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Abstract: Several topical products have been developed to avoid the harmful effects from ultraviolet
(UV) radiation, such as sunscreens. Research for actives from natural sources is increasing due to
the fact that chemical filters could induce adverse events. The microalgae Botryococcus braunii has
potential interest in cosmetic applications. Specialized literature reported that B. braunii aqueous
extract induced a reduction in skin dehydration and collagen production and promoted antioxidant
activity. This research aimed to produce B. braunii biomass and to investigate its contribution
regarding photoprotection. Formulations containing B. braunii dry biomass, with or without UV
filters into vehicles composed of an emulsifying polymer or a self-emulsifying base, were evaluated
in vitro by means of photoprotective activity and photostability. B. braunii dry biomass did not
provide adequate photoprotection efficacy; however, it was observed that the self-emulsifying base
promoted better sun protection factor (SPF) in comparison with the emulsifying polymer.
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1. Introduction

Ultraviolet (UV) radiation is one of the main environmental factors that induces skin damages
[1-3]. UVA rays (320-400nm) penetrate deeply in the skin affecting both epidermis and dermis, since
they react with molecular oxygen, generating reactive species that induce DNA damage, skin
inflammatory responses and photoaging. UVB radiation (290-320nm) only reaches the epidermis,
causing direct damage to the DN, increased oxidative stress, photoimmunosuppression, erythema,
melanogenesis, inflammation and even skin cancer [2-5].

In order to cope with exposure to UV radiation, various organisms have developed defense
mechanisms to reduce the damages caused by this stressor agent, as the expression and regulation of
antioxidant enzymes, molecular repair and synthesis of compounds with photoprotective actions,
such as flavonoids in various plants, melanin in animals and humans, mycosporine in fungi, and
mycosporine-like amino acids, detected in cyanobacteria, algae and animals [5,6].

Due to the limited capacity of such protective mechanisms, sunscreen formulations were
developed with chemical and/or physical filters that are able to absorb, reflect or spread the incident
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UV radiation [7,8], minimizing its interaction with the cutaneous tissue. However, adverse reactions
have been induced by the topical use of chemical filters, such as the occurrence of photoallergic or
phototoxic contact dermatitis, probably due to by-products formation [1,8-11].

This problem has been tackled with strategies that combine UV filters with compounds with
antioxidant action, such as polyphenols, that avoid the harmful effects of UV light or even assist in
the photostability of the filters [5,6,8,11,12].

In the search for new substances with such photoprotective action, several bioactive compounds
from natural sources have been probed, in compliance with the current preference of consumers for
ecologically and sustainably produced cosmetics, with lower amounts of synthetic ingredients
[2,7,13,14].

Some microalgae have received increasing attention as potential sources of such bioactive
compounds since they present a great variety of components that can contribute to the formulation
by promoting antioxidant action and protection against UV radiation. For instance, mycosporine-like
amino acids from microalgae, macroalgae and cyanobacteria are able to absorb UV radiation (310-
360nm). Such compounds are included in the groups of carotenoids, fatty acids, polysaccharides,
vitamins, peptides and sterols [13-15]. These substances are traditionally extracted from plants;
however, microalgae present greater photosynthetic conversion efficiency of the sunlight, ensuring a
superior yield, and allow the manipulation and targeting of their biosynthetic pathways for the
production and accumulation of components of interest, by making changes in the growing
conditions [15,16].

Numerous products containing microalgae have already been marketed, which are intended for
skin care, hair care and also for sun protection. Several patents report the action of microalgae-using
cells, its components or even extracts-in cosmetics [9,13,17].

Botryococcus braunii, an unicellular photosynthetic microalgae, is considered a biofuel source due
to the ability to produce long unsaturated hydrocarbon chains, representing up to 75% of its dry mass
[13,18,19]. Regarding the hydrocarbon produced, this microalgae can be classified into three types:
(i) type A, which comprises n-alkadienes and mono-, tri-, tetra- and pentanes, which are derived from
C23 to C33 fatty acids; (ii) type B, which produces triterpenoid hydrocarbons, known as botriococenes
(C30-C37); and (iii) type L, which produces tetraterpenoids (C40) [19,20]. However, B. braunii
contains carotenoids, which are well known antioxidant compounds and, therefore, capable of
eliminating free radicals, preventing oxidative damage to cells and tissues, and also contains phenolic
compounds [19].

