


Abstract

In [1] we have introduced the clique partitioning problem and studied the associated
polyhedron, the so-called clique partitioning polytope. In this paper we continue these
. polyhedral investigations; in particular, we present new classes of facets and methods
to construct new facet-defining inequalities from given facet-defining inequalities.

0. Introduction and Notation

Let K, = (Vn, &) denote the complete graph on n nodes without loops and multiple
edges, i. e., every two different nodes of K, are linked by exactly one edge. An edge
set A C &, is called a cligue partitioning of K,, if there is a partition {W,,..., Wi}
of Vu (i. e., cach W; is nonempty, W; N W; = 0 for ¢ # 7, and U?:x Wi = V,) such
that A is the union of all those edges in &, that have both endnodes in W}, for some
i € {1,...,k}. The clique partitioning problem (for short: CPP) is the task to
find, for a given complete graph K,, = (V,, £,) with edge weights c. € R foralle € &,,
a clique partitioning 4* C &, such that ¢(A4*) := 7 . ,. c. is as small as possible.

The clique partitioning problem is a combinatorial optimization version of a clus-
tering problem in data analysis and has many interesting applications, among others,
in zoology, economics, and the political sciences — see, for instance, (2], (3], (4], [5], [6].
This problem is MP-hard. To solve instances coming up in practical applications, we
have proposed in [2] an LP-based cutting procedure that utilizes our polyhedral inves-
tigations [1] of the associated polytope. This approach works quite well; in particular,
we could solve all practical applications we could get hold of to optimality. This paper
" is a continuation of our polyhedral work on the problem and we hope to be able to
use some of the facet-defining inequalities presented later to improve our code for the
clique partitioning problem.

We use standard graph theory terminology. So a graph is denoted by G = (V, E)
where'V is the node set and E the edge set of G. For our problems loops and multiple
edges are irrelevant, so we assume throughout that all graphs considered are simple.
If H= (W,F) and G = (V, E) are graphs with W C V and F C E then H is called
a subgraph of G. We will perform many operations with subgraphs of K, which we
distinguish by using subscripts. Therefore we use the symbol V, for the node set and
the symbol £, for the edge set of K, in order to create no confusion. For v € V,
G — v denotes the graph obtained from G by removing v. For W C V, G[W] is the
subgraph of G induced by W. It will be convenient to use the following notation, where
ST, 81000, 8 CV and ¥ C E:

E(S):={uve€ E|u,ve S},
k
E(S1,...,5%) = | E(S:),
=1

[S:T):={uv|ueSveT}
V(F):={v €V |vis the endnode of some edge in F}.
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To denote the set of edges in G = (V, E) with one endnode in S and the other in T we
write

E[S:T]:=En|[S:T].

Using this notation, an edge set A C &, is a clique partitioning of K, if and only if
there is a partition {Wy,...,Ws} of V, such that A = &,(W,,...,Wy); moreover, for
the complete graph K, = (Vn, €s) and every two disjoint node subsets S, T of Yy,
[ : T] = £,[S : T] holds.

A cycle C of length k is an edge set of the form {vyvg,vav3,..., Uk—1 Uk, V1 Uk},
where v; # vjifi # j. For k > 4, theset C := {vjvj42 |1 =1,...,k—2}U{v1vk_1,va0}
is called the set of 2-chords of C. A triangle is a cycle of length three. A wheel is
the union of a cycle and the set of edges that link some node not on the cycle with all
nodes of the cycle. A graph G = (V, E) is bipartite if its node set can be partitioned
into two nonempty subsets V;, V3 such that all edges of G have one endnode in V; and
the other in Vo. Every partition of ¥ with this property is called a bipartition of V.

G, = (V1, Ey) and Gy = (Va, E3) are two graphs then the graph (V;UV;, EyUE;)
is called the union of G; and G and is denoted by G; U G3. (We assume that the
union operation does not produce multiple edges, so G; U G; is a simple graph.)

