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This article intends to study the Liapounof's stability of an equilib­
rium of conservative Lagrangian systems with two degrees of freedom. 

We coll.Bider O C R 2 an open neighborhood of the origin and the 

Lagrangian £ = T - 1r , where ,r: 0 -t R of class C2 is the potential 

energy with a critical point at the origin and T: 0 x R 2 ~ R is the 

kinetic energy, of class C2. 
We assume that 11' has jet of order le at the origin, and this jet shows 

that the potential energy does not have a minimum in 0. With these 
hypotheses we prove that (O;O) is an unstable equilibrium according to 
Liapounoffor the Lagrange equations of£. We achieve this by proving 
that there is an asymptotic trajectory to the origin. 

1 Introduction 

In this work we consider the Liapounof's stability of conservative Lagrangian 

systems, for Lagrangians .C(q;q) = T(q;q) - 1r(q), where 11" is the potential 

energy and T the kinetic energy. 
The Lagrange's equations for a. system with these features are 

d fJ.C fJC 
dt fJq + oq = O. (1) 

It is a known fact that the equilibria. of (1) are the points (qo;O) in which 1Jo 

is a. critical point of 11" . 

"Supported by Capes 
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We shall then consider a critical point q0 of the potential energy 1r and 
study the stability according to Liapounof of (1). 

One of the major results in this area is the Lagrange -Dirichlet theorem, 
which states that if l/0 is a local strict minimum point for the potential energy 
1r, then (qo;0) is a stable equilibrium according to Liapounof of (1). 

Since Dirichlet proved this result in 1846, many renowned mathemati­
cians have dedicated themselves to the problem known in the literature as 
the inversion of the Lagrange - Dirichlet Theorem . 

In short, one considers a. conservative Lagrangian system with an equi­
librium point in (q0;0) where q0 is not a local strict minimum of 11'1 and one 
tries to study the stability according to Liapounof of (q0 ;0). 

For a. short period of time, many tried to prove that if (Jo is not a. local 
strict minimum of 1r then (q0 ;0) is an unstable equilibrium for (1). Painleve's 
example, presented in 1904, showed this to be false, even in the case of 1 
degree of freedom. 

In order to do so, he considered a. system with(q;q) E R2 , kinetic energy 
~ _1 

T(q) = T and potential energy ,r(q) == e -;, sin¼, if q ::/= 0, and ,r(0} = 0. 
Painleve proved, in [3], that (0;0) was a Liapounof's stable equilibrium for 
(1), while ,r has neither a minimum nor a. maximum in 0. 

Although this example shows that a complete reciprocal to the Dirichlet 
-La.grange theorem is false, the problem of finding sufficient conditions on 
£ to ensure the instability of an equilibrium of such systems is still known 
as the inversion of the Lagrange - Dirichlet Theorem, and has received the 
attention of Liapounof, Tchetaev, Lefchetz, La Salle, E. Hanh e L. Salvadori, 
among others. 

Liapounof proved in 1897 that, if qr, is not a local minimum of ,r and this 
fact is shown by the second order derivatives of ,r, then (q0 ;0) is an unstable 
equilibrium of (1) (see [4]). 

In the terminology used in this note this result may be enunciated as if 
the jet of order 2 of 11' in qo shows that 11' does not have a minimum at q0, 

then (qr,;0) is an unstable equilibrium. 
Liapounof conjectured that if the jet of order k of ,r at q0 shows that ,r 

does not have a minimum at this point, then (q0 ;0) is an unstable equilibrium. 
In 1989 and 1991 A. Maffei, V. Moauro and P. Negrine obtained ex­

tremely interesting results in this direction (see [5] and [6]). 
The central result of these works considers the case in which q0 = 0 and 

it supposes that, after an eventual change of coordinates, 
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where 'Irk is an homogeneous polynomial of <!,~~eek ~ 2 which doesn't have a 
minimum at the origin and R satisfies ~~ ~ = 0 . With these hypotheses 

the authors prove that (0;0) is an unstable equilibrium for (1) 
Therefore, if the k jet of 7r at q0 is homogeneous and shows that 1r doesn't 

have a minimum at this point, then (q0 ;0) is an unstable equilibrium for (1) 1 • 

Another important result was shown by Pala.modov who proved that if 
1r is an analytical function without a minimum at <Jo then the equilibrium is 
unstable (see [8}). 

In this work we consider systems with two degrees of freedom and we 
prove Liapounof's conjecture, with no additional hypothesis, that is, we 
show that, in the 2 degrees of freedom context, if the k-jet of 1r at q0 shows 
that 1r doesn't have a minimum in this point, then (q0 ;0) is an unstable 
equilibrium for (1). We achieve this by constructing a "cone" with vertex 
at the origin of the phase space of the Lagrange equations and an auxiliary 
function which assures that there is a trajectory asymptotic to the origin. 