In vitro studies to probe the cosmetic applicability of B. braunii aqueous extracts have shown
that it can induce collagen synthesis, stimulate adipocyte differentiation and has anti-inflammatory
and antioxidant activities. It has also shown to be able to reduce cutaneous dehydration, thus
influencing the appearance, metabolism, mechanical properties and barrier function of the skin [13].
In addition, a cytotoxicity test in NIH3T3 cells, HaCaT keratinocytes and MSC cells showed that the
aqueous extract, at concentrations of 0.0025 to 0.1%, did not interfere with the cellular viability [13].

The present study aimed to verify the impact of microalgae in the anti-UVB efficacy of a
photoprotective cosmetic formulation containing a sunscreen system composed of avobenzone and
octyl p-methoxycinnamate. B. braunii was cultivated under controlled conditions and its dry biomass
was incorporated in two semisolid vehicles, one containing an emulsifying polymer and the other a
self-emulsifying base. The photoprotective capacity and photostability of these formulations were
assessed in vitro through the determination of the sun protection factor (SPF) and critical wavelength.

2. Materials and Methods

2.1. Growth and Production of Microalgae

B. braunii was cultured in CHU medium [21] using properly sterile systems. B. braunii was kept
in Erlenmeyer flasks under constant agitation in a rotatory shaker (Infors HT® multitron), under
fluorescent white light (60 pmol of photons m2s) at 25 + 1 °C, until the biomass concentration
achieved approximately 200 mg/L [19,22]. Subsequently, biomass was cultured by discontinuous fed
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process in an airlift tubular photobioreactor, developed at the Fermentation Technology Laboratory
of the Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences,
University of Sao Paulo. The photobioreactor system developed for the microalgae growth was
constructed in a holder that contained five sets of cylindrical glass tubes. These tubes were
illuminated by two 20W fluorescent lamps. In addition, the system included a valve to collect
samples, as well as a carbon dioxide control system and a nylon ball to prevent microalgae
accumulating on the glass walls [19]. The pH was kept at 7.8 + 0.2 using carbon dioxide. Phosphorus
and nitrogen nutrients were daily replenished in required quantities previously determined as a
function of the microalgae growth by a Spectrophotometer 600 plus (FEMTO®) at 680 nm [19].

At the stationary phase, the biomass was removed from the photobioreactor by centrifugation
(Sorvall® RC-5C Plus) for 20 min, and the adsorbed salt was washed with distilled water. Finally, the
biomass was dried in an oven (Fanem® 320E) at 55 °C for 12 h and triturated with pestle and mortar.
The particle size was standardized at 0.42 mm in Granutest® sieve and stored in a freezer. The
obtained dry biomass had its content of total proteins and total lipids established as previously
described [23].

2.2. Preparation of Photoprotective Formulations

Formulations =~ were  constituted of an  emulsifying  polymer  ammonium
acryloyldimethyltaurate/VP copolymer (Aristoflex® AVC) or a self-emulsifying base cetearyl alcohol
(and) dicetyl hosphate (and) ceteth-10 phosphate (Crodafos® CES). The UV filters were the
avobenzone (butyl methoxydibenzoylmethane) and octyl p-methoxycinnamate (ethylhexyl
methoxycinnamate). The quantitative and qualitative compositions of the formulations are described
in Table 1.

Table 1. Quantitative and qualitative composition (% w/w) of the formulations.

Concentration (% w/w)

Ingredients (Vendor/Supplier/Local) Formulation Codes
F2 F3 F4 F6 F7 F8
Aristoflex® AVC (Pharmaspecial, Brazil) 1.0 10 10 05 05 05
Crodafos® CES (Mapric, Brazil) - - - 60 60 6.0
Propylene glycol (Mapric, Brazil) - - - 50 5.0 5.0
Avobenzone (Fragon, Brazil) 3.0 - 3.0 3.0 - 3.0
Octyl p-methoxycinnamate (Fragon, Brazil) 100 - 100 100 - 10.0
B. braunii dry biomass - 100 100 - 10.0 10.0
Caprylic/Capric Triglyceride (Mapric, Brazil) 3.5 - 35 35 - 3.5
Phenoxyethanol (and) methylparaben (and) ethylparaben
(and) butylparaben (and) propylparaben (and) 0.8

isobutylparaben (Mapric, Brazil)

Purified water

* sufficient to complete 100.0%.

