





We shall then consider a critical point gp of the potential energy 7 and
study the stability according to Liapounof of (1).

One of the major results in this area is the Lagrange -Dirichlet theorem,
which states that if g is a local strict minimum point for the potential energy
m, then (go;0) is a stable equilibrium according to Liapounof of (1).

Since Dirichlet proved this result in 1846, many renowned mathemati-
cians have dedicated themselves to the problem known in the literature as
the inversion of the Lagrange - Dirichlet Theorem .

In short, one considers a conservative Lagrangian system with an equi-
librium point in (go;0) where go is not a local strict minimum of =, and one
tries to study the stability according to Liapounof of (go;0).

For a short period of time, many tried to prove that if go is not a local
strict minimum of 7 then (go;0) is an unstable equilibrium for (1). Painlévé’s
example, presented in 1904, showed this to be false, even in the case of 1
degree of freedom.

In order to do so, he considered a system with(g;¢) € R?, kinetic energy
T(¢) = 9.; and potential energy x(g) = 3—317 sin %, if ¢ # 0, and x(0) = 0.
Painléve proved, in [3], that (0;0) was a Liapounof’s stable equilibrium for
(1), while w has neither a minimum nor a maximum in 0.

Although this example shows that a complete reciprocal to the Dirichlet
-Lagrange theorem is false, the problem of finding sufficient conditions on
L to ensure the instability of an equilibrium of such systems is still known
as the inversion of the Lagrange - Dirichlet Theorem, and has received the
attention of Liapounof, Tchetaev, Lefchetz, La Salle, E. Hanh e L. Salvadori,
among others.

Liapounof proved in 1897 that, if go is not a local minimum of = and this
Jfact is shown by the second order derivatives of m, then (go;0) is an unstable
equilibrium of (1) (see [4]).

In the terminology used in this note this result may be enunciated as if
the jet of order 2 of w in qo shows that m does not have a minimum at o,
then (go;0) is an unstable equilibrium.

Liapounof conjectured that if the jet of order k of = at ¢o shows that
does not have a minimum at this point, then {90:0) 1s an unstable equilibrium.

In 1989 and 1991 A. Maffei, V. Moauro and P. Negrine obtained ex-
tremely interesting results in this direction (see [5] and [6]).

The central result of these works considers the case in which go = 0 and
it supposes that, after an eventual change of coordinates,

(@15 --50n) = 1(g15 -« 30 1* + 7k(Grs1i - - - 30n) + R(Gr415 -+ -50n),



where 7 is an homogeneous polynomial of degree k > 2 which doesn’t have a
minimum at the origin and R satisfies li_r_)n0 ffq ™ = 0. With these hypotheses
q

the authors prove that (0;0) is an unstable equilibrium for (1)

Therefore, if the k jet of # at ¢g is homogeneous and shows that 7 doesn’t
have a minimum at this point, then (go;0) is an unstable equilibrium for (1)*.

Another important result was shown by Palamodov who proved that if
7 i8 an analytical function without a minimum at go then the equilibrium is
unstable (see [8]).

In this work we consider systems with two degrees of freedom and we
prove Liapounof’s conjecture, with no additional hypothesis, that is, we
show that, in the 2 degrees of freedom context, if the k-jet of = at gy shows
that w doesn’t have a minimum in this point, then (go;0) is an unstable
equilibrium for (1). We achieve this by constructing a “cone” with vertex
at the origin of the phase space of the Lagrange equations and an auxiliary
function which assures that there is a trajectory asymptotic to the origin.

Since Barone, Gorni and Zampieri proved in [2] that for every analytical
function f without a minimum at go there is a integer k such that j*f
shows that f doesn’t have a minimum at this point, our result extends the
Palamodov’s result for systems with two degrees of freedom. Moreover we
provide a positive answer for a conjecture posed by V. V. Kozlov in [3]
concerning the existence of asymptotic trajectories to (go;0) for the analytic
case, which was not proved by Palamodov in [8].

This article comprehends this introduction and 4 other sections. In sec-
tion 2 we present the context in which we are going to work in a rigorous
way. In Section 3 we demonstrate a technical lemma extremely important
to prove our instability result, which is done in section 4. Qur work finishes
with an appendix where the results in k-decidability needed for the text are
exposed. A reader familiarized with the work done by Barone-Netto in this
area may skip the reading of a good part of this appendix, and stick to the
demonstration of the Fact 1, shown here for the first time.