Since Barone, Gorni and Zampieri proved in [2) that for every analytical 
function f without a minimum at q0 there is a integer k such that j1' f 
shows that f doesn't have a minimum at this point, our result extends the 
Palamodov's result for systems with two degrees of freedom. Moreover we 
provide a. positive answer for a. conjecture posed by V. V. Kozlov in [3] 
concerning the existence of asymptotic trajectories to (qo;O) for the analytic 
case, which was not proved by Palamodov in [8J. 

This article comprehends this introduction and 4 other sections. In sec­
tion 2 we present the context in which we are going to work in a rigorous 
way. In Section 3 we demonstrate a technical lemma extremely important 
to prove our instability result, which is done in section 4. Our work finishes 
with an appendix where the results in k-decidability needed for the text a.re 
exposed. A reader familiarized with the work done by Barone-Netto in this 
area may skip the reading of a good part of this appendix, and stick to the 
demonstration of the Fa.ct 1, shown here for the first time. 

2 The Problem 

Let us consider a conservative Lagrangian system with 2 degrees freedom, 
with potential energy 1r defined in an open neighborhood of the origin 0, 
and kinetic energy T defined on R2 x n . 

1 In these works ,r is suppOlled to be of class c1r+a, later on S. Tagliaferro improved the 
result for the homogeneous case for a broader class of potential energies (see [71). 
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We admit 1r of class C2 
11r(O) = ll1r(O)II = 0 and ,r = P + R, where P is a. 

polynomial of degree less than or equal to k a.nd !~ "1j~fCz} = 0, tha.t is, 
Pis the k-jet of 1r at the origin, moreover, we assume that there is jk-ltJ1r. 
We further suppose that P shows that ,r doesn't ha.ve a minimum at the 
origin (see the definition below) and jk-l7r does not show that 7r does not 
have a. minimum at the origin. 

We say that jk f shows that / does not have a local minimum at O if, for 
every function g: n ~ R such tha.t jkg = jk f, 0 is not a local minimum of 
g. 

The kinetic energy is a defined positive quadratic form in the velocities, 
and it's supposed to be of class C2, that is, 

where 

T = ~{ B(q)q I q > 

B(q) = [ F(q) G(q) ] 
G(q) H(q) 

(2) 

is defined positive for every q E n and F, G and H are C'J functions defined 
inn. There is no loss of generality in supposing that B(O) = I. 

With these hypotheses2 (0; 0) is an equilibrium for the Lagrange equa­
tions of the system with Lagrangian £ = T - ,r. We intend to prove that 
the hypotheses made above assure the instability according to Liapounof of 
this equilibrium. 

The following k-decidability result is demonstrated in the appendix and 
plays a major role in this work. 

Fact 1 If the k-jet of 1r at the origin is the first jet of 1r that shQWs that 
this function does not have minimum at 0, then there are, after an eventual 
rotation of R2 , reals).> 0, a> 0 and an algebraic curve r(x) = (x;r(x)), 
where r: [0;o[ ~ R, with r(o) == 0 and whose versor in 0+ is (1;0), such 
that 

min P(x;y) = P(x;r(x)) = -ax11 + o(x11), Vx E [O;e[, (3) -.\z<11<-\z 

with fJ::; k. 

Note that, since r is algebraic in the case of this proposition, we can 
assume with no loss in generality that 

1 Actua.lly we could suppose that ir and T are functions of cla.ss C1 and some theorem 
of unicity and continuoua dependence is true for equations (1). The reader will have no 
problem verifying that the proofs remain valid in this context. 
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+ex> ,w=E~~ oo 
j=l 

with bj E R and (/3i) is a sequence of strictly increasing rationals with /31 > 1 
(see the Walker's text (2) on algebraic curves for an elegant and complete 
presentation of the theorem of Puiseaux that shows this result). Further 
more, except in the case where r is the semi-axe of the abscissa (situation 
in which 1 = 0), we have that b1 -1- 0. 

It's an immediate consequence of these observations that, for a possibly 
smaller(!, there are positive constants c1, c2 and c3 such that, for O < x < (! 

l1(z)I < c1z131 

l1'(x)I < c2x131 - 1 (5) 
1,"(x) I < cax131 - 2

• 

We point out that, since {31 > 1 we have /31 - 2 > - 1. 
These proprieties and estimates on r will be used in the forthcoming 

sections. 

3 A Fundamental Lemma 

In this section a fundamental result is proved which allows us to establish 
the existence of a trajectory asymptotic to the origin in the hypotheses 
mentioned in the previous section. 

We recall that ,r: Q -+ R is a C2 function, ,r(0) = IIV1r(0)II = 0, and ,r 
has k-jet at the origin and this jet shows that ,r does not have a minimum 
in 0. 

Let P = j1'•,r and consider the curve f(z) = (x;7(x)) as in the previous 
section, satisfying the fact 1. Since r obeys (3), we shall call it curoe of 
vertical minima of P. 