1. The Clique Partitioning Polytope

To formulate the clique partitioning problem in polyhedral resp. linear programming
terms we associate with it a polyhedron in the following way. Let R%» denote the real
vector space where every component z. of a vector z € R®" is indexed by an edge e
of the complete graph K, = (Va, €s). To avoid trivialities, we assume throughout the
paper that n > 3. For every edge set A C &, x4 € R~ denotes its incidence vector,
e, xA=1ifec Aand x4 =0if e & A. The convex hull of all incidence vectors of
clique partitionings of K, is called the clique partitioning polytope (of Ky) and is
denoted by 7,, i. e.,

P, = conv{x* € R®" | A is a clique partitioning of K,}.

Since the vertices of 7, are in one-to-one correspondence with the clique partitionings
of K,, it follows immediately that the CPP can be formulated as the problem

minimize Tz
subject to T € P,.

This is a linear program in the sense that a linear objective function is to be mini-
mized over a polytope. To apply LP-techniques this formulation is of no use unless
P, can be represented by a system of linear inequalities. Since the clique partitioning
problem is NP-hard, it follows from general results of complexity theory that it is very
unlikely that an explicit complete description can ever be obtained; but we were able
to determine large classes of valid and facet-defining inequalities for 7.

Recall at this point that an inequality a”z < a is called valid for P, if P, C {z €
R | aTz < ). A valid inequality a7z < « is said to define a facet of 7, if the face
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Fo:={z € Py | aTz = a} of P, is a facet, i. e, if F, is a face of dimension one less,
than the dimension of P, (the dimension of a set S is the cardinality of the largest set
of affinely independent points in S minus one).

The following theorem is a summary of some of the results presented in [1].

(1.1) Theorem. Let K, = (Va,&n) be a complete graph with n > 3 nodes, and let
P. C Ré» be the clique partitioning polytope of Ky,.

(a) The dimension of P, is equal to |£,] = n(n — 1)/2.

(b) For every edge ¢ € £y, the trivial inequalities z, > 0 and z, < 1 are valid for

P.. Every inequality z. > O defines a facet of P,, but no inequality z. < 1 does.
(c) For every three different nodes 1, j,k € Vy, each of the three associated triangle
inequalities
Zij + Tk — Zik < 1
Tij — Tk + Tik < 1
—Zi; + Zik + T < 1
defines a facet of P,.

(d) For every two disjoint nonempty subsets S, T of Vy, the 2-partition meqnahty
induced by S and T (for short: [S, T]-inequality)

z([$ : T]) = 2(€a(S)) = 2(€a(T)) < min{|S],|T]}

is valid for P,. It defines a facet of P, if and only if |S| # |T|.
(e) Forevery cycleC C £, of length at least 5 and its set C of 2-chords, the 2-chorded
cycle inequality
C
z(C) - z(C) < [l IJ

is valid for P,. It defines a facet of P, if and only if |C| is odd.
(f) For every even cycle C C E,, of length at least 8, for every node z € Vy not in the
node set V,(C) of C, and for every bipartition {V,V} of Vo(C), the 2-chorded
. even wheel inequality

z(CUR)-z(CUR) < I.g.'

defines a facet of P, where C is the set of 2-chords of C and R := {zv | v €V},
R {zv]vGV}.

The aim of this paper is to construct further inequalities defining facets of 7.
We will, in particular, generalize the 2-partition inequalities using some “glueing” and
“lifting” techniques.

2. G-Induced (S, T]-Inequalities and Construction V

Let G = (V, E) be a subgraph of K, = (V,,&s) and let {S,T} be a partition of V,
where § or T may possibly be empty. Then the inequality

(2.1) (B[S : T)) - z(E(S)) - z(E(T)) < min{|S], [T}



is called a general 2-partition ineqaality induced by G, S, and T, or for short,
a G-induced (S, T}-inequality. Note that the order of § 2nd T plays no role, so a
G-induced {8, T]-inequality is also a G-induced [T, S]-inequality.

