

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Relatório Técnico

RT-MAC-8803

COMPOSITION OF FACETS OF THE
CLIQUE PARTITIONING POLYTOPE

M. Grötschel e Y. Wakabayashi

MARÇO 1988

Abstract

In [1] we have introduced the clique partitioning problem and studied the associated polyhedron, the so-called clique partitioning polytope. In this paper we continue these polyhedral investigations; in particular, we present new classes of facets and methods to construct new facet-defining inequalities from given facet-defining inequalities.

0. Introduction and Notation

Let $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ denote the complete graph on n nodes without loops and multiple edges, i. e., every two different nodes of K_n are linked by exactly one edge. An edge set $A \subseteq \mathcal{E}_n$ is called a **clique partitioning** of K_n if there is a partition $\{W_1, \dots, W_k\}$ of \mathcal{V}_n (i. e., each W_i is nonempty, $W_i \cap W_j = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^k W_i = \mathcal{V}_n$) such that A is the union of all those edges in \mathcal{E}_n that have both endnodes in W_i , for some $i \in \{1, \dots, k\}$. The **clique partitioning problem** (for short: CPP) is the task to find, for a given complete graph $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ with edge weights $c_e \in \mathbb{R}$ for all $e \in \mathcal{E}_n$, a clique partitioning $A^* \subseteq \mathcal{E}_n$ such that $c(A^*) := \sum_{e \in A^*} c_e$ is as small as possible.

The clique partitioning problem is a combinatorial optimization version of a clustering problem in data analysis and has many interesting applications, among others, in zoology, economics, and the political sciences — see, for instance, [2], [3], [4], [5], [6]. This problem is \mathcal{NP} -hard. To solve instances coming up in practical applications, we have proposed in [2] an LP-based cutting procedure that utilizes our polyhedral investigations [1] of the associated polytope. This approach works quite well; in particular, we could solve all practical applications we could get hold of to optimality. This paper is a continuation of our polyhedral work on the problem and we hope to be able to use some of the facet-defining inequalities presented later to improve our code for the clique partitioning problem.

We use standard graph theory terminology. So a graph is denoted by $G = (V, E)$ where V is the node set and E the edge set of G . For our problems loops and multiple edges are irrelevant, so we assume throughout that all graphs considered are simple. If $H = (W, F)$ and $G = (V, E)$ are graphs with $W \subseteq V$ and $F \subseteq E$ then H is called a subgraph of G . We will perform many operations with subgraphs of K_n which we distinguish by using subscripts. Therefore we use the symbol \mathcal{V}_n for the node set and the symbol \mathcal{E}_n for the edge set of K_n in order to create no confusion. For $v \in V$, $G - v$ denotes the graph obtained from G by removing v . For $W \subseteq V$, $G[W]$ is the subgraph of G induced by W . It will be convenient to use the following notation, where $S, T, S_1, \dots, S_k \subseteq V$ and $F \subseteq E$:

$$E(S) := \{uv \in E \mid u, v \in S\},$$

$$E(S_1, \dots, S_k) := \bigcup_{i=1}^k E(S_i),$$

$$[S : T] := \{uv \mid u \in S, v \in T\},$$

$$V(F) := \{v \in V \mid v \text{ is the endnode of some edge in } F\}.$$

To denote the set of edges in $G = (V, E)$ with one endnode in S and the other in T we write

$$E[S : T] := E \cap [S : T].$$

Using this notation, an edge set $A \subseteq \mathcal{E}_n$ is a clique partitioning of K_n if and only if there is a partition $\{W_1, \dots, W_k\}$ of \mathcal{V}_n such that $A = \mathcal{E}_n(W_1, \dots, W_k)$; moreover, for the complete graph $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ and every two disjoint node subsets S, T of \mathcal{V}_n , $[S : T] = \mathcal{E}_n[S : T]$ holds.

A cycle C of length k is an edge set of the form $\{v_1v_2, v_2v_3, \dots, v_{k-1}v_k, v_1v_k\}$, where $v_i \neq v_j$ if $i \neq j$. For $k \geq 4$, the set $\overline{C} := \{v_i v_{i+2} \mid i = 1, \dots, k-2\} \cup \{v_1 v_{k-1}, v_2 v_k\}$ is called the set of 2-chords of C . A triangle is a cycle of length three. A wheel is the union of a cycle and the set of edges that link some node not on the cycle with all nodes of the cycle. A graph $G = (V, E)$ is bipartite if its node set can be partitioned into two nonempty subsets V_1, V_2 such that all edges of G have one endnode in V_1 and the other in V_2 . Every partition of V with this property is called a bipartition of V .