2 The Problem

Let us consider a conservative Lagrangian system with 2 degrees freedom,
with potential energy = defined in an open neighborhood of the origin Q,
and kinetic energy T defined on R? x Q.

'In these works « is supposed to be of class C**? | later on S. Tagliaferro improved the
result for the homogeneous case for a broader class of potential energies (see [7]).




We admit r of class C2,x(0) = ||r(0)}{ =0 and # = P4 R, where P is a

polynomial of degree less than or equal to k and }:I_I’l}) ’—'L'dxluf;-(ﬂ =0, that is,

P is the k-jet of 7 at the origin, moreover, we assume that there is j5~1Vr.
We further suppose that P shows that = doesn’t have a minimum at the
origin (see the definition below) and 7*~1x does not show that = does not
have a minimum at the origin.

We say that j* f shows that f does not have a local minimum at 0 if, for
every function g: 2 — R such that j¥¢ = j* f, 0 is not a local minimum of
g.

The kinetic energy is a defined positive quadratic form in the velocities,
and it’s supposed to be of class 2, that is,

T= 2B 4) G

where

G(g) H(g)

is defined positive for every ¢ € Q and F, G and H are €2 functions defined
in . There is no loss of generality in supposing that B(0) =1.

With these hypotheses? (0;0) is an equilibrium for the Lagrange equa-
tions of the system with Lagrangian £ = T — 7. We intend to prove that
the hypotheses made above assure the instability according to Liapounof of
this equilibrium.

The following k-decidability result is demonstrated in the appendix and
plays a major role in this work.

Bm=[F@ mw]

Fact 1 If the k-jet of = at the origin is the first jet of = that shows that
this function does not have minimum at 0, then there are, after an eventual
rotation of R?, reals A > 0, & > 0 and an algebraic curve I'(z) = (z;v(z)),
where 7:[0;0] — R, with T'(0) = 0 and whose versor in 0+ is (1;0), such
that

_\min | P(ziy) = P(2i7(2)) = ~azf + o(zf), Vz € [0,  (3)

with B < k.

Note that, since I' is algebraic in the case of this proposition, we can
assume with no loss in generality that

® Actually we could suppose that x and T are functions of class €' and some theorem
of unicity and continuous dependence is true for equations (1). The reader will have no
problem verifying that the proofs remain valid in this context.
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1(2) = Y. b2 )

with b; € R and (B;) is a sequence of strictly increasing rationals with 81 > 1
(see the Walker’s text [2] on algebraic curves for an elegant and complete
presentation of the theorem of Puiseaux that shows this result). Further
more, except in the case where T is the semi-axe of the abscissa (situation
in which v = 0), we have that b, # 0.

It’s an immediate consequence of these observations that, for a possibly
smaller g, there are positive constants ¢;, ¢; and ¢3 such that,for0 <z < ¢

7(2)] < 2™

(e)] < epaPi™! (%)
()] < esz .

We point out that, since 8, > 1 we have 5 — 2 > —1.
These proprieties and estimates on ' will be used in the forthcoming
sections.

3 A Fundamental Lemma

In this section a fundamental result is proved which allows us to establish
the existence of a trajectory asymptotic to the origin in the hypotheses
mentioned in the previous section.

We recall that 7: Q@ — R is a C2 function, x(0) = ||V#x(0){| =0, and =
has k-jet at the origin and this jet shows that 7 does not have a minimum
in 0.

Let P = j*r and consider the curve I'(z) = (z;v(z)) as in the previous
section, satisfying the fact 1. Since T obeys (3), we shall call it curve of
vertical minima of P.

We begin by carrying out a change of coordinates of class C* in the
vertical strip F = {(z;y):0 < = < g} that admits an extension to F U {0},
which is an homeomorphism. The purpose of this transformation is to move
the curve I' onto the segment (z;0),0 < z < 0.

We consider ¢(z;y) = (z;w), 0 < z < g,y € R, where w =y — 7(z).