We begin by carrying out a change of coordinates of class C<X> in the 
vertical strip :F = {(x;y): 0 < x < u} that admits a.n extension to :FU {0}, 
which is an homeomorphism. The purpose of this transformation is to move 
the curve r onto the segment (x;O), 0 < x < u. 

We consider cp(x;y) = (x;w), 0 < x < u, y ER, where w = y - 7(x). 
The fact that this transformation is C<X> can be seen from (4) and the 

observations made at the bottom of section 1. Furthermore, it is immediate 
that defining rp::FU {O} ---+ R2 by 

_ x· _ { ~(x;y) se x > 0 
cp( ,y) - (0;0) se (x;y) = (0;0) (6) 
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we have an horneomorfism. 
Now, we express P in the (x;w) coordinates. Since P is a polynomial 

of degree less then or equal to k, we have P(x;y) = E a;;xiyi, therefore, 
(i;j)El 

from the definition on tp and (4) it follows by direct substitution that 

(7) 

We note that r.p preserves vertical lines x = { and, in each of these lines, 
it is a translation (w = y +-y({)). Again, since tp takes r onto the x-axis, it 
follows from (3) that 

(i) In the coordinates (x;w), P(x;O) = -axP. 

(ii) For fixed { E (O,e), the function l(w) = P({;w), w ER has a local 
minimum point at 0. 

From (ii) it follows that ¥w-(x;O) = 0, 0 < x < e and thus, in the 
expression(7), there are no linear terms in w. 

We distinguish in (7) the terms with degree less then or equal to {J, and 
observe that the exponents of w are all integers greater then or equal to 2, 
and that the exponents of x are rationals greater then or equal to one, and 
this yields: 

i+j~/3 

P(x;w) = -axP + w2 L a;;xiwi-2 + o(ll(x;w)IIP), 
iEQ, jeN 

i+j~/J . . 
so, by making P2(x, w) = w2 E a;;x'w1- 2 , we have 

iEQ, jEN 

P(x;w) = -ax13 + P2(x, w) + o(ll(x;w)t). (8) 

Direct calculation shows that, taking q = (x, w) we obtain the kinetic 
energy in the new coordinates T = ½( B(q)q l q ), 

where 

B = [ F + 2G + H-y
12 

G + Hy 1 
G + H-y' H . (9) 

By observing that B(O, 0) = / and using the estimates (5), we have 
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F~ct 2 The matrix B may be toritten B = I+ h, where 11h11 is o(llqJl61 ) and 
llh'II is o(llq]I½), with 61 :::: min {.81 - 1,1} and 62 = min {.81 - 2,0} = 61 -1. 

Furthermore B is inuertible and we haue _B-l = I+ d, where lldll is 

o(llqjl01 ) and lld'II is o(llqjl 02 ). 

With these ingredients, we may write Lagrange equations in the coordi­
nates (x, w, x, w). 

Fact 3 The normal form of the Lc.gmnge equations for the considered sys­
tem, in the variables ( x, w, x, ti,), are 

From here it follows, as a particular case, the equation 

w = -f(x, w) :: - g(x, w) :: + O(llqJl½llq]l2
), (10) 

where /(0; 0) = 1 and g(O, 0) = 0. 
In order to build the cone C and the auxiliary function that will help 

us show the existence of the asymptotic trajectory, we will study in some 
detail the behavior of P2 in the curves w = ax", x > 0, for some values of 
a ER a.nd c ~ 1. 

We assume that P2 ¢. O, and we take a -:/=- 0 and c ~ 1; in the curve 
w = axe, x > 0 the monomial a.,.x•wr+3 has orders+ c(r + 2). 

Since for all (s;r) E 7 we haves+ r + 2 ~ /3 we can choose c ~ 1 such 

that min { s + c(r + 2): (s;r) E l} = {3. 
Clearly, there is only one c in these conditions, and we will call J the set 

{(s;r): s + c(r + 2) = /3}. Therefore J-:/=- 0 and, at the curve w =ax", x > 0, 
we have 

P2(x;w) = P2(x;axc) = L a,rar+2x/J + o(x/J). (11) 
(•;r)EJ 

Now, consider the one variable, real polynomial .P(a) = L a.,.ar+2 • It 
(a;r)EJ 

follows from (11) that P(x;axc') = P(a)x/J + o(x.8). 
Take r0 = min {r EN: 3s E Q, (s;r) E J} and note that there is only one 

so such that (so;ro) E J. 
In these settings, we have 

Fact 4 The polynomial P satisfies P(O) = 0 and P(a) ~ 0 for all a E R. 
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Proof: Since r0 E N,we have r0 + 2 ~ 2, and so, from the way we chose ro 
it follows that P has a root with multiplicity greater then or equal to 2 in 
a=O. 