Emulsifying polymer formulations were prepared by the hydration of the Aristoflex® AVC in
purified water with manual homogenization at room temperature. Propylene glycol and the
preservative system were added and homogenized. Avobenzone and octyl p-methoxycinnamate
were previously dissolved in caprylic/capric triglyceride and then incorporated into the gel. Finally,
B. braunii dry biomass was added into the product, followed by manual homogenization. The
Crodafos® CES self-emulsifying base formulations were prepared, as described: Phase A (aqueous)
was composed by the mixture of ammonium acryloyldimethyltaurate/VP copolymer, purified water
and propylene glycol homogenized mechanical stirring at 1000x g; Phase B (oily) had the Crodafos®
CES, caprylic/capric triglyceride, avobenzone and octyl p-methoxycinnamate. Both phases were
individually heated at 75 °C and then Phase B was incorporated into Phase A under mechanical
stirring at 1000x g. After Phase B incorporation, the stirring velocity was raised to 5000x ¢ and
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maintained for 2 min. The preservative system was added during the mechanical homogenization
process. Formulations were cooled until reaching room temperature. Finally, as mentioned earlier, B.
braunii dry biomass was added, followed by homogenization [23].

2.3. In Vitro Photoprotective Activity and Photoestability

The in vitro efficacy was evaluated by diffuse reflectance spectrophotometry with an integration
sphere (Labsphere® UV2000S Ultraviolet Transmittance Analyzer) regarding the spectral range of 250
to 450 nm. Samples were applied in polymethylmethacrylate (PMMA) plates with area of 1.3 mg/cm?
[4,24,25]. Assays were performed in triplicates. The in vitro efficacy assessment was determined as
estimated sun protection factor (SPF) and critical wavelength [24]. SPF and critical wavelength were
calculated by the UV-2000® program, using Equations (1) and (2), respectively [4,24,25].

Jy 0 EASAdA

SPF = 22—
Sy o) EASATAAA (1)

where EA is the spectral erythematogenic efficacy of CIE (Commission Internationale de I’Eclairage);
SA is the spectral solar radiation; TA is the spectral transmittance of the sample; and dA is the range

of wavelengths.

Ac 400
f ALdA =09 f A.dA @)
290 290

where AA is the spectral absorbance of the sample and dA is the range of wavelengths.

PMMA plates containing the samples right after the efficacy test were subjected to artificial
irradiation in a photoestability chamber (Atlas Suntest® CPS+) with fixed dose of 2088 kJ/m?2
(corresponding to the irradiation of one hour), irradiance equivalent to 55 W/m? and 35 °C [26].
Subsequently, samples had their SPF and critical wavelength values determined, as described earlier.
These results were compared with those obtained before the irradiation step to estimate the influence
of B. braunii microalgae on the functional photostability of the UV filters.

2.4. Statistical Analysis

The data were evaluated by the Minitab®, version 17, using ANOVA (generalized linear model)
or experimental design of the factorial type, including the significance level of 5% (p < 0.05) for the
determination of significant results.

3. Results and Discussion

B. braunii was cultivated in photobioreactors (~4-5 g/L) and biomass comprised proteins (49.1%)
and lipids (25.65%) with similar results to those reported in the literature [19]. The Aristoflex® AVC
was used due to the fact that it is a synthetic gel-forming copolymer with adequate sensory properties
and spreadability. The gel is non-irritating and gives adhesion with a pleasant sensation to the skin,
without a sticky feeling, presenting transparency, in addition to stability in a wide pH value range.
Furthermore, this polymer is stable against UV radiation and can act as a thickening agent and
stabilizer for emulsions, since it is possible to use it with different oily phases, such as silicones, waxes
and hydrocarbons, resulting in the formation of stable systems [27-30]. The Crodafos® CES was
selected as as it is a phosphate self-emulsifying base that has high stability in oil/water systems. This
base allows adequate film formation, theoretically contributing to SPF increase in the photoprotective
samples [31,32].

The UVA and UVB filters addressed in this study have been used for three main reasons: (1) to
obtain formulations with a broad-spectrum profile; (2) they are commercially available worldwide;
and (3) their safety and efficacy has been established by several studies [33]. However, it is well
known that avobenzone is a photolabile molecule that cleaves by irradiation and, when associated
with octyl p-methoxycinnamate, has a higher probability of breakage and photo-induction
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interactions with the UVB filter, consequently causing a reduction in the UVA protection and the SPF
of the sunscreen formulation [11,26,34]. Considering this, the association of avobenzone and octyl p-
methoxycinnamate was used as a model of a photounstable system for the investigation of the
putative photostabilizing action of B. braunii biomass.

Formulations containing only the biomass did not exhibit a significant SPF, demonstrating no
photoprotective property by direct UV absorption. In contrast, since avobenzone is an UVA filter and
octyl p-methoxycinnamate is an UVB one, the formulations containing these compounds showed a
robust absorption of UV rays [4,35]. A photoprotector should promote action against UVA and UVB
radiation, with a critical wavelength (Ac) equal or greater than 370 nm —a value that corresponds to
90% of the integrated area between 290 to 400 nm (spectral range that covers UVB and UV A radiation)
[24,25,36].