If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are two graphs then the graph $(V_1 \cup V_2, E_1 \cup E_2)$ is called the union of G_1 and G_2 and is denoted by $G_1 \cup G_2$. (We assume that the union operation does not produce multiple edges, so $G_1 \cup G_2$ is a simple graph.)

1. The Clique Partitioning Polytope

To formulate the clique partitioning problem in polyhedral resp. linear programming terms we associate with it a polyhedron in the following way. Let $\mathbb{R}^{\mathcal{E}_n}$ denote the real vector space where every component x_e of a vector $x \in \mathbb{R}^{\mathcal{E}_n}$ is indexed by an edge e of the complete graph $K_n = (\mathcal{V}_n, \mathcal{E}_n)$. To avoid trivialities, we assume throughout the paper that $n \geq 3$. For every edge set $A \subseteq \mathcal{E}_n$, $\chi^A \in \mathbb{R}^{\mathcal{E}_n}$ denotes its incidence vector, i. e., $\chi_e^A = 1$ if $e \in A$ and $\chi_e^A = 0$ if $e \notin A$. The convex hull of all incidence vectors of clique partitionings of K_n is called the clique partitioning polytope (of K_n) and is denoted by P_n , i. e.,

$$P_n = \text{conv}\{\chi^A \in \mathbb{R}^{\mathcal{E}_n} \mid A \text{ is a clique partitioning of } K_n\}.$$

Since the vertices of P_n are in one-to-one correspondence with the clique partitionings of K_n , it follows immediately that the CPP can be formulated as the problem

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && x \in P_n. \end{aligned}$$

This is a linear program in the sense that a linear objective function is to be minimized over a polytope. To apply LP-techniques this formulation is of no use unless P_n can be represented by a system of linear inequalities. Since the clique partitioning problem is \mathcal{NP} -hard, it follows from general results of complexity theory that it is very unlikely that an explicit complete description can ever be obtained; but we were able to determine large classes of valid and facet-defining inequalities for P_n .

Recall at this point that an inequality $a^T x \leq \alpha$ is called valid for P_n if $P_n \subseteq \{x \in \mathbb{R}^{\mathcal{E}_n} \mid a^T x \leq \alpha\}$. A valid inequality $a^T x \leq \alpha$ is said to define a facet of P_n if the face

$F_a := \{x \in \mathcal{P}_n \mid a^T x = \alpha\}$ of \mathcal{P}_n is a facet, i. e., if F_a is a face of dimension one less than the dimension of \mathcal{P}_n (the dimension of a set S is the cardinality of the largest set of affinely independent points in S minus one).

The following theorem is a summary of some of the results presented in [1].

(1.1) Theorem. Let $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ be a complete graph with $n \geq 3$ nodes, and let $\mathcal{P}_n \subseteq \mathbb{R}^{\mathcal{E}_n}$ be the clique partitioning polytope of K_n .

- (a) The dimension of \mathcal{P}_n is equal to $|\mathcal{E}_n| = n(n-1)/2$.
- (b) For every edge $e \in \mathcal{E}_n$, the trivial inequalities $x_e \geq 0$ and $x_e \leq 1$ are valid for \mathcal{P}_n . Every inequality $x_e \geq 0$ defines a facet of \mathcal{P}_n , but no inequality $x_e \leq 1$ does.
- (c) For every three different nodes $i, j, k \in \mathcal{V}_n$, each of the three associated triangle inequalities

$$x_{ij} + x_{jk} - x_{ik} \leq 1$$

$$x_{ij} - x_{jk} + x_{ik} \leq 1$$

$$-x_{ij} + x_{jk} + x_{ik} \leq 1$$

defines a facet of \mathcal{P}_n .

- (d) For every two disjoint nonempty subsets S, T of \mathcal{V}_n , the **2-partition inequality** induced by S and T (for short: $[S, T]$ -inequality)

$$x([S : T]) - x(\mathcal{E}_n(S)) - x(\mathcal{E}_n(T)) \leq \min\{|S|, |T|\}$$

is valid for \mathcal{P}_n . It defines a facet of \mathcal{P}_n if and only if $|S| \neq |T|$.