Every [S, T}-inequality (introduced in (1.1) (d)) is a K|sur|-induced [S, T}-in-
equality where K|syr| is the complete subgraph of K,, induced by the node et SUT.
So every G-induced [S, T)-inequality, S # @ # T, can be obtained from the [S,T]-
inequality by setting some of the positive and negative coefficients to zero. G-induced
[S,T}-inequalities are not recessarily valid with respect to 7.

(2.2) Definition. Let S, T be two disjoint subsets of V, and let G = (V, E) be
a subgraph of K, with V. = SUT. G is cailed [S,T)-valid (with respect to P,) if
the G-induced S, T}-inequality is valid for P,. G is called strongly (S, T|-valid (with
respect to P, ) if for every node set W C V the (G—W)-induced [S\W, T\W|-inequality
. is valid for P,. g

So, for a strongly (8, T}-valid graph G = (V, E), G - W is [S \ W, T \ W]-valid for
all W C V, in fact, G — VW is strongly [S \ W, T \ W]-valid.

(2.3) Remerk. (2)If G = (V, E) is a subgraph of K, with E = 0 then G is strongly
[S, T)-valid for every partition {S,T} of V.

(b) It follows immediately from (1.1) (d) that every complete subgraph G = (V, E) of
K, is strongly |8, T']-valid for every partition {S, T} of V (S or T possibly empty). a

We will now introduce a construction that can be used to combine strongly [S;, T;)-
valid graphs G; (5 = 1,2) into new strongly [§, T']-valid graphs. Let us first describe it
in terms of an operation on two graphs.

Suppose we have two disjoint graphs Gy = (V}, E}) and Gz = (Va, E2) and, for
each i € {1,2}, we are given two subsets 5/, 7] of V; such that S and T} are disjoint,
|T{| = |T4|, and the induced subgraph G(T/] of G; is complete. Assume furthermore
that a bijection ¢ : T} — T4 is given. Let G = (V, E) be the graph obtained from .
G;, S!, T! (i = 1,2) by identifying each node v of G;[T}{] with the corresponding node
o(v) of G2|T}] and adding all edges with one endnode in 5] and the other in 53. We
call this operation Constrauction V — see Figure 2.1 for a pictorial description.



Figure 2.1 Example of Construction V

In order to avoid the necessity of specifying the bijection ¢ it is more convenient for
us to work on subgraphs G; and G3 of the complete graph K, whose intersection is a
complete subgraph. So let us redefine Construction V for that case.

(2.4) Definition. Let G, = (V},E,) and G; = (Va, E3) be two subgrapks of
Ky = (Va,€,) and let S{ CV,, S C Vi, and T' C V,, be node sets such that

(A1) VinVa=T;
(A2) SICV\T, ${CV\T;
(A.3)  G;|T"] is complete for i = 1, 2.

Let G = (V, E) be the subgraph of K, obtained from the union G1UG; of G; and G,
by adding all edges with one endnode in S! and the other in S3. We will say that G is
obtained from G, and G3 by Construction V(S], S%; T") and write G = G,\VG,. ' [

Note that in (2.4) we replace the identification process (which depends on )
by assuming that the two subgraphs overlap in T’. This way  is given implicitly.
Also observe that the cases S, = 0, §; = 0, or T' = 0 are allowed in Construction
V(51,83;T'). It is immediately clear from the above definition that the following
holds.