Furthermore, we note that P(x;ax") - P(x;O) = P(a)xP + o(xP), thus, 
if by contradiction there was a E R such that P(a) < 0 then a # 0 and we 
would have 

Ii P(x;ax") - P(x;O) _ P~(-) 
0 m a - a < . 

:i:.j.O V' 

So, for sufficiently small x > 0 we would have P(x;axc") < P(x;O) which con­
tradicts the fa.ct that -y is the vertical minima curve for P, thus establishing 
the result. ■ 

Let us recall now the definition of r0 and let G(a) = E a.,.ar-(ro+l) 
(,;r)eJ 

so that (note that r - (ro + 1) = r + 2 - (ro + 3)): 

P(a) = aaoroaro+2 + aro+3G(a). 

In the future, the following inequality will be useful 

laro+3G{a)I :<:; iaro+31 E la_ar-(ro+l)I 
(,;r)eJ 
r>ro 

r>ro 

(12) 

{13) 

Now, let a> 0 and consider the cone Ca= { (x;w):x > 0,-axc :5 w :5 axe}. 

We will study the behavior of P2 and of x~ in Ca. 
To do so, we consider G(a) = E la.,.ar-(ro+l)I and note that: 

(,;r)eJ 
r>ro 

Fact 5 With the previous notations, we have 

(i) For (x;w) E Ca we have IP2(x;w)I $ (a80 r0 + aG(a))a"0+2x.B + o(x.B). 

(ii) lfo(a) = {a80r0 -aG(a))aro+2, a~ 0 then P~(x;ax") ~ c5(a)xP+o(x.B). 

Proof: To prove (i) note that, if (x;w) E Ca, then (x;w) = (x;bxc"), where 
-a :5 b :5 a and, remarking that G is crescent, it follows 

IP2(x;w)I = Oa0r0bro+2x.B + jb"0+3 G(b)lxP + o(x13 ) :5 
:5 (a80 ,.0 + aG(a))a"0+2 x13 + o(x.B). 

As to the second inequality, we recall that, from (11) and (12), 

P2(x;axc) = P(a)x.B + o(z.B) = (a.
0

,.
0
a"0 +2 + ar0+3G(a))x.B + o(x.B), 

thus, since a > 0, it follows directly from the definition of G and from(13), 
that (ii) is true. ■ 
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Fact 6 There are ao > 0 and c > 0 such that, i/0 <a< a0 and (x;w) E Ca, 
with x < c then 

8Fi p p Ix ax (x;w)I < (k - 1)5(a)x + o(x ). 

Proof: We begin by noticing that x\?-(x;w) = w2 E _sa,,,.x•wr, thus, in 
(a;r)El 

C0 we have, taking as before (x;w) = (x;bxc'), 

8Fi 
lx - (x;w)I = l(soaaorobro+2 + bro+3 E sa..,.br-(ro+l))lx.B + o(x.B) S 

8x (•;r)eJ 
r>ro 

< I (aa
0
r

0 
+ a E ;;,a,,,.ar-(ro+I))lsoaro+2z.B + o(x.B) (14) 

(•;r)eJ 
r>ro 

From the manner in which we defined J and the par (so;r0) it follows that 
(s;r) is in J \ {(so;ro)} then s < so ~ k - 2, therefore, from (14) we have 
(x;w) E Ca, 

8P2 Ix Bx (x;w)I S (k - 2)(aaoro + aG(a))ar0+2x.B + o(x.B) = 
= (k - 2)(5(a) + 2ar0+3Ga)x.B + o(x.B). (15) 

Noting that 5(a) is O(ar0 +2) and aro+3G(a) is o(ar0+2), then, given e > 0 
there is a0 = ao(c) > 0 such that, ifO s a< ao, we have 2aro+3G(a) s e5(a). 

Now, choosing e > 0 such that (k-2){c+l) < k-1 (for instance e = ¼), 
and noting tha.t a < ao, it follows from (15), that in Ca, 

8P. Ix ax2 (x;w)I s [(k - 2)(e + 1)5(a)]xP + o(xP) < (k - 1)5(a)xP + o(xP), 

which is the desired inequality. ■ 
Finally, we a.re able to prove the fundamental result of this section, a key 

piece to proving the instability of the origin. 