The fact that this transformation is C® can be seen from (4) and the
observations made at the bottom of section 1. Furthermore, it is immediate
that defining 7: FU {O} — R? by

_ v [eolzy) sz >0
Plzy) = { (0:0) se (z;y) = (0;0) (6)



we have an homeomorfism.
Now, we express P in the (z;w) coordinates. Since P is a polynomial

of degree less then or equal to k, we have P(z;y) = ¥ a;;2'y’, therefore,
()€l
from the definition on ¢ and (4) it follows by direct substitution that

k—j
P(z;w) = Z Za,Jz Zbg:tﬁl) w* )

(4,5)€I k=0

We note that  preserves vertical lines z = £ and, in each of these lines,
it is a translation (w = y+ v(£)). Again, since ¢ takes I' onto the x-axis, it
follows from (3) that

(i) In the coordinates (z;w), P(z;0) = —az”.

(ii) For fixed £ € (0, p), the function £(w) = P(§;w), w € R has a local
minimum point at 0.

From (ii) it follows that 8£(z;0) = 0, 0 < z < p and thus, in the
expression(7), there are no hnea.r terms in w.

We distinguish in (7) the terms with degree less then or equal to 8, and
observe that the exponents of w are all integers greater then or equal to 2,
and that the exponents of z are rationals greater then or equal to one, and
this yields:

i+j<B o
Plaiw) = -z +w? ¥ @;z'w’? + o(||(zsw))|f),
1€Q, jEN
_ +iss ..
so, by making Py(z,w)=w? ) &;z'w’"?, we have
i€Q, JEN
P(zjw) = —az? + Py(z, w) + o(]|(z;0)][?). )

Direct calculation shows that, taking § = (a: w) we obtain the kinetic
energy in the new coordinates 7' = 3 B@§|7),
where
= | F+2G+Hy? G+HY
B= G+Hy H ©)

By observing that B(0,0) = I and using the estimates (5), we have



Fact 2 The matriz B may be written B = I +k, where ||h)| is o(||§]|®*) and
Bl is o(|@1%), with 6 = min {; — 1,1} and & = min {8, — 2,0} = & ~ 1.
Furthermore B is invertible and we have B~! = I + d, where ||d|| is

o(|[ql*) and ||| s o(jlgl|%).

With these ingredients, we may write Lagrange equations in the coordi-
nates (z,w, z, ).

Fact 3 The normal form of the Lagrange equations for the considered sys-
tem, in the variables (z,w, &, 1), are

¢ =B~ (-vF+0(I@l™ Ial*)- (*)

From here it follows, as a particular case, the equation

W= —f(z,w)z—:— g(z, W)g§'+0(”'ﬂ|6’”‘ﬂ|2)v (10)

where f(0;0) =1 and ¢(0,0) = 0.

In order to build the cone C and the auxiliary function that will help
us show the existence of the asymptotic trajectory, we will study in some
detail the behavior of P, in the curves w = az®, z > 0, for some values of
ea€ R and c>1.

We assume that P, # 0, and we take a # 0 and ¢ > 1; in the curve
w = ez, z > 0 the monomial a,.z*w"*? has order s + ¢(r + 2).

Since for all (s;r) € T we have s+ r+ 2 < B we can choose € > 1 such
that min {.s +2(r+2):(sir) € f} =p.

Clearly, there is only one T in these conditions, and we will call J the set
{(s;r): 8+7¢(r + 2) = B}. Therefore J # @ and, at the curve w = e¢z¢, z > 0,
we have

Py(z;w) = Py(z;a2°) = Z a,ra"22P 4 o(zP). (11)
(ssr)ed
Now, consider the one variable, real polynomial P(a) = ¥ ana"™*2. It
(sir)ed

follows from (11) that P(z;az°) = P(a)z” + o(z?).

Take ro = min {r € N:3s € Q, (s;r) € J} and note that there is only one
8o such that (sg;ro) € J.

In these settings, we have

Fact 4 The polynomial P satisfies P(0) = 0 and P(a) > 0 for alla € R..



Proof: Since ro € N,we have ro+2 > 2, and so, from the way we chose rg
it follows that P has a root with multiplicity greater then or equal to 2 in
a=0.

Furthermore, we note that P(;az%) — P(z;0) = P(@z? + o(zP), thus,
if by contradiction there was @ € R such that P(@) < 0 then @ # 0 and we
would have

iR, P(z;az%) — P(z;0)
0 zB
So, for sufficiently small z > 0 we would have P(z;8z%) < P(z;0) which con-
tradicts the fact that v is the vertical minima curve for P, thus establishing
the result. L

Let us recall now the definition of ro and let G(a) = 3 aga—(ro+1)
N (#ir)€J
r>rp

= P(@) < 0.

so that (note that r — (ro+ 1) =r+ 2 — (ro + 3)):
P(a) = ayprea™t? + a0 +3G(a). (12)
In the future, the following inequality will be useful

la™*3G(a)| < a3 3 Ja,a"" (0¥ (13)

(esr)EJ
r>rg

Now, let @ > 0 and consider the cone C, = {(z;w):z >0,-azf < w < azE}.
We will study the behavior of P and of 1:2;‘;1 in C,.