(2.6) Remark. Let G, = (V, Ey) and Gy = (V, E;) be subgraphs of K, = (V,, &)
satisfying the assumptions of (2.4), and let G = G, VG, be the subgraph of K, ob-
tained by Construction V(5], S4; 7). Then, for all W € Vn, the graphs G; — W and
G3—-W and the node sets S{\W, S1\W, and T"\W satisfy the assumptions of (2.4). So
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Construction V(S{\W, S;{\W; T'\W) is‘well-deﬁned, and G-W = (G, -W)V(G;-W)
holds. O
(2.6) Theorem. Let G, = (Vy, E;) and G; = (V3, E3) be two subgraphs of K, =
(Vn,En). Fori = 1,2, let {S;,T;} be a partition of V; and let S} C V;, T' C V. be
node sets such that

(B1) WVinVa=TNinT=T%

(B.2) 5;C Sy

(B.S)' G;[T"] is complete;

(8.4)  G; is strongly [S;, Ti|-valid with respect to Pu;
(B.5)  no nodein S;\ S} is adjacent to a xode in T".

~ Let G = (V, E) be the subgrapk of K, obtained from G, and G; by Construction
V(S!,8;T") and set T :=Ty UT3, § := 8; US;. Then G is strongly [S, T|-valid with
respect to P,.

Proof. Note that assumptions (B.1), (B.2), (B.3) imply assumptions (A.1), (A.2),
(A.3). So Construction V(S5{, S3; 7¥) can be perx’ormed

We prove the theorem by induction on v := |Vy |+|V2|—|T"| = |[V|. The result is ob-
vious for v < 3. (Actually, the only interesting case is ¥ = 3 and |S;| = |§}| = |T'| =1
where we obtain a triangle inequality (1.1) (c) from two trivial inequalities of type
z, < 1. Observe also that, for |S;| = |T'| =1 and 8] = 0, we have E = 0 by (B.5).)

Assume now that the theorem holds for v > 3 and let Gy, G2, T' be such that
[Vi| + [Va| = |T| = v + 1. We have to prove that G — W is [§ \ W, T \ W]-valid with
respect to P, for all W < V.

Case 1. W # 0. By Remerk (2.5), G-W = (G, -W)V(G2~W); by assumption (B.4),

G;—-W is sirongly [S;\W, T \W]-valid; and thus (since [V, \W|+ |V \W|-|T"\W| <"

v+1) G- W is strongly (S \ W, T \ W}-valid by induction hypothesis.

Cage 2. W = 0. To prove that G is [S, T}-valid we use the fact — proved in Case 1 —
that @ — v is [5\ {v}, T\ {v}|-valid for all v € V. By adding the sum of the left-hand
sides of the |S]| valid inequalities

z(E[S\ {v} : T]) — =(E(S \ () - 2(B(T)) < min{|S| - 1,T]}, veE S
to the sum of the left-hand sides of the |T'| valid inequalities
z(E[S : 7'\ {v}]) = =(E(5)) - z(B(T \ {v})) < min{|$|,|T| -1}, vET

and estimating the sum of the | S| +|T| right-hand sides from above we obtain the valid
inequality

(v = 1)(=(E[S : T]) - 2(E(S)) - =(E(T))) < (v + 1) min{|S}, [T[} - min{| 5], |T}.
Dividing by v — 1 we get
z(E(S : T]) = 2(E(S)) - z(E(T)) < min{|S,[T|} + ;25 min{|$], lTl}

6



It follows from » > 3 and min{|S|,|T|} < |v/2] that min{|S|,|T|}/(v - 1) < 1 whmh
implies that z(E[S : T|) — z(E(S)) ~ z(E(T)) < min{|S},|T|} is valid for . 0

We will now prove the main (technical) result of our paper that will be used
later to derive interesting classes of facet-defining inequalities for P,. Recall that a
matching is a subset M of the edges of a graph such that no two edges in M have a
common endnode; an s-matching is a matching with s elements. A node that is in
some edge of a matching M is said to be covered by M.