Lemma 1 There are O < 5 < ¼ and u > 0 such that, in the connected 
component C1 of 

n1 = { (x;w) E R 2 : 0 < x < u, P2(x;w) < 5x13 } 

that contains(x;O), 0 < z < u, we have 

8P2 p 
x ox (x;w) < (k - 1)5x . 
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Proof: We will kee3. here the notation used in the section. 
Note that lim #.¼-

0
" = aaoro > 0, so, by taking an eventually smaller ao 

a.io" 
· in the previous expression, we have c5(a) > 0, for O < a$ ao-

Also, if a > 0, ¥ = (aaoro - aG(a))aro+l and so, since ro + 1 ~ 1 we 
can choose ao sufficiently small so that the function c5 is crescent in [O;ao]­

Now, from the fact5 follows that P2(x; ± aox~ ~ c5(ao)x.8 + o(x.B), and 
by taking c5 = ¥ we have that there is t1 > 0 such that, if O < x $ u, 

This shows that if C is the connected component of 

f!i = { (x;w) E R 2: 0 < x :-:; u, P2(x;w) < c5z.8} 

that contains the segment (x;O), 0 < x < u, then 7J C C,.0 • 

(16) 

On the other hand, since [O;a0J, c5(a) is crescent, the fact 6 implies that, 
a.fter a. possible reduction of t1 we have, for (x;w) E Cao, 

(17) 

Since C C Cao, (17) ends the proof. • 
4 The Instability Theorem 

In this section we show that, for the conditions in which we are working, 
there is an asymptotic trajectory to the origin that solves equations (1). 

To achieve this we will construct, in the phase space (x, w, x, ti,) a cone 
C and an auxiliary function V that will be useful to establish the existence 
of an asymptotic trajectory in C. 

Since the function '{), used in assigning the new variables (x;w), was 
defined in :F which is not an open neighborhood of the origin, it is worth 
pointing out the observation made in the previous section. We defined '{) in 
the strip :F = { (x;y) E R 2

: 0 < x < e} and we noted that its extension ~ to 
:Fu {(O;O)}, given by(6) is an homeomorfism. 

Therefore, since 'P(O;O) = (O;O), if we prove that there is a solution ,t,(t) = 
(:i:(t);w(t)) of equations (*) defined in (-oo;O] such that lim ,t,(t) = (O;O), 

t➔-oo 

we will have shown the existence of an asymptotic trajectory to the origin 
of the equations (1). 
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We define now the aforementioned auxiliary function. Let V; :F x R 2 --t 

R be given by 
·2 

V(x;w;x;w) = 2/~;w) + P2(x;w). (18) 

A simple calculation and (10) gives us, 

V. -- (P. ) . + (P. ) . 1 . _ 1 J' . 2 
2 ,i;X 2 wW + 'j1"w - J2 w 

= (P2)zi + (P2)ww -
1
\J'w2 + 

+ 7[-f1rw-g1r"'+o(ll(x;w)ll62 11(z;w)ll2))w (19) 

Thus, if we consider V = ~, it follows that V = -!, - f f[i . Therefore, by 
using (19), we get 

~+iv= xV -f3Vi: = (x(A)z - ,BV)i: + S(x;w;i:;w), (20) 

where 

These calculations will be fundamental. 
We will work in the cone C given by: 

C {( . ') ~ R2 E(x;w;x;w) = 0, 0 < X < u1 < u, } = x·w·x·w E .r x · 
' ' ' . (x;w) E C1, V(x;w;x;w) < oz/J 

(21) 

where o, u and C 1 are given in lemma 1 and u1 is a number yet to be 
determined. 

We prove now an important inequality, expressed in the following result. 

Lemma 2 There is eo > 0 such that, if O < e < eo there exists {! > 0 such 
that if ll(z;w)II ~{!and (x;w;x;w) EC then 

(22) 

Proof: Let e > O. Since B(O) = Id, there is a neighborhood of the origin in 
which 

(23) 
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Since the energy in C is null, we have that (1 + £)x2)w2 + 1r(x;w) > 0. 
This and(*) show that, for (x;w;x;tb) EC 

(1 + £/; > - [-xP + P2(x;w) + o(ll(x;w)II/J) + (1 + £) ~2
] . (24) 

Now, we analyze V and note that, in C, V(x;w;x;w) = ¥7+P2(x;w) < 6z11• 
Hence, using the estimate(**) for/, we can choose £1 > 0 and o 80 that, if 
O < x < o, the inequality ,;,; < f(oxP - P2(x;w)) < (1 +e1)(oz.B - P2(x;w)) 
holds. Let us choose £1 > 0 80 that e +e1 + ee1 < 2£. 

lfwe multiply the last inequality by {l+e) and replace it in (24), we get 

~x2 > zfJ - P2(x;w) + {1 + e)(l + e1)(P2(x;w) - oxfi) + o(ll(x;w)IIP) = 
= xP - 6(1 + e)(l + e1)x.B + (e + e1 + u1)P2(x;w) + o(ll(x;w)ll 11) = 

= (1- 6):x:13 - (oxP - P2(x;w))(e + e-1 + ec:1) + o(ll(x;w)II.B). (25) 

Since in C we have oxP > P2 (x;w), if we recall the manner in which we 
chose e-1 and use that 1- J >¾and (25), we may conclude that 

1 + e .2 3 ~ .B p -
2
- x > 4r + 2e(P2(x;w) - Jx ) + o(ll(x;w)II ). (26) 

Now, we recall that there is u > 0 such that P2 ( x;w) > 0 if O < z < u, thus, 
it follows from {26) that 

1¥z2 > (¾ - 2Je)z.B + o(ll(:z:;w)l[fl). 

