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Abstract 

In [l] we have introduced the clique partitioning problem and studied the associated 
polyhedron, the so-called clique partitioning polytope. In this paper we continue these 

. polyhedral investigations; in particular, we present new classes of facets and methods 
to constmct new facet-defining inequalities from given facet-defining inequalities. 

0. Introduction and Notation 

Let Kn = (Vn, en) denote the complete graph on n nodes without loops and multiple 
edges , i. e., every two different nodes of K,. are linkod by exactly one edge. An edge 
set A~ Cn is called a clique partitioning of K,. if there is a partition {W1 , ••• , Wk} 
of v,. (i.e., each wj is nonempty, wj n w,. ;,, 0 for if.;, and u:=l w, = Vn) such 
that A. is the union of all those edge3 in t,. that have both endnodea in W;, for some 

i E {1, .... , k}. The clique partitioning problem (for short: CPP) is the task to 

find, for a given complete graph K,. = (Vn, tn) with edge weights c, ER for all e Et,.., 
a clique partitioning A" ~ Cn such that c(A•) := L,EA· c, is as small as possible. 

The clique partitioning problem is a combinatorial optimization version of a clus­
tering problem in data analysis and has many interesting applications, among others, 

in zoology, economics, and the political sciences - see, for instance, [21, [3], [4], [5], [6]. 
This problem is MP-bard. To solve instances coming up in practical applications, we 

have proposed in [2] an LP-based cutting procedure that utilizes our polyhedral inves­

tigations [1] of the associated polytope. This approach works quite well; in particular, 
we could solve all practical applications we could get hold of to optimality. This paper 

, · is a continuation of our polyhedral work on the problem and we hope to be able to 
use some of the facet-defining inequalities presented later to improve our co<le for the 

clique partitioning problem. 

We use standard graph theory terminology. So a graph is denoted by G = (V, E) 
where·V is the node set and Ethe edge set of G. For our problems loopa and multiple 

edges are irrelevant, so we assume throughout that all graphs considered are simple. 

If H = (W, F ) and G = (V, E) are graphs with W ~ V and F ~ E then H is called 
a aubgraph of G. We will perform many operations with subgraphs of K,. which we 

distinguish by using subscripts. Therefore we use the symbol Vn for the node set and 
the symbol c,.. for the edge set of Kn in order to create no confusion. For 11 E V, 
G - t1 denotes the graph obtained from G by removing t1. For W ~ V, G[W] is the 

subgraph of G induced by W. It will be convenient to use the following notation, where 

S,T,S1 , ••• ,Sk ~ V and F ~ E: 

E(S) := {ut1 EE I u,t1 ES}, 
k 

E(S1 , ••• , S1,;) := LJ E(S;), 
i=l 

[S: T] := { uy I .u ES, t1 ET}, 

V ( F) := { t1 E V I ti is the endnode of some edge in F}. 
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To denote the set of edges in G = (V, E) with one endnode in S and the other in T we 

write 
E[S : T] := En [S : T]. 

Using this notation, an edge set A ~ t,. is a. clique partitioning of Kn if and only if 

there is a. partition {Wt, ... , W,1:} of V,. such that A= ln(Wt, ... , W,1:); moreover, for 

the complete graph l(n = (V,., en) and every two disjoint nod~ subsets S, T of Vn, 
[S :_ T] = tn[S: T] holds. 

A cycle C of length k is an edge set of the form { Vt t12, tJ:3t13 1 ... , Vk-t tlk, tit tlk}, 

where t1; i= tlj if ii= j. Fork~ 4, the eet C := { t1;t1i+:i I i = 1, ... , k-2}U{ tit tlk-t, t12 t1,1:} 

is called the set of 2-chordi, of C. A triangle is a cycle of length three. A wheel is 

the union of a. cycle and the set of edges that link some node not on the cycle with all 

nodes of the cycle. A graph G = (V, E) is bipartit12 if its node set c::i.n be partitioned 

into two nonem'.)ty subsets Vi, V2 such that all edges of G have one enduode in Vt and 

the other in V:i - Every partition of V with this property jg called a bipartition of V. 
If G1 = (V1 , E1 ) and G2 = (V:i, E.i) are two graphs then the graph (VtUV2 , EtUE.i) 

is called the union of Gt and G2 and is denoted by Gt U G2 • (We assume that the 

union operation does not produce multiple edges, so Gt U G2 is a simple gr .. ph.) 