(2.7) Theorem. Let G, = (V,E;) and G3 = (V2, E;) be two subgraphs of
Ky, = (Va,&n). Fori=1,2, let {S;,T;} be a partition of V; and let BICVa e,
be node sets such that

(CI) VanQ =T1 nTg =T', lT'I 22,’
(C2) O0#S]CS |S| <\ T'|;
(C.3) G;[S!UT] is complete;

(C.4) G; is strongly [S;, Ti|-valid with respect to P, and the associated [S;,T;]-
inequality defines a facet of P,;

(C.5)  nonode in 8;\ S} is adjacent to a node in T’;

(C.6)  for every pair of nodes w,z with w € T; \ T’ and z € T', G; has an |S;]-
matching M;(w, z) contained in E;(S; : (T; \ T') U {z}] that does not cover
w;

(C.7)  G; has an |S;|-matching N; contained in E;[S; : T; Nl

Let G = (V, E) be the subgraph of K, obtained from G, and G, by Construction
V(S1,85;T') and let S := §; U 83, T := Ty UT,. Then G is strongly (S, T)-valid and
the G-induced (S, T|-inequality defines a facet of P,.

Proof. The assumptions (C.1),...,(C.5) obviously imply the assumptions (B.1),...,
(B.5) of Theorem (2.6). So, Construction V(S{, 54; T') is well-defined and the graph
G = G,VG@G; is strongly [S, T']-valid with respect to P,.

Let a7z < a be the G-induced [S, T)-inequality, i. e., a7z = z(E[S : T]) - z( E(S))

z(E(T)) < min{|S|,|T|} = a, and let Fy := {z € P, | aTz = a}. Assume that
bTz = f defines a hyperplane such that Fy, := {z € P, | bTz = B} is a facet of P, with
Fa C F,. We will show that there exists a real number 7 3 0 such that b = ra. This
will prove the theorem.

Let us, for i = 1,2, denote the G;-induced [S;, T;}-inequality by (@*)Tz < ay. So
aTz = (a')Tz + (a®)Tz + 2( B(T')) — z([S] : S3]). 1t follows from (C.2) that a; = |Si]
(§=1,2) and a = |S| = |S,| + |Sa].

We prove that b, = ma, for all e € £, and some = € R.

Case 1. e€ £,(Vy) U €, (Va).

Since (a')Tz < a; defines a facet of P, there are m := |€a] clique partitionings
Ay,y..., Am whose incidence vectors are linearly independent and satisfy (a!)7z < a
with equality. By (C.7) there exists an |S;|-matching Ny C [S; : T3 \ T'). Hence the
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edge sets By := (A;NE€n(V1))U N, are cllflque partitionings of K, such that a”x?i = «
for § = 1,...,m; and therefore

bT(XD" _Xﬂm)zo forj:l,...,m—l

holds. Let X be the (m — 1) x |£,| matrix whose rows are the vectors xFi — xZm=,
j=1,...,m—1. All columns of X corresponding to edges e € £, \ £,(V}) are zero, and
it follows from the fact that the vectors x“:,...,x*™ are linearly independent that
the (m — 1) x |£,(V))| submatrix ¥ of X corresponding to the edges e € £,(V) has
rank |&,(V1)] = 1. So the kernel {y € Ré(V}) | Yy = 0} of Y has dimension 1. Since
the vector ! € R (V1) obtained from a! by deleting all components corresponding
to edges in &, \ €a(V1) and the vector b € RE»(1) obtained from b in the same way
satisfy Ya! = Yb = 0 and since &' 0 we know that there exists a real number  such
. that b = #a!. This implies b, = xa! for all e € &,(V}).

By symmetry we obtain that there exists a real number #’ such that b, = a2 for
all e € £,(V3). By (C.1), T =V, NV; and |7V > 2, and by (C.3) G[T'] is complete.
So there is an edge f € E(T') = Ey(T') = E3(T"). Since ay = a} = 0} = ~1 we can
conclude that # = #’, and thus there exists a real number 7 such that

(1) b, = ma, for all e € &,(V1) U &n(V2).

Case 2. ¢ = uv with u € S| and v € S].