We can take e0 > 0 such that ¾ - 2Je0 > ½· Clearly, for every e ~ eo, 
we may choose th > 0 (with a1 ~ u) such that, for all the points in C where 
ll(x;w)II ~ l!1 the left inequality at (22) is satisfied. 

AB to the other inequality, it follows from (23) that, restricted to C, 
1
;• :i:2 + 1;sw2 + ,r(x;w) < 0, therefore 

1-e 2 1-e -
2
- x < -[1r(x;w) + -

2
- w2

) 5 -,r(x;w). (27) 

Since P2(x;w) ~ 0, (*) implies that, in C, ,r(x;w) ~ -xfl + o(ll(z;w)U'3). 
Therefore, there is l!2 > 0 such that, if ll(x;w)ll 5 u2 and (z;w;x;w) EC, 

we have -,r(x;w) $ 2xfl.This, alongside (27), establishes the right inequality 
at (22). 

So, it suffices to take l! = min {l!1,e2} and the result follows. ■ 
A last lemma is necessary to prove our instability result. 
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Lemma 3 T~ere is u 1, 0 < a1 < e1 such that, in 8C\(O; O)n{(x;w) : lwl $ >.x} 

the function V does not vanish. 

Proof: It suffices to show that x/3+1 V does not vanish because x > 0 in 
ac \ (0; 0) n {(x;w): lwl $ >.x}. 

By formula (20) z.B+ly = xV - /3:i:V. 
Let us analyze the parcel xV; we know, by (19), that 

xV = x[(P2)..,x + (P2)..,tb- piw2 
- 1rwW + R(x;w;:i:;w)], 

where R(x;w;:i:;w) = j[-g1f:r: + o(ll(x;w)ll52 ll(:i:;tb)ll2 )]tiJ. 
Now, we note that: 

(i) Since, restricted to C, the energy is null, it follows from lemma 2 and 

from the definition of C1 that w is O(xf) at the border of C; 

(ii) From (2) we have that o2 > -1, and this implies that jo(l!(x;w)ll02 ll(:i:;w)ll2) 

is o(x.B) in BC; 

(iii) Given that g(0;0) = 0, from P = j"1f and (8) it follows that, in 8C, 
xg?f.., is o(xP). 

(iv) From(ii) and (iii) we have, at the border of C, xR = tbR1, where R1 

is o(x.B), thus, from (i) follows that xR is o(x¥) in {JC; 

(v) Since j = (/:r:)x + (f w)w, lemma 2 and (i) imply that jw2 is O(x¥) 
• 2 M 

in 8C, and so the parcel pfw is o(x 2 ), because f(0;0) = 1. 

This leave us with the analysis of x[(P2)..,:i: + (P2)..,w - iww]- f3xV. 
Once again, we use P = j"'if and (8) to show that, at the border of C, 

we have i.., = (P2).., + o(xf3-l) and so, due to (i), 

x[(P2)..,:i: + (P2)..,w - i..,w] - /3:i:V = (x(P2)z - /JV):i: + o(x¥). (28) 

Note that: 

(vi) In 8C, V = ox.B and (x;w) E n1 , so it follows from lemma 1 that, 
z(P2):r: < (k - l)Sz.B; 

(vii) Since f3 > k-1 we have that, in {JC, x(P2):r:-tW < 0 and lx(P2):r: - f3VI ~ 
ox13 • 
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Therefore, lemma 2 and (vii) imply that if (x;w;i;tb) E fJC \ {O;O) we have 

8 6 M. 
l(x(P2):i: - .BV)zl ~ 6:c Iii ~ (l + e) x a • {29) 

Clearly, from (iv), (v), (28) and (29) the result follows. ■ 
Now, we can state the main result of this paper. 

Theorem 1 Let ,r be a C2 function such that 1r(O) = IIV1r{O)II = 0 and 
V1r has jet of order k - 1 at O and suppose that l1r shotos that the origin 
is not a local minimum of 1r. Then there is a trajectory t/>(t) asymptotic 
to the origin {O;O) , solution of (9), such that for sufficiently large t > to, 
t/>(t) E C \ (O; 0) n {(x;w;x;tb) : lwl ~ 2x }. 

Proof: For the simplicity of notation, we will call 01 the set 

0 1 = C \ {O; 0) n {(x;w;z;tb) : lwl < 2x e z < O}. 

Let us recall that, from lemma (2), if we choose a sufficiently small u1 , 

then for O < z < u1 , z < -½zf. 
Also, it follows from the definition of C that, if we have lxl sufficiently 

small and if (x;w;z;tb) E 0 1 , then 

(30) 

These two statements show that, for any solution ef>(t) = (x(t);w(t)) of 
{3) , if ¢>{ti) E 01 and lw(t1l = 2x{t1) for some instant t1, then there is e-1 
such that for every t in [t1, t1 + e1), we have ¢(t) r/. 01, and for every t in 
[t1 - e1, t1), we have lw(tJ < ~(t). 