1. The Clique Partitioning Polytope 

To formulate the clique partitioning problem in polyhedral resp. linear programming 

terms we associate with it a polyhedron in the following way. Let JRl'" denote the real 

vector spa::e where every component Xe of a vector x E Rt" is indexed by an edge e 

of the complete graph Kn= (Vn, e .. ). To avoid trivialities, we assume throughout the 

paper that n ~ 3. For every edge set A ~ Cn, x~ E JR''" denotes its incidence vector, 

i. e., x: = 1 if e E A and xf = 0 if e (/. A. The convex hull of all incidence vectors of 

clique pa.rtitionings of Kn is called the clique partitioning polytope (of Kn) and is 

denoted by Pn, i.e., 

P,. = conv{xA E Rt,. I A is a clique partitioning of Kn}, 

Since the vertices of Pn are in one-to-one correspondence with the clique partitionings 

of Kn, it follows immediately that the CPP can be formulated as the problem 

mm1m;ze cTx 

subject to x E Pn, 

This is a linear prognm in the sense that a linear objective function is to be mini­

mized over a polytope. To apply LP-techniques this formulation is of no use unless 

Pn can be represented by a system of linear inequalities. Since the clique partitioning 

problem is HP-hard, it fellows from general results of complexity theory that it is very 

unlikely t.hat an expli<:it complete description can ever be obtained; but we were able 

to determine large classes of valid and facet-defining inequalities for Pn. 
Recall at this point that an inequality aTx :5 () is ca.lied valid for Pn if Pn ~ {x E 

R'" I aT x :5 a}. A valid inequality aT x :5 Q is said to define a facet of Pn if the face 

2 



Fa:= {x E Pn I aTx = a} of P,. is a facet, i.e., if F0 is a face of dimension one less 

than the dimeusion of Pn (the dimeur,ion of a set S is the cardinality of the largest set 

of affinely independent points in S minus one). 
The following theorem is a summ,,ry of some of the results presented in [IJ. 

(1.1) Theorem. Let Kn = ( V,., ln) be a complete graph with n ~ 3 nodes, and let 

Pn ~ R'" be the clique partitioning polytope of Kn. 

(a) The dimension of P,. is equal to 1€nl = n(n - 1)/2. 
(b) For every edge e E £,., the trivial inequalities Xe ~ 0 and Xe S l are valid for 

P,.. Every inequality Xe ~ 0 defines a facet of P,,,, but no inequality Xe S l does. 

(c) For evezy three different nodes i, j, k E 'Vn, eacb of the three associated triangle 

inequalities 
Xjj -f- Xjk - Xjk $ 1 

Xjj - X jk + Xik $ 1 

-Xjj + Xjk + Xj>; ~ 1 

defines a facet of P,.. 

{d) For every two disjoint nonempty subsets S, T of V,., the 2-partition inequality 

induced by S and T (for short: [S, T]-inequality) 

x([S: Tl) - x(tn(S)) - x(t,.(T)) S min{ISI, JTI} 

is valid for P,.. It defines a facet of Pn if and only if JSJ '# JTJ. 
(e) For every cycle C ~ Cn of length at least 5 and its set C of 2-chords, the 2-chorded 

cycle inequality 

x(C) - x(C) S l l~I j 
is valid for Pn. It defines a facet of Pn if and only if JCI is odd. 

(f) For every even cycle C ~ En of length at least 8, for every node z E V,. not in the 

node set V,.(C) of C, and for every bipartition {V, V} of Vn(C), the 2-chorded 

even wheel inequality 

x(Cu R) - x(CuR) S ~J 

defines a facet of P,., where C is the set of 2-cbords of C and R := {zv I v EV}, 

R:={zvjvEV}. 0 

The aim of this paper is to construct further inequalities defining facets of P,.. 
We will, in particular, generalize the 2-partition inequalities using some "glueing" and 

"lifting" techniques. 

2. G-lnduced [S, T]-Inequalities and Construction V 

Let G = (V,E) be a. subgraph of Kn= (Vn,Cn) and let {S,T} be a. partition of V, 
where S or T may possibly be empty. Then the inequ;ility 

(2.1) x(E[S: Tl) - x(E(S)) - x(E(T)) ~ min{ISI, JTI} 
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is called a gei:ernl 2-pa:rtition inequality induced by G, S, and T, or for short, 

a G-indncctl IS, 1']-i.ncqnallty. Note that the order of S 2.nd T playr1 no role, so a 

G-induced IS, T]-inequa.lity is also a G-induced IT, SJ-inequality. 