Let z; and z; be two different nodes in 77. Let N;, N; be the two matchings
existing by (C.7) and let w' € Ty \ T, v/ € T3 \ T’ be the nodes such that uu’ € N,
and vv' € N;. Set

Anz= Nx ) Ng and

B = (A\ {uv', vv'}) U{uv, uzy, uzg, vz1,v22, 2122 }.
Then A and B are clique partitionings; x4 obViously satisfies x4 € F, C F}, while
(C.3) yields that x? € F, C Fy. Thus (1) implies 0 = bTx* — bTxZ + byur + byyr —
buo — buz, — buz; — boz, — boz; — bayz, = —buo — 7. From this we obtain

(2) be = —m forall e € [S] : S3).

Case 3. e=uvwithue ) \T' and ve T3\ T".

Let 21,23 be any two nodes in 7' and let M;(u,2) C E\[S; : (Th \ T") U {z,}]A,
Ma(v,23) € B[Sy : (T2 \ T') U {23}] be |S;|-matchings (i = 1,2) not covering u and v,
respectively. Such matchings exist by (C.6). Set

A= M, (u,2)UM;(v,23), B:= AU {e}.

Then A and B are clique partitionings with x4,x? € F, C Fp, and we can conclude
from 0= — 8 =bTx? — bTxA = b, that

(3) be=0 forallee [H \T': T3\ T']. -
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Case 4. e=uv withu€ Ty \ T" and v € S; for 4,5 € {1,2}, i # J. o

Let N;j C E;[S; : T;\T'] be the |S;|-matching existing by (C.7) and let v’ € T; \T'
be the node with vv’ € N;. Let 2 be any node in 77 and M;(u, z) be the |S;|-matching
existing by (C.6). Set :

A= M;(u,z) UN; and B:= AU {uv,uv'}.

Then A and B are clique partitionings with x4, x? € F, C Fy. So 0= yTxB —pTy4 —
buy + buyr, and (3) implies

4 be =0 forallee [T;\T':5;] withs,j€{1,2},i# .
J

Case 5. e =uv with u€ 5;\ 5] and v € §; for 1,5 € {1,2},1 #J.
Let N; and N; be the matchings existing by (C.7) and let ' € T; \ TV, v' € T;\ T"
be the nodes with uu’ € N; and v’ € N;. Set

A:=N;UN;, B:= AU {uv,u'v, u',u'v}.

Then A and B are clique partitionings with x4, x? € F, C Fy. Therefore, 0 = by, +
buryr + byys + byry and (3) and (4) imply

5 be =0 forall e [S;\S8':8;] with4,5€{1,2},i#.
j

Case 8. e=uv withue V, \ V.
This case is trivial and we obtain

be =0 forall e £,(V).

Altogether we have now shown that b = ra, and clearly 7 # 0. Thus aTz < « defines
a facet of P,. ‘ : O

We would like to remark that the statement of Theorem (2.7) holds under slightly
more general conditions. These are, however, rather complicated and technical. We
have decided to present here the systems (C.1),...,(C.7). These assumptions are rel-
atively easy to understand and are sufficient for the derivation of our main classes of
facet-defining inequalities. An immediate consequence of Theorem (2.7) is the follow-
ing. :

(2.8) Theorem. Let G, = (V, Ey) and Gy = (V3, E3) be two complete subgraphs
of Kn = (Vn,€n). Fori = 1,2, let {S;,T;} be a partition of V; and let T" C Vn be
node sets such that

D) YinVy =700 =272 2;
(D.2) 1<[8| <\ T
Let G = (V, E) be the subgraph of K, obtained from G, and G by Construction

V(S1,82;T') and let § := 8§, USy, T := Ty UT,. Then G is strongly [S,T)-valid and
the G-induced (S, T|-inequality defines a facet of P,.
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Proof. Fori=1,2, set §! = 5; then the assumptions (C.1),(C.2), (C.3), (C.5), (C.6), -
(C.7) are obviously satisfied; (C.4) is satisfied by Remark (2.3) (b). Thus (2.8) follows .
from (2.7). O

Figure 2.2 shows two graphs that are obtained by Construction V from two com-
plete subgraphs of K,. The associated general [S, T}-inequalities define facets of 2,
for n > 6 and n > 9, respectively, by Theorem (2.8). '

’
-
IS T-;

Figure 2.2 Graphs inducing general 2-partition inequalities. -
Theorem (2.8) has been cast in a way that Theorem (2.7) is directly applicable. The
following version of it is probably easier to remember.

