

Influence of the Electrode and Chaotropicity of the Electrolyte on the Oscillatory Behavior of the Electrocatalytic Oxidation of SO₂

André H. B. Dourado¹ (PG), Renan L. Munhos¹ (PG), Hamilton Varela² (PQ), Susana I. Córdoba de Torresi^{1*} (PQ), Matthias Arenz³ (PQ).

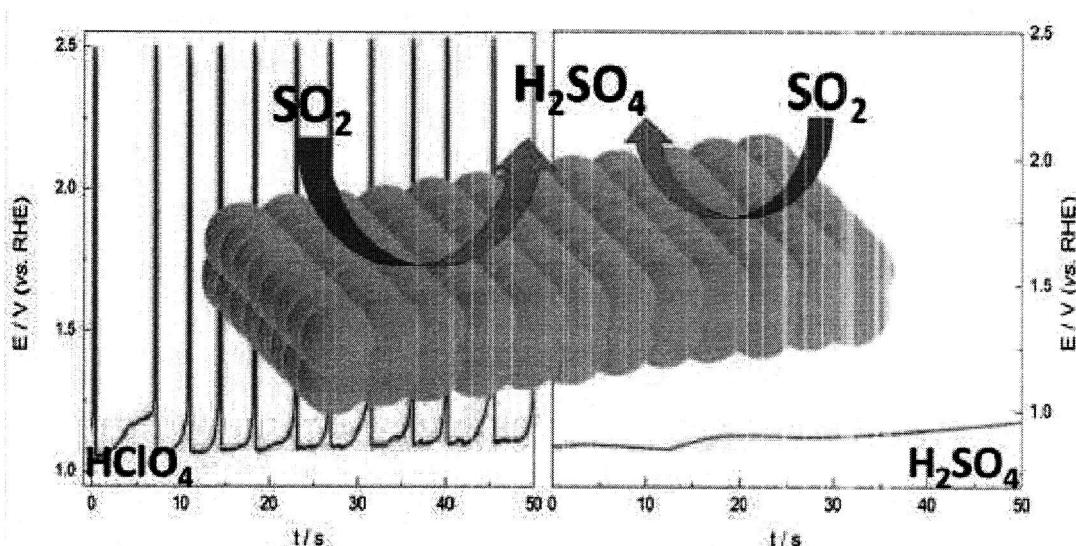
rmunhos@iq.usp.br; storresi@iq.usp.br

¹Instituto de Química, Departamento de Química Fundamental, USP; ²Instituto de Química de São Carlos, USP;

³Philosophisch-naturwissenschaftliche Fakultät, Departement für Chemie und Biochemie, Universität Bern

Palavras Chave: SO₂ oxidation, H₂ generation, Oscillatory Behavior, Chatropicity dependence

Highlights


Oscillatory behavior dependent on the catalyst and electrolyte

Au in kosmotropic media does not oscillate

Au in chaotropic media oscillates

Resumo/Abstract

The SO₂ is an atmospheric pollutant of high toxicity. But, it is possible mitigate the impact of this mortal gas: oxidizing the SO₂ to H₂SO₄, while the counter reaction is the production of H₂, E₀ = 0.157 V. This process presents advantages over the traditional electrochemical method is water electrolysis, E₀ = 1,23V. The use of SO₂ is too more environmental friendly than to produce H₂ by means of catalytic reform of organic compounds. To apply this system is necessary to utilize a metallic electrocatalyst. Cyclic voltammetric studies show different profiles for Pt and Au and that current density for gold is one order of magnitude higher than platinum. Tests with different electrolytes showed that just for Au electrode in ClO₄⁻, a chaotropic anion, current and potential oscillations were observed. Potential steps revealed that these oscillations were observed from 1.0V. When the electrolyte was HSO₄⁻, a kosmotropic anion, it has presented only fluctuations in the current. The same behavior was observed for current steps, just for Au in chaotropic media and just when the electrode could reach potentials as positive as 1.00 V. Therefore, it can classify oscillatory behavior as a HNDR (hidden negative differential resistor). This implies the presence of at least, two catalytic poisons that block surface of electrode. The cleaning of the surface occurs with de oxygen evolution reaction. The mechanism of electroxidation of the sulfur dioxide is dependent of the material of the electrode and the chaotropicity of the anion in solution.