Every IS, T]-bcquality (introduced in (1.1) (d)) ifl a K1suT1-induced IS, T]-in­

equality where K1suTI is the complete subgraph of K,, induced by the node eet SU T. 

So every G-induced IS, T]-inequaiity, S =/= 0 f T, can be obtained from the IS, T]­
inequ;:..Jity by setting some of the positive and negative coefficients to zero. G-induced 

IS, T]-incqualities a.re not necessarily valid with respect to P,.. 

(2.2) Definition. Let S, T be two disjoint subsets of V,, and let G = (V, E) be 

a subgraph of Kn with V = SU T. G is called IS, '.l']-valid (with respect to Pn) if 

the G-induced IS, T]-incquality is valid for Pn. G is called etrongly IS, T]-valid (with 

respect to Pn) if for eve;y node set W ~ V the (G-W)-induced [S\ W, T\ W]-inequality 

. is valid for Pr.. D 

So, for a strongly [S, T]-valid graph G = (V, E), G - W is [S \ W, T \ W]-valid for 

all W ~ V, in fact, G - W is strongly [S \ W, T \ W]-valid. 

(2.3) Remark. (a) If G = (V, E) is a subgraph of Kn with E = (/J then G is strongly 

[S, T]-v:i.l.id for every partition {S, T}· of V. 

(b) It follows immediately from (1.1) (d) that every complete subgraph G = (V, E) of 

r n is strongly [S, T]-valid for every partition {S, T} of V (Sor T possibly empty). 0 

We will now introduce a construction that can be used to combine strongly [S;, T;]­

valid graphs G; (i = 1, 2) into new strongly [S, T]-valid graphs. Let us first describe it 

in terms of an operation on two graphs. 

Suppose we have two disjoint graphs G1 = (V1 , Ei) and G2 = (V:i, E2 ) and, for 

eac!i i E { 1, 2}, we am give 1 two subsets s:, Tl of V; such tb at Sl and T/ are disjoint, 

IT{I = ITil, ..nd the induced subgraph G[T[i of G; is complete. Assume furthermore 

that a bijection i.p : T{ _., T~ is given. Let G = (V, E) be the graph obtained from 

G;, s:, Tf ( · = 1, 2) by identifying each node v of G1 [T[l with the corresponding node 

i.p(11) of G2[T2] and adding all edges with one endnode in Sf and the other in S~. We 

call this operation Con::it:rnction V - see Figure 2.1 for a pictorial description. 
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c, 

G 

Figure 2.1 Example of Construction 'v 

In order to avoid the necessity of specifying the bijection cp it is more convenient for 
us to work on subgraphs G1 and G2 of the complete graph Kn whose intersection is a 
complete subgraph. So let us redefine Construction 'v for that case. 

(2.4) Definition. Let G1 = (Vi,Ei) and G2 = (V2,E2) be two subgraphs of 
Kn= (Vn, Cn) and let Sf ~ Vi, S2 ~ V2, and T' ~ Vn be node sets such tbat 

{A.i) Vin V2 = T'; 

(A.2) S{ ~ V1 \ T', S~ ~ V2 \ T'; 
(A.3) Gi[T'] is complete for i = 1, 2. 

Let G = (V, E) be the subgraph of Kn obtained from the union G I U G2 of G I and G2 
by adding all edges with one endnode in S( and the other in S~. We will say that G is 
obtained from G1 and G2 by Construction 'v(S[, S2; T') and write G = G 1 'vG2 • • 0 

Note that in (2.4) we replace the identificat ion process (which depends on cp) 
by assuming that the two subgraphs overlap in T'. This way cp is given implicitly. 
Also observe that the cases S1 = 0, S2 = 0, or T' = 0 are allowed in Construction 
'v (Sf, S2; T'}. It is immediately clear from the above definition that the following 
holds. 

(2.5) Remark. Let G1 = (V1 , Ei) and G:;i = (V2, E:;i) be subgraphs of Kn= (Vn, En) 
satisfying the assumptions of (2A), and let G = G 1 'vG2 be the subgraph of Kn ob• 
tained by Construction 'v(Sf, S2;•T'). Then, for all W ~ Vn, the graphs G1 - W and 
G2 -W and the node sets Sf\ W, S~ \ W, and T'\ W satisfy the assumptions of (2.4). So 
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Construction V(Sf \VI, S~\W; T'\W) is well-defined, and G-W = (G 1 -W)V(G2 -W) 

holds. 0 

(2.6) Theor\?m. Let G 1 = (Vi, Ei) and G2 = (V:1 1 ~) be two subgraphs of K,. = 
(Vn, Cn)- For i = 1, 2, let {Si, Ti} be a partition of V; and lets: ~ Vi, T' ~ V,. be 

node sets such tbat 

(B.l} Vin V:.i = T1 n T2 = T'; 

(B.2} SI ~ S;; 

(B.3) Gi[T'] is complete; 

(B.4} G; is strongly [Si, T;]-valid with respect to P,.; 

(B.5} no 11ode in Si\ s: is adjacent to a 1ode in T'. 