(2.9) Corollery. Let Sy, S;, T}, Tz, T be five mutually disjoint subsets of the node
set Vy, of K, such that |T| > 2 and 1 < |Si| < |Ti| for ¢ = 1,2. Then the (general
2-partition) inequality

z([S Ty UT) +2([S2: Thu T]) = z([5; : Sa)) — z(€a(Sy)) — z(€a(S2))—

#{(Ty : T)) = 2((Ty : T)) = 2(€a(T1)) = 2(En(T2)) — 2(a(T)) < |S1] + S|

defines 2 facet of P,. 0

3. Two Further Compositions

We will now describe two ways of applying Construction V iteratively that can be used
to produce new facet-defining inequalities for 2,.

(3.1) Definition. Let G, = M B 5,0, = (Vo Ep), p > 2, be complete sub-
graphs of Ky, let {S;, T}} be a partition of V;, i = 1,...,p, and let THv=1, e p=1,
be disjoint subsets of V,, suck that

(E.1) VinVimi=TinTiy, =T! fori=1,...,p-1;

(E2) VinVyr=0 fori=1,...,p-2andk=2,...,p—1i.

Set Gy := Gy, and fori = 2,...,p, let G, be the graph obtained from G;_, and G; by

Construction V(8;_y,84; T!_,). Let us denote the graph C:‘,, constructed this way by
G = (V, E). Wesay that G is the graph obtained from complete graphs Gi,...,Gy by
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Construction V(5y,...,8,;T1,...,T;_,), or (not specifying details) by a repeated
nonoverlapping V-construction.

Figure 3.1 shows the scheme of a repeated nonoverlapping V-construction.

Figure 3.1

(3.2) Theorem. Let G, = (V1,E),...,Gp = (V3,,E,), p 2 2, be complete sub-
graphs of Ky, = (Vn, &a), let {Si, Ti} be a partition of V; fori = 1,...,p; and let T},
1=1,...,p— 1, be disjoint subsets of V, such that

(F.1) VinViy1=TiNTipy =T! and |T!| > 2 fori=1,...,p—1;
(B2) VinVie=0 fors=1..,p-2andk=2...,p=1;

(F.8) . 128 < |0~ max{|TL, LITI} fori=2...,0-1,
LIS S IT - 1T, 12 18,] € 1Tyl - 1T, .

Let G = (V, E) be the subgraph of K, obtained from Gy,...,G, by Construction
V(81004153 T},...,Ty_,) and let S := J7_, Si, T := U7-, . Then G is strongly

[8,T)-valid and the G-induced [S, T)-inequality defines a facet of P,.

Proof. The assumptions imply that the repeated nonoverlapping V-construction (3.1)
can be pexformed Let us denote the gnphs constructed in this process by G; = (V., ly,)
and'set, & =L lie, 86 = U Tiy Sl a= 80, i = Lye oy

By Theorem (1 1) (d) all G-induced [S;, Ti]-inequalities define facets of P,, and
applying Theorem (2.8) to G; = G, and G, we get that, for the graph G, = (Vg, Eq)
obtained by Construction V(S!,S;;T!) from G, and G,, the Gy-induced (85, To)
mequahty is strongly valid for P, and defines a facet of P It is easy to see that

Gy = (Vy,E;) and G; = (V3, E3) with the partitions {8,,T,) of V, and {S3,Ta} of V3

and additional sets S} := S}, 53 := 83, T' := T} satisfy all assumptions of Theorem

(2.7). So, for the graph Gy = (V4, E,) obtained from G, and G; by Construction

V(S!,84;T") = V(84,553 T4), the Gy-induced [S3, Ty)-inequality is strongly valid for

P, and defines a facet of P,.