- (e) For every cycle $C \subseteq \mathcal{E}_n$ of length at least 5 and its set \overline{C} of 2-chords, the **2-chorded cycle inequality**

$$x(C) - x(\overline{C}) \leq \left\lfloor \frac{|C|}{2} \right\rfloor$$

is valid for \mathcal{P}_n . It defines a facet of \mathcal{P}_n if and only if $|C|$ is odd.

- (f) For every even cycle $C \subseteq \mathcal{E}_n$ of length at least 8, for every node $z \in \mathcal{V}_n$ not in the node set $\mathcal{V}_n(C)$ of C , and for every bipartition $\{V, \overline{V}\}$ of $\mathcal{V}_n(C)$, the **2-chorded even wheel inequality**

$$x(C \cup R) - x(\overline{C} \cup \overline{R}) \leq \frac{|C|}{2}$$

defines a facet of \mathcal{P}_n , where \overline{C} is the set of 2-chords of C and $R := \{zv \mid v \in V\}$, $\overline{R} := \{zv \mid v \in \overline{V}\}$. \square

The aim of this paper is to construct further inequalities defining facets of \mathcal{P}_n . We will, in particular, generalize the 2-partition inequalities using some “glueing” and “lifting” techniques.

2. G-Induced $[S, T]$ -Inequalities and Construction ∇

Let $G = (V, E)$ be a subgraph of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ and let $\{S, T\}$ be a partition of V , where S or T may possibly be empty. Then the inequality

$$(2.1) \quad x(E[S : T]) - x(E(S)) - x(E(T)) \leq \min\{|S|, |T|\}$$

is called a general 2-partition inequality induced by G , S , and T , or for short, a G -induced $[S, T]$ -inequality. Note that the order of S and T plays no role, so a G -induced $[S, T]$ -inequality is also a G -induced $[T, S]$ -inequality.

Every $[S, T]$ -inequality (introduced in (1.1) (d)) is a $K_{|S \cup T|}$ -induced $[S, T]$ -inequality where $K_{|S \cup T|}$ is the complete subgraph of K_n induced by the node set $S \cup T$. So every G -induced $[S, T]$ -inequality, $S \neq \emptyset \neq T$, can be obtained from the $[S, T]$ -inequality by setting some of the positive and negative coefficients to zero. G -induced $[S, T]$ -inequalities are not necessarily valid with respect to P_n .

(2.2) Definition. Let S, T be two disjoint subsets of V_n and let $G = (V, E)$ be a subgraph of K_n with $V = S \cup T$. G is called $[S, T]$ -valid (with respect to P_n) if the G -induced $[S, T]$ -inequality is valid for P_n . G is called strongly $[S, T]$ -valid (with respect to P_n) if for every node set $W \subseteq V$ the $(G - W)$ -induced $[S \setminus W, T \setminus W]$ -inequality is valid for P_n . \square

So, for a strongly $[S, T]$ -valid graph $G = (V, E)$, $G - W$ is $[S \setminus W, T \setminus W]$ -valid for all $W \subseteq V$, in fact, $G - W$ is strongly $[S \setminus W, T \setminus W]$ -valid.

(2.3) Remark. (a) If $G = (V, E)$ is a subgraph of K_n with $E = \emptyset$ then G is strongly $[S, T]$ -valid for every partition $\{S, T\}$ of V .

(b) It follows immediately from (1.1) (d) that every complete subgraph $G = (V, E)$ of K_n is strongly $[S, T]$ -valid for every partition $\{S, T\}$ of V (S or T possibly empty). \square

We will now introduce a construction that can be used to combine strongly $[S_i, T_i]$ -valid graphs G_i ($i = 1, 2$) into new strongly $[S, T]$ -valid graphs. Let us first describe it in terms of an operation on two graphs.