L~! G = (V, E) be the subgrapc of J{,. obtained from G1 and G2 by Construction 

'iJ(SLS~;T') and set T := T1 u2':i, S := S1 uS2 • Then G is strongly [S,T)-valid with 

respect to P,.. 

Proof. Note th:lt assumptions (B.1), (B.2), (B.3) imply assumptions (A.1), (A.2), 

(A.3). So Construction IJ{SL S~; T•) can be performed. 

We prove the theorem by induction on v := !Vi l+IV:,1-IT'j = IVI - The result is ob­

vious for v ~ 3. (Actually, the only interesting case is v = 3 and IS;j =IS:!= !T'I = 1 

where we obtain a tri::..rgle inequality (1.1) (c) from two trivial inequalities of type 

:r.0 ~ l. Observe also that, for ISil = !T'I = l and s: = 0, we have E = 0 by (B.5).) 

Assume now th2.t the theorem holes for v ~ 3 and let G 1 , C 2 , T' be such that 

!Vi I+ IV:21 - ITI = v + 1. We have to prove that G - W is [S \ W, T \ W]-va.lid with 

respect to P.,. for all W ;; V. 

Cas~ 1. W :/ 0. By Rcmcrk (2.5), G-W = (G 1 -W)V(G2 -W); by ~sumption (B.4), 

Gi-W is strougly [Si\ W, T; \ W]-valid; and thus (since IV1 \WI+ IV2 \WI-IT'\ WJ < 
v + 1) G - W is strongly [S \ W, T \ W]-va.lid by induction hypothesis. 

Ccee 2. W = 0. To prov'.! that G is [S, T]-valict we use the fact - proved in Case 1 -

that G- 1.1 is [5' \ {v}, ~ \ {v}]-valid for ail v EV. By :i.dding the sum of the left-hand 

sides of the ISi valid inequalities 

x(E[S \ {v}: Tl) - z(E(S \ {v})) -x(E(T)) ~ min{ISI -1, JTI}, v ES 

to the sum of the left-hand sides of the JTI valid inequalities 

x(E[S: 7' \ {v}]) - x(E(S)) - x(E(T \ {v})) ~ min{ISI, ITI - l}, v ET 

and estimating the sum of the JSI + !Tl right-hand sides from above we obtain the valid 

inequality 

(v - l)(x(E[S: Tl) - x(E(S)) - x(E(T))) ~ (v + 1) min{JSI, !Tl} - min{JSI, IT!}. 

Dividing by v - 1 we get 

x(E[S: Tl) - x(E(S)) - x(E(T)) ~ min{ISI, ITI} + .,~
1 

min{ISI, !Tl}, 
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It follows from v ~ 3 and min{ISI, JTI} :'.5 lv/2J that min{ISI, ITl}/(v - 1) < 1 whkh 
implies that x(E[S: Tl) - x(E(S)) - x(E(T)) :'.5 min{ISJ, !Tl} is valid fo'. Pn. · 0 

We will now prove the main (technical) result of our paper that will be used 
later to derive interesting classes of facet-defining inequalities for Pn . Recall that a 
matching is a subset M of the edges of a graph such that no two edges in M have a 
common endnode; an s-matching is a matching with s elements. A node that is in 
some edge of a matching M is said to be covered by M. 

(2.7) Theorem. Let G1 = (V1,Ei) and G'J = (V2,~) be two sub~aphs of 
Kn= (Vn, Gn), For i = 1, 2, let {S;, Ti} be a partition ofV. and lets:~ V., T' ~ Vn 
be node sets such that 

(C.l} 

(C.2} 

(C.3} 

(C.4} 

(C.5) 

(C.6} 

Vi nV2 = T1 nT2 = T', JT'j ~ 2; 

0 ...J. S! c S· IS·j < IT·\ T'j · / I - 11 I - I J 

Gi[SI UT'] is complete; 

Gi is strongly [S;, Ti]-valid with respect to Pn and the associated [S;, T;]· 
inequality defines a facet of Pn; 

no node in Si \ SI is adjacent to a node in T'; 

for every pair of nodes w, z with w E Ti\ T' and z E T', G; has an ISij­
matching M;(w,z) contained in E;[S;: (T; \ T') U {z}] that does not cover 
w; 

{C.7} G; has an jS;l-matching Ni contained in E;[S;: Ti\ T']. 