Repeating this process iteratively we can conclude that for G = C:‘, = é,_1VG,,

the G-induced [S, T]-inequality is strongly valid and defines a facet of P,. g

An easier to read version of the above theorem — which includes Corollary (2.9)
as a special case — is the following.
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(3.8) Corollary. LetSy,...,8,Ty,...,Tp,Ty,...,T)_,, p 2> 2, be mutually disjoint
subsets of the node set V, of K,. Set (for notational convenience) T} := T, =0 and
assume that

[Ty 22 forisi=1,...,p—1;

1< IS € B+ min{( T ITL, ) fori=1,...,p

is satisfied. Then the (general 2-partition) inequality

© Y (S TiUT]UTL)) - i 2([Si : Sipa]) = Y 2({Ti : T]UT!_,])
=] =] s=1
= > (2(€a(5)) + 2(Ea(T3)) + 2(a(T))) < Y Isil
i=1 =1

defines a facet of P,.

a

Figure 3.2 shows a graph obtained by a repeated nonoverlapping V-construction
of complete graphs.

RUE S

Pigure 3.2 Nonoverlapping V-composition of complete graphs.

Another way of making iterative use of Cénstruction V is the following.

(3.4) Definition. Let Gy = (W}, Ey),...,Gp = (V,,,Ep); p 2 2, be complete sub-
graphs of K, let {S;, T;} be a partition of V; fori=1,...,p and let T' be a subset of
YV, such that

(G1) VinV;=T;nTy=T'forl<i<j<p.

Set G; := Gy, and fori = 2,...,p, let G; be the subgraph of K, obtained from G;_,
and G; by Construction V(S;U...US;_y, S;; T'). Let us denote the graph G, obtained
this way by G = (V, E). We say that G is the graph obtained from complete graphs
Gi,...,G, by Construction V(S,,...,8p;T'), or (without specifying details) by a
repeated totally overlapping V-coustruction.

The basic scheme of a repeated totally overlapping V-construction is displayed in
Figure 3.3.

12



Figure 3.3

Facet-defining inequalities can be obtained with the repeated totally overlapping V-
construction as follows.

(3.5) Theorem. Let G, = (V},F,),...,G, = (V,,E,), p > 2, be complete sub-
graphs of K,, let {S;,T;} be a partition of V; fori = 1,...,p and let T' C V, such
that .

(Hi1) -VenVi=RolyE T ort i< i<y, [TY)22;

(H2) 1<|8| <|Ti|—|T| fori=1,...,p.

Let G = (V, E) be the subgraph of K, obtained from G,,...,G, by Construction
V(S1,...,8,;T") and let § := Ui, S, T := U, Ts. Then G is strongly (S, T)-valid
and the G-induced (S, T|-inequality defines a facet of P,. .

Proof. The result follows — as in the proof of (3.2) — by induction from Theorem
(2.7). The proof i3 straightforward and is left to the reader. O

A more digestible form of Theorem (3.5) is the following.
(8.8) Corollary. Let Sy,...,8,,T,..., Ty, T, p > 2, be mutually disjoint subsets
of the node set Vy, of K,,. Set § :=|J7_, S; and assume that
IT'| = 2
1< |8 T - \T| for = L..,p
holds. Then the (general 2-partition) inequality

4 »

2 2((8i : iU T) = 2(€a(S)) = 2(€a(T")) = Y (2(a(T3)) + 2((Ti : T')) < IS

1= =]

defines a facet of P,. 0

13



A graph obtained by a repeated fotaily overlapping V-construction from 3 com-
plete graphs is shown in Figure 3.4. Here |T"| = 2 and the edge forming £,(7") is drawn
by a thick line. The sets S;, Sz, and S3 have cardinality 1, 1, and 2 respectively.

FPigure 8.4 Totally overlapping V-composition of complete graphs.
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