Suppose we have two disjoint graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and, for each $i \in \{1, 2\}$, we are given two subsets S'_i, T'_i of V_i such that S'_i and T'_i are disjoint, $|T'_i| = |T'_2|$, and the induced subgraph $G_i[T'_i]$ of G_i is complete. Assume furthermore that a bijection $\varphi : T'_1 \rightarrow T'_2$ is given. Let $G = (V, E)$ be the graph obtained from G_i, S'_i, T'_i ($i = 1, 2$) by identifying each node v of $G_1[T'_1]$ with the corresponding node $\varphi(v)$ of $G_2[T'_2]$ and adding all edges with one endnode in S'_1 and the other in S'_2 . We call this operation **Construction** ∇ — see Figure 2.1 for a pictorial description.

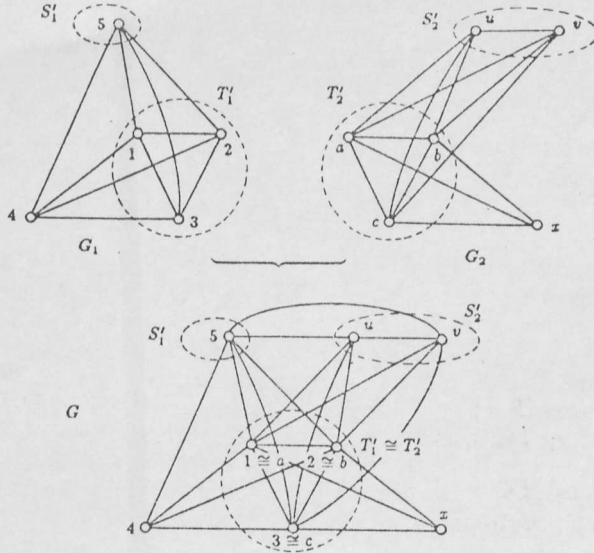


Figure 2.1 Example of Construction ∇

In order to avoid the necessity of specifying the bijection φ it is more convenient for us to work on subgraphs G_1 and G_2 of the complete graph K_n whose intersection is a complete subgraph. So let us redefine Construction ∇ for that case.

(2.4) Definition. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ and let $S'_1 \subseteq V_1$, $S'_2 \subseteq V_2$, and $T' \subseteq \mathcal{V}_n$ be node sets such that

- (A.1) $V_1 \cap V_2 = T'$;
- (A.2) $S'_1 \subseteq V_1 \setminus T'$, $S'_2 \subseteq V_2 \setminus T'$;
- (A.3) $G_i[T']$ is complete for $i = 1, 2$.

Let $G = (V, E)$ be the subgraph of K_n obtained from the union $G_1 \cup G_2$ of G_1 and G_2 by adding all edges with one endnode in S'_1 and the other in S'_2 . We will say that G is obtained from G_1 and G_2 by Construction $\nabla(S'_1, S'_2; T')$ and write $G = G_1 \nabla G_2$. \square

Note that in (2.4) we replace the identification process (which depends on φ) by assuming that the two subgraphs overlap in T' . This way φ is given implicitly. Also observe that the cases $S'_1 = \emptyset$, $S'_2 = \emptyset$, or $T' = \emptyset$ are allowed in Construction $\nabla(S'_1, S'_2; T')$. It is immediately clear from the above definition that the following holds.

(2.5) Remark. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$ satisfying the assumptions of (2.4), and let $G = G_1 \nabla G_2$ be the subgraph of K_n obtained by Construction $\nabla(S'_1, S'_2; T')$. Then, for all $W \subseteq \mathcal{V}_n$, the graphs $G_1 - W$ and $G_2 - W$ and the node sets $S'_1 \setminus W$, $S'_2 \setminus W$, and $T' \setminus W$ satisfy the assumptions of (2.4). So

Construction $\nabla(S'_1 \setminus W, S'_2 \setminus W; T' \setminus W)$ is well-defined, and $G - W = (G_1 - W)\nabla(G_2 - W)$ holds. \square

(2.6) Theorem. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$. For $i = 1, 2$, let $\{S_i, T_i\}$ be a partition of V_i and let $S'_i \subseteq V_i$, $T' \subseteq \mathcal{V}_n$ be node sets such that

- (B.1) $V_1 \cap V_2 = T_1 \cap T_2 = T'$;
- (B.2) $S'_i \subseteq S_i$;
- (B.3) $G_i[T']$ is complete;
- (B.4) G_i is strongly $[S_i, T_i]$ -valid with respect to \mathcal{P}_n ;
- (B.5) no node in $S_i \setminus S'_i$ is adjacent to a node in T' .