To do so, we consider G(a) = ¥ |a,-a”~ ()] and note that:
(sir)€J
>0

Fact 5 With the previous notations, we have
(i) For (z;w) € C, we have |Py(z;w)| < (asgr, + aG(a))a0t?z? + o(2P).
(i) If 8(a) = (@syr, —aG(a))a™ 12, a > 0 then Py(z;az°) > §(a)z? +o(zF).

Proof: To prove (i) note that, if (z;w) € C,, then (z;w) = (z;bz%), where
—a < b < @ and, remarking that G is crescent, it follows

IPo(@iw)] =y 22 + p043G (B)]2f + 0(2?) <
< (@sero +aG(a))a™*2z8 4 o(zP).
As to the second inequality, we recall that, from (11) and (12),
Py(z;02%) = P(a)2? + 0(28) = (asyroa™ 12 + ¢ *3G(a))2? + o(zF),

thus, since a > 0, it follows directly from the definition of G and from(13),
that (ii) is true. =



Fact 8 Thereare ag > 0 ande > 0 such that, if 0 < a < ag and (z;w) € C,,
with z < € then

|ma—P;2(a:;w)| < (k- 1)6(a)z? + o(zP).

Proof: We begin by noticing that z—g—’z(z,w =w? ¥ sa,.z°w, thus, in

(’1")61
C, we have, taking as before (z;w) = (z;bz%),
OP,
|z a; ()l = |(s00mrl™*? 57 3 88,570 D) (2P + () <
r'>ro

< s ta T Zagaot))sa+22P o(sP) (14)
(s;r)€Jd

r>rg
From the manner in which we defined J and the par (sg;rp) it follows that
(s;r) is in J \ {(so;r0)} then s < sp < k — 2, therefore, from (14) we have
(z5w) € Ca,
el S (k= D(anny +a(@)a428 + o(a?) =
= (k- 2)(8(a) + 20" 3Ga)z? + o(2P). (15)

Oz
Noting that &(a) is O(a™*?) and a™*3G(a) is o(a™*?), then, given £ > 0
there is ap = ag(€) > 0 such that, if 0 < a < ap, we have 2a™+3G(a) < €d(a).
Now, choosing € > 0 such that (k—2)(e+1) < k—1 (for instance € = %),
and noting that @ < ay, it follows from (15), that in C,,
12022 (s30)] < [(k - 2)(e+ 1)8(a)]o + 0(z) < (k = 16(a)a? +o(zP),

which is the desired inequality. |
Finally, we are able to prove the fundamental result of this section, a key
piece to proving the instability of the origin.

Lemma 1 There are 0 < § < § and 0 > 0 such that, in the connected
component Cy of

0 = {(z;w) €eR%:0< z < g, Paz;w) < 5""3}

that contains(z;0), 0 < z < o, we have

z%(z;w) < (k - 1)52°.



Proof: We will keep here the notation used in the section.
Note that 1;% %,%); = Ggyp, > 0, 50, by taking an eventually smaller ap

in the previous expression, we have §{a) > 0, for 0 < a < ao.
Also, if a > 0, %ﬂ = (@sor, — aG(a))a™t! and so, since g +1 > 1 we
can choose aq sufficiently small so that the function 4 is crescent in [0;a0].
Now, from the fact5 follows that Py(z; £ aoz%) > 8(ao)z? + o(z?), and
by taking 6 = ﬂiﬂl we have that there is ¢ > 0 such that, if 0 < z < g,

Py(z; £ aga®) > 8zP. (16)
This shows that if C is the connected component of
Q= {(z;uJ) € R%:0 < z < 0, P3(z;w) < Jzﬁ}
that contains the segment (z;0), 0 < z < o, then C C C,,.