Let G = (V, E) be the subgraph of Kn obtained from G1 and G'J by Construction 
V(S/, S~; T') and let S := S1 u S7,, T := T1 u T2. Then G is strongly [S, T]-valid and 
the G-induced [S, T]-inequality defines a facet of Pn. 

Proof. The assumptions (C.l), ... ,(C.5) obviously imply the ;-.ssumpi.ions (B.l), ... , 
(B.5) of Theorem (2.6). So, Construction V(S;, Sf; T') is well-defined and the graph 
G = G 1 VG2 is strongly [S, T]-valid with respect to P,.. 

Let aT x :'.5 a be the G-induccd [S, T]-inequality, i.e., aT x = x(E[S : T])-x(E(S)) 
- x(E(T)) $ min{ISI, JTI} = a, and let Fa := {x E Pn I aT x = a}. Assume that 
bT x = /3 defines a hyperplane such that Fb := { x E Pn I bT x = /3} is a facet of Pn with 
Fa ~ Fb. We will show that there exists a real number ,r f O such that b = ,ra. This 
will prove the theorem. 

Let us, for i = 1, 2, denote the G;-induccd [S;, T;]-inequality by (ai)T x :'.5 a;. So 
aT X = (a 1 )TX+ (a2f X + x(E(T')) - x([Sf : sm. It follows from (C.2) that Oi = jS;I 
(i = 1, 2) and a= 1s1 =[Si[+ IS2l-

We prove that b, = ,ra, for all e E Gn and .some ,r E R. 

Case 1. e E Gn(Vi) U Gn(V:2). 
Since ( a1 f x :'.5 o 1 defines a facet of Pn there are m := J Gn I clique partitionings 

A1 , ••• , Am whose incidence vectors are linearly independent and satisfy (a1 )T x $ 01 

with equality. By (C.7) there exists an IS2 I-matching N'J ~ [S2 : T'J \ T']. Hence the 
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edge sets B; := (A;ntn(Vi))UN;i are clique partitioning1:1 of Kn such that aTxB; = o: 

for j = 1, ... , m; and therefore 

holds. Let X be the (m - 1) x lt'nl matrix whose rows are the vectors XD; - X8 "', 

j = l, ... , m - 1. All columns of X corresponding to edges e E Gn \ Gn (Vi) are zero, and 
it follows from the fact that the vectors x·11 , •.. , xA"' are linearly independent that 

the (m - 1) x ltn(Vi)I submatrix Y of X corresponding to the edges e E t'n(Vi) has 
rank Jt,.(Vi )I - l. So the kernel {y E JR.l,.(V.) I Yy = O} of Y has dimension 1. Since 
the vector ii 1 E Rt .. (Vi) obtained from a1 by deleting all components corresponding 

to edges in Cn \ Cn (Vi) and the vector b E Re .. (V,) obtained from b in the same way 

satisfy Y ii 1 = Yb = 0 and since ii 1 =p O we know that t here exists a real number 1r such 

that b = r.a 1 • This implies b, = 1ra! for all e E t'n (Vi). 
By symmetry we obtain that there exists a real number 1r' such that b. = 1ra; for 

all e E tn(Vi1). By (C.l), T' = V1 n V2 and IT '! ~ 2, and by (C.3) G[T'j is complete. 

So there is an edge f E E(T') = E1 (T') = E1 (T'). Since a, = a} = a} = -1 we can 
conclude that ,r = ,r1, and th us there exists a real number 1r such that 

( l) 

Cabe 2 . e = U IJ with u E s: and v E s~. 
Let z1 and Zz . be two different nodes in T'. Let N1 , N2 be the two matchings 

eAisting by ( C. 7) and let u' E T1 \ T', v' E 12 \ T' be the nodes such that uu' E N1 

and vv' E N2 . Set 

A := N1 u N2 and 

B :=(A\ { uu', uv'}) U { uv, uz1, t1.Z2, vz1, vz2, z1z2}. 