On the other hand, a direct consequence of lemma (3) is that, if ¢(t2) E 
01 and V o ¢(t2) = 6x(t2)'3 for some instant t•.h then again we may find e2 
such that for every t in [t2, t2 + e2), we have Vo if>(t2) > 6x(t2)I\ and for 
every tin [t2 - e2, t2), we have Vo ¢(t2) < c5x(t2)P. 

Therefore, there is a constant u2 < u1 such that every solution ¢ with 
0 < x < u2 that at some instant t is in the border of 0 1 must have been 
in the relative interior of 01 if for some time interval before t. Also, this 
solution is going to be out of '0'1 for a time interval posterior of t. 

Now, we take a sequence p,1: = (x,1:;w,1:;z,1:;tb,1:) E 801 , with O < x,1: < u2 
and such that lim1t➔ooP.I: = (O;O), and we consider the solutions ¢.1: of (3) 
such that t/>.1:(0) = p,1:. 
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Clearly, for some negative time these solutions have been in flt. Also, 
they cannot have entered f21 at a point with x < u2• Finally, since in f21 
x < -½xi, there are sequences tk < 0 and qk = (u2;tiik;h;ti!r.) E fh, such 
that </>r.(tr.) = qk and <Pk(t) E 0 1, for every t E (tk, 0). 

Of course, we can find a sub-sequence qnk that converges to a point q. 
We will assume that qnk = qk. 

We claim that the solution <l>(t) of (3) starting at q is asymptotic to (0;0). 
For, if we assume by contradiction that was not the case, then there 

would be a time t0 such that </>(to) ¢ 0 1• 

Let a = minte[o,taJll<l>(t)JI- Since Qk converges to q, the continuous de­
pendence gives us that there is k0 such that, for k > ko 

This implies that, for k > k0, t0 < -tk. On the other hand, since 01 
is closed, the continuous dependence also assures the existence of k1 such 
that, fork> k1, 

<Pk (tk + to) ¢ 01. 

But, if k > max{ko,ki}, this implies that for some t E (tr.,tr. + t0 ) 

<Pk(t) ¢ f21, which is absurd, since tr.+ t0 < 0, thus concluding the proof. ■ 

As a final note we would like to remark that if jk1r does not show that 
1r does not have a local minimum at the origin, then there is a function 
q:il --+ R with jkq = 0 and such that 1r1 = jk1r + q has a local strict 
minimum at 0. Thus, by the Lagrange-Dirichlet theorem the equilibrium 
(O;O) is a stable point for the equations of motion of Lagrangian £ = T- 1r1. 

Therefore, in the class of functions of R 2 of class C2 with jet of order 
k at 0, we have given in theorem 1 a complete characterization of jets that 
ensure the instability of the equilibrium. 

APPENDIX 

k-Decidability and 
Vertical Minima Curve 

In this section we show that if/: n--+ Risa function defined in the open 
neighborhood of the origin n of R 2 , /(0) = 0 then: 

1. If / is C1 and V / has punctual jet of order k - 1 at the origin then / 
has punctual jet of order k at the origin and Vjk f = jk-l(V /). 
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2. If f has punctual jet of order k at the origin such that j1• f shows that 
f does not have a minimum at O and j1<-l / does not show that f does 
not have a minimum, then there is a vertical minima curve for f with 
the proprieties described in the text. 

The first result is a simple ca.lculus' result. 

Lemma 4 Let U = U ~ Rn be a neighborhood of O and take f: U-+ R 
of class C1 such that V f has punctual jet of order k - 1 at O. Then f has 
punctual jet of order k at O and ji.-tv f = V /" f. 

Proof: We define the polynomial 

1 

P(q) = f 0"-1v f(tq)lq)dt. 
0 

We claim that P =(/'/)ju. 
Of course P has degree less then or equal to k and, if q E U \ { O}, 

lf(q) - P(q)J - l fl {V /(tq)-r-1v /(tq))q) dt l < 
llqll,. - olqllli -

:5 } ,i.-1 nv J(tq~~/ii1-2• f(tq)II dt. 
0 

From the definition of k - 1 jet, and from the last expression, it follows 
that q~ l/(l~;ipq)I = O, and this proves that P = jlcf. 

n 
We take R = f - P, write q = E q;e; and define, for 1 $ j $ n, the 

j=l 

functions G; and R; by: 

G •k-1 lJf lJf ~ 
; =J a e -8 =G;+R;. q; q; 

In order to finish our proof, it suffices to show that G; = M;-
Note that liq - q;e; + te;II $ llqll, fort E [O;q;). Therefore, since jlc-1R; = 