When comparing the formulations prepared with the emulsifying polymer Aristoflex® AVC
containing only the UV filters (F2) and associated to the microalgae (F4), we observed that F2 and F4
maintained the critical wavelength values above 370 nm, after the irradiation process. Both
formulations provided measurable SPF values (Table 2 and Figure 1). However, the performance of
F4 regarding this parameter was inferior to F2, since the values determined before and after
irradiation were lower.

Table 2. Sun protection factor (SPF) values obtained from the F2 and F4 formulations.

Formulations Irradiation SPF
o BR 10.0+2.1
IR 8.0+45
BR 70+1.0
F4 IR 5.6+1.2

BR—before radiating; IR—irradiated.

2 2
15 1.5
1 —— 1
290 310 330 350 370 390 290 310 330 350 370 390
——F2(BR) F2 (IR} ——F4(BR) F4(IR)

Figure 1. Spectra obtained from the F2 and F4 formulations. BR-Before Radiating; IR-Irradiated.

When the vehicle was changed from emulsifying polymer to Crodafos® CES self-emulsifying
base, it was found that F6 and F8 (before and after the irradiation process) maintained the critical
wavelength (Ac) in the recommended value (370 nm) for promoting action in the broad spectrum
[24,25,36]. Regarding the SPF of the formulations, the F6 —containing only filters—presented a much
higher value than F8, composed of filters and B. braunii microalgae dry biomass (Table 3 and Figure
2).

Table 3. SPF values obtained from the F6 and F8 formulations.

Formulations Irradiation SPF
BR 29.0+4.7
F6 IR 8.0+1.1
BR 12.0+1.5
F8

IR 50+1.0
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2 2 4
1.5 1 1.5 1
1 11
0 T T T T T 0 T T T T T
290 310 330 350 370 390 290 310 330 350 370 390
——F6 (BR) ———F6(IR) ——F8 (BR) ——F8(IR)

Figure 2. Spectra obtained from the F6 and F8 formulations.

Figure 3 shows that all variables influenced the effect of the SPF of F6 to F8, and the filters
contributed the most to this effect (Figure 4). It was verified that the irradiation and the microalgae
incorporation promoted SPF reduction in the formulation and only the UV filters were responsible for
the photoprotective action [37].

Term
Factor MName
A Irradiation
B B U Filters
' Microalgze
A
AB
BC
C
AC

H 6 8 10 12
Standardized Effect

] 2

Figure 3. Pareto plot illustrating the effect of each variable and combinations over the SPF (sun
protection factor) from formulations F6 to F8. The vertical red line defined the confidence interval.

Irradiation UV filters Microalgae

Mean of SPF
Ll

BR IR 0 13 0 10

Figure 4. Main effects plot for SPF of formulations F6 to F8. Line with small dots represented the
overall mean.
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Comparing the SPF performance of the photoprotective formulations in the different vehicles, it
was observed that Crodafos® CES self-emulsifying base promoted better SPF when it was associated
with the microalgae before the irradiation process. There was no difference in the SPF value after the
same process in comparison with the value for the Aristoflex® AVC emulsifying polymer. In addition,
it was possible to observe that in both vehicles, the formulation containing only the UV filters resulted
in higher efficacy than those containing the microalgae association. Regardless of the cosmetic base,
the incorporation of B. braunii dry biomass in the photoprotective formulation diminished the anti-
UVB efficacy, probably due to the interaction of the UV filters with the compounds from microalgae
biomass, for example, the presence of proteins in about 49% [23]. Some studies have pointed out that
certain UV filters can react with free amino acids and proteins since they have the structure of the
electrophilic carbonyl group, which reacts with the nucleophilic group of the proteins under thermal
conditions and/or through irradiation, culminating in the formation of products that influence the
action spectrum of the UV filter [38—41]. The Crodafos® CES self-emulsifying base provided the best
SPF and maintained the critical wavelength (nm) in the recommended value (370 nm), possibly due
to a better formation of uniform, thick and non-transparent films that would provide high
photoprotection levels [36,40].

4. Conclusions

Under the experimental conditions adopted, B. braunii dry biomass did not promote in vitro an
adequate sun protection effect when associated with avobenzone and octyl p-methoxycinnamate. It
was verified that, when incorporating the microalgae along with the UV filters, the resulted SPF
values were due to the presence of UV filters and not the B. braunii dry biomass. Also, it was observed
that the Crodafos® CES self-emulsifying base promoted better SPF in comparison with the
emulsifying polymer. Besides the stated, our results allow us to highlight that sunscreen
development containing natural substances must be investigated in a case-by-case process, since
negative interactions may occur in this complex formulation.
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