Then A and B are clique partitionings; XA obviously satisfies xA E Fa ~ Fb, while 

(C .3) yields that x8 E Fa~ Fb. Thus (1) implies O = bTXA - bTXB + b,.u' + bvv' -

bu• - buz, - buz: - buz, - bu 2 - b::,z• = -bu. - 1r. From this we obtain 

(2) be = -1r for all e E [S( : S~J. 

Case 3. e = uv with u E T1 \ T' and v E T2 \ T'. 
Let z1 ,z2 be any two nodes in T' ·and let M 1 (u,zi) ~ Ei[S1 : (T1 \ T') U {zi}J, 

M2 (v, Z2 ) ~ ~[S:i: (T2 \ T') U {z2 }] be IS;l-matchings (i = 1, 2) not covering u and v, 
respectively. Such matchings exist by (C.6). Set 

Then A and B are clique partitionings with XA, x 8 E Fa ~ Fb, and we can conclude 
from O = {3-: {3 = bTxB - bTxA = b. that 

(3) b, = 0 for all e E [T1 \ T' : T2 \ T'J. 
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Case 4. e = uv with u E Ti\ T' :rnd v E Sj for i,j E {l, 2}, i ¥- j. 
Let Ni t;;; Ei[Si : Ti \T'] be the !Sil-matching existing by (C.7) and let v' E Ti \T' 

be the node with vv' E Nj. Let z be any node in T' and M;( u, z) be the !Sil-matching 
existing by ( C.6). Set 

A:= Mi(u, z) U Nj and B :=AU { uv, uv'}. 

Then A and B are clique partitionings with XA, XD E Fa i;;; Fb. So O = bT x8 - bT xA = 
buo + buo', and (3) implies 

(4) b, = 0 for all e E [T; \ T': Sjj with i,j E {l, 2}, ii- j. 

Case 6. e = uv with u ES;\ s: and II E Si for i,j _E {l, 2}, i j j. 
Let Ni and N,- be the matchings existing by ( C. 7) and let u' E T; \ T', v' E T,- \ T' 

be the nodes with uu' E N; and vv' E N,-. Set 

A:= Ni UN,-, B :=AU {uv, u'v', uv', u'v}. 

Then A and B are clique partitionings with XA, XD E Fa i;;; F1,. Therefore, 0 = bu• + 
bu'•'+ buo' + bu'o and (3) and (4) imply 

(5) b0 = 0 for all e E [S; \ S': S,-J with i,j E {1,2},i f j. 

Case 6. e = uv with u E Vn \ V. 
This case is trivial and we obtain 

b,=0 forallegt,,(V). 

Altogether we have now shown that b = 1ra, and clearly ,r ¥- 0. Thus aT x :5 a defines 
a facet ·of Pn. 0 

We would like to remark that the statement of Theorem (2.7) holds under slightly 
more general conditions. These are, however, rather complicated and technical. We 
have decided to present here the systems (C.l), ... ,(C.7). These assumptions are rel­
atively easy to understand and are sufficient for the derivation of our main classes of 
facet-defining inequalities. An immediate consequence of Theorem (2.7) is the follow­
ing. 

(2.8) Theorem. Let G1 = (Vi, Ei) and G2 = (V2, E2 ) be two complete subgraphs 
of Kn = ( Vn, Cn)- For i = 1, 2, let {Si, Ti} be a partition of Vi and let T' i;;; Vn be 
node sets such that 

(D.1} Vi n V2 = T1 n T2 = T', IT'\ ~ 2; 

(D.2} 1 :5 \S;j :5 \T; \ T'\. 

Let G = (V, E) be the subgraph of Kn obtained · from GI and G2 by Construe tio~ 
'v(.S\, S2; T') and let S := S1 U S2, T := T1 u T2 • Then G is strongly [S, TJ-valid and 
the G-induced [S, TJ-inequality defines a facet of Pn. 
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Proof. For i = 1, 2, &t St= S, the!). the .ui!lumptions (C.l), (C.2), (C.3), (C.5), (C.6), 
(C.7) are obviously s;,.tisfie<l; (C.4) is satisfied by Remark (2.3) (b). Thus (2.8) follows 
from (2.7). O 

Figure 2.2 shows two graphs that are obtained by Construction V from two com­
plete subgraphs of K,,,. The associated general [S, T]-inequalities define facets of Pn 
for n ~ 6 and n ~ 9, respectively, by Theorem (2.8). · 

/ 
I 

: QEl-f---;f-\..\r+-i~-t--'3)o 
I 

Figu:rc 2.2 Cra.phs inducing general 2-partition inequalities. 