Let $G = (V, E)$ be the subgraph of K_n obtained from G_1 and G_2 by Construction $\nabla(S'_1, S'_2; T')$ and set $T := T_1 \cup T_2$, $S := S_1 \cup S_2$. Then G is strongly $[S, T]$ -valid with respect to \mathcal{P}_n .

Proof. Note that assumptions (B.1), (B.2), (B.3) imply assumptions (A.1), (A.2), (A.3). So Construction $\nabla(S'_1, S'_2; T')$ can be performed.

We prove the theorem by induction on $\nu := |V_1| + |V_2| - |T'| = |V|$. The result is obvious for $\nu \leq 3$. (Actually, the only interesting case is $\nu = 3$ and $|S_i| = |S'_i| = |T'| = 1$ where we obtain a triangle inequality (1.1) (c) from two trivial inequalities of type $x_e \leq 1$. Observe also that, for $|S_i| = |T'| = 1$ and $S'_i = \emptyset$, we have $E = \emptyset$ by (B.5).)

Assume now that the theorem holds for $\nu \geq 3$ and let G_1, G_2, T' be such that $|V_1| + |V_2| - |T'| = \nu + 1$. We have to prove that $G - W$ is $[S \setminus W, T \setminus W]$ -valid with respect to \mathcal{P}_n for all $W \subseteq V$.

Case 1. $W \neq \emptyset$. By Remark (2.5), $G - W = (G_1 - W)\nabla(G_2 - W)$; by assumption (B.4), $G_i - W$ is strongly $[S_i \setminus W, T_i \setminus W]$ -valid; and thus (since $|V_1 \setminus W| + |V_2 \setminus W| - |T' \setminus W| < \nu + 1$) $G - W$ is strongly $[S \setminus W, T \setminus W]$ -valid by induction hypothesis.

Case 2. $W = \emptyset$. To prove that G is $[S, T]$ -valid we use the fact — proved in Case 1 — that $G - v$ is $[S \setminus \{v\}, T \setminus \{v\}]$ -valid for all $v \in V$. By adding the sum of the left-hand sides of the $|S|$ valid inequalities

$$x(E[S \setminus \{v\} : T]) - x(E(S \setminus \{v\})) - x(E(T)) \leq \min\{|S| - 1, |T|\}, \quad v \in S$$

to the sum of the left-hand sides of the $|T|$ valid inequalities

$$x(E[S : T \setminus \{v\}]) - x(E(S)) - x(E(T \setminus \{v\})) \leq \min\{|S|, |T| - 1\}, \quad v \in T$$

and estimating the sum of the $|S| + |T|$ right-hand sides from above we obtain the valid inequality

$$(\nu - 1)(x(E[S : T]) - x(E(S)) - x(E(T))) \leq (\nu + 1) \min\{|S|, |T|\} - \min\{|S|, |T|\}.$$

Dividing by $\nu - 1$ we get

$$x(E[S : T]) - x(E(S)) - x(E(T)) \leq \min\{|S|, |T|\} + \frac{1}{\nu - 1} \min\{|S|, |T|\}.$$

It follows from $\nu \geq 3$ and $\min\{|S|, |T|\} \leq \lfloor \nu/2 \rfloor$ that $\min\{|S|, |T|\}/(\nu - 1) < 1$ which implies that $x(E[S : T]) - x(E(S)) - x(E(T)) \leq \min\{|S|, |T|\}$ is valid for \mathcal{P}_n . \square

We will now prove the main (technical) result of our paper that will be used later to derive interesting classes of facet-defining inequalities for \mathcal{P}_n . Recall that a **matching** is a subset M of the edges of a graph such that no two edges in M have a common endnode; an **s -matching** is a matching with s elements. A node that is in some edge of a matching M is said to be **covered** by M .

