Extp+q(1*(X)E<]N , M),
where we regard ExtDcW*(N),TV(M)) as a', (C) -comodu]e with the struc-

ture described above.

Proof.Fix X and N and consider the functors:

E: CH(C)— e (0)?) 6 & ev(m ()®) — m(F), defined as follows

a) If M is a C-comodule F(M) = Homy (T, (N) T, (H))

b) If Y is a 7, (C)°-comodule g(v) = Homw p(X.Y).

Then,the general theory developped 1n[2] §$g1ds our result once we
provc:

1) T injective in CM(C) implies E(I) is G-acyclic.

2) The derived functors of E,are Ext](m,(N),-) m,.

3) Hom D(X,HomD(n;(N),n;(M)) = Homc(i*(X)IZJN s M).
T (C) |

1) As HomD(ﬂ;(N),“;(I)) = w;(HomF(N,I))D,we prove the acyclicity in

12.



two steps. First we prove that if I is an injective C-comodule and
N an arbitrary one,then HomF(N,I) is injective as a C-comodule. Then
we apply Theorem 5.1 of [1],(That says that if L is an injective C-
comodule,then n;(L)D is injective as a ﬂ;(C)D-comodu1e) to deduce
our result. If N is a finite dimensional vector space that is also
a C-comodule ,and N* denotes its dual vector space with the natural
C-comodule structure defined above,we know that HomF(N,I) is iso-
morphic to N*QQI » and consequently it is injective,(see Corollary
3). As any C-comodule is the 1imit of finite dimensional C-comodules,
it follows that the restriction on the dimension of N is superfluous.
2) Let 0~;M-7X0-—>X1—a'..., be an injective resolution of M by C-co-
modules.Then Oﬂﬂ;(M)-0ﬂ;(xo)~»ﬂ;(x1)-»....is an injective resolu-
tion of 7, (M) by D-comodules,that -as we observed before- are injec-
tive. Using this resolution to compute Extg(n;(N), -)sour conclusion
follows immediately.
3) It follows in a straightforward way from the definitions.
Q.E.D.

If we take X=F with the trivial ﬂ;(C)D-comodule structure,

we get an spectral sequence whose E2 and E_, terms are:
HP(ma ()0, Extdara(N) m(m))) =>  ExtR*9(n,m).
If we consider N=F with the trivial C-comodule structure,we

get Hochschild-Serre spectral sequence(see[ll).

13.



14.

4.Dimension of Coalgebras. Herewe assume that C is an arbitra-

ry coaugmented coalgebra over a field F. The following theorem can be
proved in the same way than the corresponding theorem for modules over
a ring.

Theorem. 8. For n an arbitrary positive integer,the following
conditions on a C-comodule N are equivalent.

i) For all C-comodules M, ExtnE](M,N) =0

ii) For every exact sequence of C-comodules of the form

0->N—>XO—> X]-r.... —-vXn—>0, with all the Xi,for 0<i<n ,

injectives,the comodule Xn is also injective.

jii) N has an injective resolution of lenght n.

Defn.9.He say that the cohomological dimension of a C-comodu-
le N is n,if Ext"+g(M,N)=0 for every C-comodule M,and there is a C-co-
module Mo,such that Extg(MO,N) # 0. The cohomological dimension of N
is denoted as chd(N).

Defn.10. We define the global dimension of an coaugmented coal-
gebra,and denote it by gd(C),as gd(C)= sup fchd(N) / N is a C-comoduleg.
If gd(C)=0,then chd(N)=0 for every C-comodule N.Then for every pair of
C-comodules M and N, Extg(N,M)=0. That implies that every C-comodule
ijs injective. The argument above is reversible.Thus,we have proved
that gd(C)=0 if and only if every C-comodule is injective. Obviously,
this is equivalent to the assertion that every locally finite C*-modu-
le of type C is completely reducible. Now,SweeH]er proves,see [3]Lemma
14.01 , that this last condition is equivalent with the assertion that
C is the sum of simple coalgebras. Such a coalgebra is called semisim-
ple.Thus,we have proved the following result.

Theorem 11.A coalgebra C is cosemisimple if and only if gd(C)=0.
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