Theorem (2.8) has been cast in a way that Theorem (2.7) is directly applicable. The 
following version of it is probably easier to remember. 

(2.9) Co:ro!bry. Let S 1, S2 , T1 , T2 , T be five mutually disjoint subsets of the node 
set V,, of Kn ii'Jcb tba.t IT! ~ 2 and 1 ::; IS,I $ IT,1 for i = I, 2. Then the (general 
2-partition) inequality 

x([S1 : T1 u Tl)+ x([S2: T'J u Tl) - x([S1: 82]) - x(t,,,(Si)) - x(tn(S2))­
x([T1 : Tl) - x([Ta : Tl) - x(tn(Ti)) - x(tn(T2)) - x(tn(T)) :s ISd + 1s21 

deEnes a facet of P,,,. 

3. Two Further Compositions 

D 

We wi l now describe two ways of applying Construction V iteratively that can be used 
to produce new facet-defining inequalities fo:: Pn-

(3.1) Definition. Let G1 = (V1 , Ei), ... , Gp = (Vp, Ep), p ~ 2, be complete sub­
graphs of Kn, let {S;, T,} be a partition ofV;, i = 1, ... , p, and let T/, i = 1, ... , p- 1, 
be disjoint subsets of V,,, such that 

(E.l) V;nV,+1=1';nT;+1=T/ fori=l, ... ,p-1; 
(E.2) V; n V.+k = 0 for i = 1, ... , p - 2 and k = 2, ... , p - i. 
Set G 1 := G 1 , and for i = 2, ... , p, let G, be the graph obtaiped from G;_1 and G, by 
Construction 'V(S,_ 1 ,Si;T/_ 1). Let us denote the g:-aph G,, constructed this way by 
G = (V, E). We say that G is the graph obtained from complete.graphs G 1 , ••• , G11 by 



Construction v'(S1, . .. , S1,; T{, ... , 1~'.-i), or {not specifying details) by a repeated 
nonoverlapping v'-conetruction. 0 

Figure 3.1 shows the scheme of a repeated nonoverlapping v'-construction. 

T! 
' 

Figure 3.1 

(3.2) Theorem. Let G1 = (Vi,Ei), ... ,Gr = (Vr,Er), p ~ 2, be complete sub­
graphs of K,. = (V,., c,.), Jet {S;,T;} be a partition ofV; for i = l, ... ,p; and let 1'[, 
i = 1, ... , p - 1, be disjoint subsets of V,. sucl1 that 

(F.l) V; n Vi+1 = T; n T;+i = T/ and \T/1 ~ 2 for i = 1, ... ,P - l; 

(F.2) V; n Vi+k = 0 for i = 1, ... , p - 2 and k = 2, ... , p - i; 

(F.3) 1 ~ 1s.-1 ~ IT;! - max{ITL1 I, IT/I} for i = 2, ... ,P - 1, 

1 ~!Sil~ \Ti\ - IT{\, 1 ~\Sri~ !Tri - IT;_1\· 

Let G :-:: (V, E) be the subgraph of K,. obtained from G 1 , ••• , Gr by Construc!ion 
v'(S1 , ... ,Sp;Tf, ... ,T;_1 ) and Jet S := Uf= 1 S,, T := Uf=i T;. Then G is strongly 
[S, T]-valid and the G-induced [.5', T]-inequality defines a facet of P,.. 

Proof. The assumptions imply tb~,t the repeated nonoverbpping v'-construction (3.1) 
· can be performed. Let us d,motc the graphs constructed in this process by G; = (V;, E;) 

and set S; := U~·=t S;, T; := u~=l T;, s: := S;, i = 1, ... ,p. 
By Theore:n (1.1) (d) all G;-in<luced [S;, T,]-inequalities define facets of P,., and 

applying Theorem (2.8) to G 1 = G 1 and G2 we get that, for the graph G2 = (V2 , £ 2 ) 

obtai:ied by Construction v'(Sf, S2; T{) fror.1 G 1 and G2 , the Grinduced [52 , T2 ]­

inequality is strongly valid for P,. and defines a facet of P,.. It is easy to see that 
G2 = (V2 , £ 2 ) and G3 = (V3, E3) with the partitions {.S\, T:i} of V2 and {S3, T3 } of V3 

and additional sets Sf := §~, S2 := S3 1 T' := T~ satisfy all a>"sumptions of Theorem 
(2.7). So, for the graph (h = (V3, £3) obtained from G2 and G3 by Construction 
v'(Sf, S2; T') = v'(S2, S3; T~), the G'3-induced [S3, 73]-incquality is strongly valid for 
P,. and defines a facet of P,.. 