On the other hand, since [0;a0], 8(a) is crescent, the fact 6 implies that,
after a possible reduction of & we have, for (z;w) € C,,,

12222 (z:w)] < 29 (k — 1) = 6(k - 1)aP. a7
oz 2
Since C C Cy,, (17) ends the proof. n

4 The Instability Theorem

In this section we show that, for the conditions in which we are working,
there is an asymptotic trajectory to the origin that solves equations (1).

To achieve this we will construct, in the phase space (z,w, %, %) a cone
C and an auxiliary function V that will be useful to establish the existence
of an asymptotic trajectory in C.

Since the function ¢, used in assigning the new variables (z;w), was
defined in F which is not an open neighborhood of the origin, it is worth
pointing out the observation made in the previous section. We defined ¢ in
the strip F = {(z;y) € R%:0 < z < p} and we noted that its extension % to
F U {(0;0)}, given by(6) is an homeomorfism.

Therefore, since ¢(0;0) = (0;0), if we prove that there is a solution ¥(t) =
(z(t);w(t)) of equations (*) defined in (~co;0] such that t_l}r_nm P(t) = (0;0),
we will have shown the existence of an asymptotic trajectory to the origin
of the equations (1).
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We define now the aforementioned auxiliary function. Let V: F x R2 —

R be given by
22

v
2f(z;w)
A simple calculation and (10) gives us,

Vi{z;wid;w) = + Py(zyw). (18)

. . A
V = (Rt + (R)uww+ Sww —

Fou = 24"
. .1,
= (P)z + (Po)uth — Ff,wz’ +
1 ]

+ f[-rme gt o(ll(z;w)ll"’ll(z;w)ll’)] W (19)
Thus, if we consider V = r!,; it follows that V = E,n- Therefore, by
using (19), we get

PV = 2V — Vi = (2(Py)s — BV)é + S(eswig),  (20)
where
S(awiti) = =t [~ fry — gm + ofl| @) 12| (@50) )] -

These calculations will be fundamental.
We will work in the cone C given by:

E(zuwin) =0, 0 <z < 0y < 0,

2. )

{(z,w ;w) € F x R*: (zsw) € Cy, V (siwib) < 5P } (21)

where §, o and C; are given in lemma 1 and o7 is a number yet to be
determined.
We prove now an important inequality, expressed in the following result.

Lemma 2 There is eg > 0 such that, if 0 < € < &g there exists p > 0 such
that if ||(z;w)|| < e and (z;w;2;0) € C then

1 4
ﬂ<'2< B 22
(1+e)z SESTES @2)

Proof: Let € > 0. Since B(0) = Id, there is a neighborhood of the origin in
which

=2 2 =2
(1-8) 5 ¢ P(awigw) < (1+6) 5 (23)
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Since the energy in C is null, we have that (1 +e)£:lz’i + n(z;w) > 0.
This and (#) show that, for (z;w;z;w) € C

.q )
(1+6)5 > - [~ + Paleiw) +olll@)l) + 1+ 5. (29

Now, we analyze V' and note that, in C, V(z;w;z;w%) = ;'z—f + Py(z;w) < 62°P.
Hence, using the estimate (*+) for f, we can choose €; > 0 and & so that, if
0 < z < @, the inequality sz < f(62P — Py(ziw)) < (1 +€1) (628 — Py(z;w))
holds, Let us choose £; > 0 so that € +-£; + €63 < 2.

If we multiply the last inequality by (1+£) and replace it in (24), we get

1Ed? > o8 - Py(ziw) + (1 +¢)(1+ €1) (Pa(z5w) - 62°) + o(|(zi0) IP) =
=28 — §(1+ €)(1 + £1)2” + (€ + &1 + £61) Pa(z5) + o(|(z50) [P} =
= (1= 8)2f — (62F — Py(z;w))(e + €1 +€e1) + o(l(zw)[18).  (25)

Since in C' we have §zf > Py(z;w), if we recall the manner in which we
chose £; and use that 1 ~ & > 2 and (25), we may conclude that
l+e., 3
—5 " > 397 + 26(Py(zw) — 62°) + o{||(25)||P). (26)
Now, we recall that there is o > 0 such that P;(z;w) > 0if 0 < ¢ < o, thus,
it follows from (26) that

Bei? > (§ - 26)2” + of||(z;w)||5).

We can take €0 > 0 such that § — 2deq > 1. Clearly, for every € < &,
we may choose g, > 0 (with g; < o) such that, for all the points in C where
H(z;w)]| < @1 the left inequality at (22) is satisfied.