0, we have that 
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Thus, 

f(q) 

Now, by using (•) and calculating the k jet of both members of the last 
expression, we get the result. ■ 

Now, we will prove the result about vertical minimum curves. 
For the sake of simplicity we make, also in this appendix, the notation 

P=j"J. 
In [1] Barone proved that in these conditions there exists an algebraic 

curve f: [O;e] --+ n . 
such that f(O) = (O;O), l!f(t)II /:- 0, if t > 0 (and therefore transversal to 

the circumferences centered at the origin) such that 

P(I'(t)) = min {P(x): llxll = III'(t)II}, if t > O, and 

P(r'(t)) tJ • _ = at + t.h.o., with f3 < k and a I- 0. 
llf(t)II -

We will show that there is a vertical minima curve with the desired 
proprieties tangent to f a.t the origin. 

Let s be the order of the first non null jet of/. It is easy to see that 
s $ k, j" f is a polynomial homogeneous of degree s and one of the following 
situations must happen: 

1. j" f shows that f does not have a minimum at the origin. 

2. j" f has a strictly weak minimum at O. 

In the first case, we have s = k and the result we seek follows trivially. It 
~s easy to see that the mentioned curve f is a semi straight line that satisfies 
the desired conditions. 

We focus now on the situation in which s < k and j• f is a.n homogeneous 
polynomial of degree s with a strictly weak minimum at the origin. 

We recall that j• r 1 {O} is a finite union of lines all of which pass by the 
origin. 

Lemma 5 Let A: [O;e] --+ R 2 be an algebmic curoe with A(O) = 0. If A is 
tangent at the origin to a 8emi straight line in which j" f is not null, then 
the order of P at A is s and f o A has a strict local minimum at 0. 
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Proof: Let l be the semi-line to which A is tangent at the origin. We 
perform a rotation in order to transform l in the x a.xis. 

After this rotation it becomes clea.r that j• f(x;O) =ax•, with a > 0. 
If we use now the canonical parameterization of A, the result follows 

immediately. ■ 

A direct consequence of this lemma is that the curve r above mentioned 
is tangent at the origin to one of the semi straight lines in which j' f is null. 
Let lo be this semi line. 

We are now able to finish the proof of the existence of the vertical minima 
curve in this case. 

We consider the rotation that takes lo onto the positive X axis, and we 
work in this new set of coordinates. · 

Since j6 f is a. non null homogeneous polynomial, with a strictly weak 
minimum at the origin, and since it is null on the positive x axis, we can 
choose>.> 0 such that in the cone CA= { (x;y) E R 2 : x ~ 0, ->.x $ y $ >.x} 
the only points in which j' / is null are those of the semi-line (x;0), x ~ 0. 
From this and fact 5, it follows that both have a minimum of order s a.t the 
origin. 

On the order hand, since r is tangent at the origin to the semi a.xis z, 
there is Eo > 0 such that r(t) E CA if 0 < t < Eo, 

Since f is algebraic and transversal to the circumferences centered at 
the origin, this curve is also transversal to the lines z = x0 , for sufficiently 
small values of zo. 

If we write I'(t) = (x(t);y(t)), we will see that, in [O;c0 [, the function 
x(t) is strictly increasing and by taking fl = z(co) we have that, for every 
€, 0 < € < fl there is a single te E (O;co) such that z1(t() =€and there is 
y.,i E [->.€;>.e] such that 

min { /" / (!;y): ->.e $ Y $ A€} = /(€;Ye) $ /' f(I')(te) < 0. (31) 

We recall that j,. f(x;->.x) and jk f(x;>.x) have a minimum at the origin, 
and so Ye E (->.{;>.!). 

8j•J This shows that ai'"(e;ye) = 0 and therefore 

A = { (x;y) E R2
: l)!:1 (x;y) = 0} 

is a.n algebraic set of dimension 1, of whom the origin is not an isolated 
point. 
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Thus, there is a neighborhood t:i.. of the origin, such that A\ { O} n t:i.. is 
a finite reunion of algebraic curves, all of which a.re adherent to the origin. 

Further more, from (31) we have that there exists an algebraic curve f 
defined in [0;f>], such that r(0) = 0, r(t) E C>. n A, if t > 0. 

Letri: [0;f>j] ~ R2, 1 $ j $ p be the algebraic curves that satisfy the 
conditions described in the last paragraph and let us consider them with 
their canonical parameterization. We take Jo = min f>;: 1 $ j ~ p. 

Then, for 1 $ j ~ p, f;(t) = (t;h;(t)), 0 ~ t ~ f>;, where h; is a function 
with a power series representation with fractionary exponent. 

So, by making/;= for;, there is io E {1, ... ,p}, 
such that J;0 (x) ~ /;(x), for all j and O ~ x ~ f>o. 
It is clear that r io is the desired curve. 
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