Repeating this process iteratively we can conclude th:i.t for G =Gr= Gr-t v'GP 
the G-induced [S, T]-inequality is strongly valid and defines a facet of P,.. D 

An easier to read version of the above theorem - which includes Corollary (2.9) 
as a speci~l case - is the following. 
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(3.3) Corollary. Let S1, ... , Sp, T1, ... , Tp, T{, ... , T~_ 1 , p 2: 2, be mutually disjoint 
subsets of the node set V,. of K,.. Set (for notational convenience) TJ := r; := 0 and 
assume that 

JT/12:2 fori=l, ... ,p-1; 

1 $; JS;J $; JT;J + min{JT:J, JT/_ 1 I} for i = 1, ... , p 

is satisfied. Then the (general 2-partition) inequality 

p p-1 p 
L x([S,; T; U Tf U T/_iJ) - L x([S;; S;+1D - E x([T;; r: U T/_11) 
i=l i=l i=l 

p p 

- 2)x(t,.(S;)) + x(e,.(T;)) + x(t,.(T/))) $; z::: JS;J 
i=l i=l 

defines a facet of P,.. 
□ 

Figure 3.2 shows a graph obtained by a repeated nonoverlapping V-construction 

of complete graphs. 

Figure 3.2 Nonoverlapping V-composition of complete graphs. 

Another way of making iterative use of C6nstruction 'v is the following. 

(3.4.) D efinition. Let G1 = (V1 , E 1 ), ••. , Gv = (Vp, Ep), p 2: 2, be complete sub­

graphs of K,., let { S;, T;} be a partition of V; for i = 1, ... , p and let T' be a subset of 

V,. such that 

(G.1) V; n V,- = T; n Ti= T' for 1 $; i < j $; p. 

Set G1 := G 1 , and for i = 2, ... ,P, Jet G; be the subgraph of Kn obtained from G;_ 1 

and G; by Construction v'(S1 u ... US/ .. 1 , S;; T'). Let us denote the graph Gp obtained 

this way by G = (V, E). We say that G is the graph obtained from complete graphs 

G 1 , ... , Gp by Construction v'(S1 , ... , Sp; T'), or (without specifying details) by a 

repeated totally overlapping v'-conetruction. 0 

The basic scheme of a repeated totally overlapping V-construction is displayed in 

Figure 3.3. 
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Figure 3.3 

Facet-defining inequalities can be obtained with the rept!ated totally overlapping V­
construction as follows. 

(3.5) Theorem. Let G 1 = (V1 , Ei), ... , Gp = (Vp, Ep). p ~ 2, be complete sub­
graphs of Kn, let {S;, T;} be a partition of V; for i = 1, ... , p and let T' ~ Vn such 
ihat . 

(H.l) V; n Vi= T, n T,- = T' for 1 ~ i < j ~ p, IT'I ~ 2; 

(H.2) l ~ ISil ~ !T; ! -IT'I fori = l, ... ,p. 

Let G = (V, E) be the subgraph of Kn obtained from G 1 , ••. , Gp by Construction 
V(S1, ... , Sp; T') and let S := LJf=i S;, T := Uf=1 T;. Then G is strongly [S, T]-valid 
and the G-induced [S, T]-inequality defines a facet of Pn. 

Proof. The result follows - as in the proof of (3 .2) - by induction from Theorem 
(2.7) . The proof i3 straightforward and is left to the reader. 0 

A more digestible form of Theorem (3.5) is the following. 

(3.6) Corollary. Let Si, ... , Sp, Ti, ... , Tp, T', p ~ 2, be mu!ually disjoint subsets 
of the node set Vn of Kn. Set S := LJf=i S; and assume that 

IT'I ~ 2; 

1 ~ IS;I ~ IT,! - IT'! for i = 1, ... , p 

holds. Then the (general 2-partition) inequality 

p p 

}: x([S;: T; u T']) - x(en(S)) - x(en(T')) - }:(x(en(T;)) + x([T;: T'])) ~ 1s1 
i=i i=I 

defines a facet of Pn. D 
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A graph obtained by a repeated totally overlapping 'v-construction from 3 com­
plete graphs is shown in Figure 3.4. Here JT'J = 2 and the edge forming tn(T') is drawn 
by a thick line. The sets S1 , S7,, and S3 have cardinality I, 1, and 2 respectively. 

Figure 3.4 Totally overlapping 'v-composition of complete graphs. 
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