As to the other inequality, it follows from (23) that, restricted to C,
Lez2y 122462 + 7(z;w) < 0, therefore

1—
2

8% < ~[r(z;w) + -1%6-1112] < —n(zw). (27)

Since Py(z;w) > 0, (+) implies that, in C, r(z;w) > —28 + o(j|(z;w)||P).
Therefore, there is g3 > 0 such that, if ||(z;w)|| < ¢ and (zswsi;0) € C,
we have —n(z;w) < 2zP.This, alongside (27), establishes the right inequality
at (22).
So, it suffices to take p = min {o1,02} and the result follows. ]
A last lemma is necessary to prove our instability result.
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Lemma 3 There is 01, 0 < 01 < 0 such that, in 8C\(0; 0)N{(z;w) : Jw| < Az}
the function V does not vanish.

Proof: It suffices to show that zﬁ*’lf} does not vanish because z > 0 in
aC\ (0;0) N {(z;w) : |w| < Az}.

By formula (20) 2PV =2V — B&V.

Let us analyze the parcel zV'; we know, by (19), that

2V =2[(P2)ot + (P)wth — J5 fio? — Futd + R(z;w;d;0)],

where R(z;w;d;w) = %[—gﬁ, + o(||(z;w))|% | (£;0)]|?)] -
Now, we note that:

(i) Since, restricted to C, the energy is null, it follows from lemma 2 and
from the definition of C that % is O(z%) at the border of C;

(ii) From (2) we have that §; > —1, and this implies that ?o(”(z;w)"‘;’||(:b;11:)||2)
is o(zf) in 8C;

(iii) Given that g(0;0) = 0, from P = j*% and (8) it follows that, in 8C,
zg¥, is o(2P).

(iv) From(ii) and (iii) we have, at the border of C, zR = wR;, where R,
is o(z?), thus, from (i) follows that zR is o(z%ﬂ) in 8C;

(v) Since f = (fz)& + (fu)t, lemma 2 and (i) imply that fiw? is O(z%e)
in 8C, and so the parcel ngfw2 is oz ), because £(0;0) = 1.

This leave us with the analysis of z[(P)z% + (P2)wt — Fuwtl] — BEV.
Once again, we use P = j*% and (8) to show that, at the border of C,
we have %, = (P2)w + o(z?~!) and so, due to (i),

[(Pa)ed + (Pa)wths — Futh] — B3V = (2(P)z — BV)e +0(2 7).  (28)
Note that:

(vi) In 8C, V = 62z and (z;w) € 0y, so it follows from lemma 1 that,
z(Py)z < (k— 1)825;

(vii) Since 8 > k-1 we have that, in 8C, z(P;).—BV < 0and |z(P2): — Bvi>
§z8.
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Therefore, lemma 2 and (vii) imply that if (z;w;;w) € aC \ (0;0) we have

. )
(e (Pa)e = BV)E 2 82181 > (52 (29)
Clearly, from (iv), (v), (28) and (29) the result follows. u

Now, we can state the main result of this paper.

Theorem 1 Let  be a C? function such that n(0) = ||Vx(0)|| = 0 and
Vr has jet of order k — 1 at 0 and suppose that j*r shows that the origin
is not a local minimum of w. Then there is a trajectory ¢(t) asymptotic
to the origin (0;0) , solution of (), such that for sufficiently large t > to,
3(t) € C\ (0;0) N {(z;w;;0) : |w| < 22}.

Proof: For the simplicity of notation, we will call Q; the set
© =C\ (0;0) N {(z;w;a;0) : |w| < 2z e & < 0}

Let us recall that, from lemma (2), if we choose a sufficiently small o,
then for 0 < z < 0y, & < —}23.

Also, it follows from the definition of C that, if we have |z| sufficiently
small and if (z;w;z;) € Q, then

] < 3515 < 2. (30)

These two statements show that, for any solution $(t) = (Z(2);W(t)) of
(3) , if B(t2) € @1 and |w(t1] = 2Z(t,) for some instant t;, then there is &
such that for every ¢ in [t1,% + £;), we have $(t) € $1;, and for every ¢ in
[t1 — €1,t1), we have [w(t] < 2Z(2).

On the other hand, a direct consequence of lemma (3) is that, if $(t;) €
Q) and Vo §(tg) = 8% (t;)P for some instant t,, then again we may find £,
such that for every ¢ in [t, 23 + €3), we have V o §(t2) > §Z(t;)?, and for
every t in [tz ~ £2,%;), we have V o é(t2) < 8Z(t2)P.

Therefore, there is a constant o, < o7 such that every solution ¢ with
0 < 7 < o; that at some instant f is in the border of ©; must have been
in the relative interior of Q; if for some time interval before T. Also, this
solution is going to be out of §; for a time interval posterior of f.

Now, we take a sequence py = (zp;wi;Er;th) € O, with 0 < z) < 09
and such that limp,.pr = (0;0), and we consider the solutions ¢ of (3)
such that ¢;(0) = px.
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Clearly, for some negative time these solutions have been in ;. Also,
they cannot have entered 2, at a point with z < ¢;. Finally, since in

T < - :w there are sequences ¢ < 0 and g = (og,wk,zk,wk) € 4, such
that ¢k(tk) = g and ¢¢(t) € Qy, for every t € (t,0).

Of course, we can find a sub-sequence gy, that converges to a point 7.
We will assume that ¢,, = g;.

We claim that the solution ¢(t) of (3) starting at 7 is asymptotic to (0;0).

For, if we assume by contradiction that was not the case, then there
would be a time fo such that ¢(to) ¢ Q.

Let a = min;efo,ll@(t)|. Since gx converges to §, the continuous de-
pendence gives us that there is kp such that, for k > kg

mingepo qll#(t) — de(te + 1)) < 3.

This implies that, for £ > ko, o < —tz. On the other hand, since {;
is closed, the continuous dependence also assures the existence of k; such
that, for & > ky,

or(tk +to) € 0.

But, if k& > maz{ko,k1}, this implies that for some ¢t € (t,tx + to)
1 (t) & Q, which is absurd, since 4 + tg < 0, thus concluding the proof. B

As a final note we would like to remark that if j5x does not show that
7 does not have a local minimum at the origin, then there is a function
¢:Q — R with j®¢ = 0 and such that m; = j*x + ¢ has a local strict
minimum at 0. Thus, by the Lagrange-Dirichlet theorem the equilibrium
(0;0) is a stable point for the equations of motion of Lagrangian £ =T —m.

Therefore, in the class of functions of R? of class C? with jet of order
k at 0, we have given in theorem 1 a complete characterization of jets that
ensure the instability of the equilibrium.

APPENDIX
k-Decidability and
Vertical Minima Curve

In this section we show that if f: @ —+ R is a function defined in the open
neighborhood of the origin Q of R?, f(0) = 0 then:

1. If fis C! and V has punctual jet of order ¥ — 1 at the origin then f
has punctual jet of order k at the origin and Vj*f = 7*-1(V f).
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2. If f has punctual jet of order k at the origin such that j* f shows that
f does not have a minimum at 0 and 7*~! f does not show that f does
not have a minimum, then there is a vertical minima curve for f with
the proprieties described in the text.

The first result is a simple calculus’ result.

Lemma 4 Let U= U C R™ be a neighborhood of O and take f:U — R
of class C! such that V f has punctual jet of order k — 1 at O. Then f has
punctual jet of order k at O and j*~'V f = Vjkf.

Proof: We define the polynomial

1

P = [ G* IV .

0

We claim that P = (5*f)|v.
Of course P has degree less then or equal to k and, if ¢ € U \ {0},

fle-P 1 o
If(g) - P(g)l _ ‘ { {Vi(tg) flq":‘?!(tq)]q) dtl <

flall*
< fl t"""—(—‘lﬁrrl-(—mvf ta)=st 2V LGl gy,
0 q

From the definition of k — 1 jet, and from the last expression, it follows
that ,,li_l.lb =0, and this proves that P = j*f.

lle
n

We take R = f — P, write ¢ = }_ gje; and define, for 1 < j < n, the
i=1

functions G; and R; by:

In order to finish our proof, it suffices to show that G; = gf.
J

Note that |jg — g;e; + te;l| < ligll, fort € [0;4;]. Therefore, since j*~1R; =
0, we have that
935
i* [ Bita - gye; +tep)de =o. )
0
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Thus,
95
f(a) = fla—gei) + [ 5500~ gies + tey)at =
a5 "
= (P + R)(q - gje;) + of (Gj + R;)(q — gye; + te;)dt.

Now, by using (*) and calculating the & jet of both members of the last
expression, we get the result. u

Now, we will prove the result about vertical minimum curves.

Foz the sake of simplicity we make, also in this appendix, the notation
P=j%f.

In [1] Barone proved that in these conditions there exists an algebraic
curve T': [0g] —Q

such that T'(0) = (0;0), |IT(¢)|| # 0, if t > 0 (and therefore transversal to
the circumferences centered at the origin) such that

P(F(t)) = min {P(): |lzl| = |T®)|}, if ¢ > 0, and

ﬂ.ﬂfﬁ =atf +t.h.o., with 8 <k and a # 0.
i@l
We will show that there is a vertical minima curve with the desired
proprieties tangent to I' at the origin.
Let s be the order of the first non null jet of f. It is easy to see that
s < k, j°f is a polynomial homogeneous of degree s and one of the following
situations must happen:

1. j°f shows that f does not have a minimum at the origin.
2. 7°f has a strictly weak minimum at 0.

In the first case, we have s = k and the result we seek follows trivially. It
is easy to see that the mentioned curve [ is a semi straight line that satisfies
the desired conditions.

We focus now on the situation in which s < k and j* f is an homogeneous
polynomial of degree s with a strictly weak minimum at the origin.

We recall that j°f~! {0} is a finite union of lines all of which pass by the
origin.

Lemma 5 Let A:[0;] — R? be an algebraic curve with A(0) =0. IfA is
tangent at the origin to a semi straight line in which j°f is not null, then
the order of P at A is s and f o A has a strict local minimum at 0.
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Proof: Let { be the semi-line to which A is tangent at the origin. We
perform a rotation in order to transform £ in the z axis.

After this rotation it becomes clear that j° f(z;0) = az*, with a > 0.

If we use now the canonical parameterization of A, the result follows
immediately. ]

A direct consequence of this lemma is that the curve I’ above mentioned
is tangent at the origin to one of the semi straight lines in which j°f is null.
Let £, be this semi line.

We are now able to finish the proof of the existence of the vertical minima
curve in this case.

We consider the rotation that takes £, onto the positive z axis, and we
work in this new set of coordinates. -

Since j*f is a non null homogeneous polynomial, with a strictly weak
minimum at the origin, and since it is null on the positive z axis, we can
choose A > 0 such that in the cone C) = {(z;y) € R%:2 > 0, —Az <y < Az}
the only points in which j*f is null are those of the semi-line (z;0),z > 0.
From this and fact 5, it follows that both have 2 minimum of order s at the
origin.

On the order hand, since I is tangent at the origin to the semi axis z,
there is €9 > 0 such that Ty e&rifo<t<ep.

Since I is algebraic and transversal to the circumferences centered at
the origin, this curve is also transversal to the lines z = z,, for sufficiently
small values of Zo.

If we write I'(t) = (z(t);y(t)), we will see that, in [0;o[, the function
z(t) is strictly increasing and by taking ¢ = z(go) we have that, for every
€ 0 <& < g there is a single t¢ € (0;c0) such that z;(t¢) = £ and there is
Yzi € [—AE;AE] such that

min {5*£(€9): -2 <y < M} = f(Ewe) < 7 FP)te) <0, (31)
We recall that j* f(z;— Az) and j* f(z;\z) have a minimum at the origin,
and s0 y¢ € (—AEAE).
This shows that %L(f;yg) =0 and therefore
a5%f
=4 (2 2, o) =
A= {(Z)y) € R%: ay (z,y) =0

is an algebraic set of dimension 1, of whom the origin is not an isolated
point.
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Thus, there is a neighborhood A of the origin, such that A\ {O}NA is
a finite reunion of algebraic curves, all of which are adherent to the origin.

Further more, from (31) we have that there exists an algebraic curve '
defined in [0;8], such that I'(0) = 0, T'(t) € CAn A4, if t > 0.

Letl';:[0;6;] — R?, 1 < j < p be the algebraic curves that satisfy the
conditions described in the last paragraph and let us consider them with
their canonical parameterization. We take 8 = mind;:1 < 7 < p.

Then, for 1 < j <p, T;(t) = (t:h;(t)), 0 < t < §;, where h; is a function
with a power series representation with fractionary exponent.

So, by making f; = foT;, there is jp € {1,...,p},

such that f; (z) < f;(z),forall j and 0 < 2 < 4.

It is clear that I';; is the desired curve.
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