(2.7) Theorem. *Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$. For $i = 1, 2$, let $\{S_i, T_i\}$ be a partition of V_i and let $S'_i \subseteq V_i$, $T' \subseteq \mathcal{V}_n$ be node sets such that*

- (C.1) $V_1 \cap V_2 = T_1 \cap T_2 = T'$, $|T'| \geq 2$;
- (C.2) $\emptyset \neq S'_i \subseteq S_i$, $|S_i| \leq |T_i \setminus T'|$;
- (C.3) $G_i[S'_i \cup T']$ is complete;
- (C.4) G_i is strongly $[S_i, T_i]$ -valid with respect to \mathcal{P}_n and the associated $[S_i, T_i]$ -inequality defines a facet of \mathcal{P}_n ;
- (C.5) no node in $S_i \setminus S'_i$ is adjacent to a node in T' ;
- (C.6) for every pair of nodes w, z with $w \in T_i \setminus T'$ and $z \in T'$, G_i has an $|S_i|$ -matching $M_i(w, z)$ contained in $E_i[S_i : (T_i \setminus T') \cup \{z\}]$ that does not cover w ;
- (C.7) G_i has an $|S_i|$ -matching N_i contained in $E_i[S_i : T_i \setminus T']$.

Let $G = (V, E)$ be the subgraph of K_n obtained from G_1 and G_2 by Construction $\nabla(S'_1, S'_2; T')$ and let $S := S_1 \cup S_2$, $T := T_1 \cup T_2$. Then G is strongly $[S, T]$ -valid and the G -induced $[S, T]$ -inequality defines a facet of \mathcal{P}_n .

Proof. The assumptions (C.1), ..., (C.5) obviously imply the assumptions (B.1), ..., (B.5) of Theorem (2.6). So, Construction $\nabla(S'_1, S'_2; T')$ is well-defined and the graph $G = G_1 \nabla G_2$ is strongly $[S, T]$ -valid with respect to \mathcal{P}_n .

Let $a^T x \leq \alpha$ be the G -induced $[S, T]$ -inequality, i. e., $a^T x = x(E[S : T]) - x(E(S)) - x(E(T)) \leq \min\{|S|, |T|\} = \alpha$, and let $F_a := \{x \in \mathcal{P}_n \mid a^T x = \alpha\}$. Assume that $b^T x = \beta$ defines a hyperplane such that $F_b := \{x \in \mathcal{P}_n \mid b^T x = \beta\}$ is a facet of \mathcal{P}_n with $F_a \subseteq F_b$. We will show that there exists a real number $\pi \neq 0$ such that $b = \pi a$. This will prove the theorem.

Let us, for $i = 1, 2$, denote the G_i -induced $[S_i, T_i]$ -inequality by $(a^i)^T x \leq \alpha_i$. So $a^T x = (a^1)^T x + (a^2)^T x + x(E(T')) - x([S'_1 : S'_2])$. It follows from (C.2) that $\alpha_i = |S_i|$ ($i = 1, 2$) and $\alpha = |S| = |S_1| + |S_2|$.

We prove that $b_e = \pi a_e$ for all $e \in \mathcal{E}_n$ and some $\pi \in \mathbb{R}$.

Case 1. $e \in \mathcal{E}_n(V_1) \cup \mathcal{E}_n(V_2)$.

Since $(a^1)^T x \leq \alpha_1$ defines a facet of \mathcal{P}_n there are $m := |\mathcal{E}_n|$ clique partitionings A_1, \dots, A_m whose incidence vectors are linearly independent and satisfy $(a^1)^T x \leq \alpha_1$ with equality. By (C.7) there exists an $|S_2|$ -matching $N_2 \subseteq [S_2 : T_2 \setminus T']$. Hence the

edge sets $B_j := (A_j \cap \mathcal{E}_n(V_1)) \cup N_2$ are clique partitionings of K_n such that $a^T \chi^{B_j} = \alpha$ for $j = 1, \dots, m$; and therefore

$$b^T (\chi^{B_j} - \chi^{B_m}) = 0 \quad \text{for } j = 1, \dots, m-1$$

holds. Let X be the $(m-1) \times |\mathcal{E}_n|$ matrix whose rows are the vectors $\chi^{B_j} - \chi^{B_m}$, $j = 1, \dots, m-1$. All columns of X corresponding to edges $e \in \mathcal{E}_n \setminus \mathcal{E}_n(V_1)$ are zero, and it follows from the fact that the vectors $\chi^{A_1}, \dots, \chi^{A_m}$ are linearly independent that the $(m-1) \times |\mathcal{E}_n(V_1)|$ submatrix Y of X corresponding to the edges $e \in \mathcal{E}_n(V_1)$ has rank $|\mathcal{E}_n(V_1)| - 1$. So the kernel $\{y \in \mathbb{R}^{|\mathcal{E}_n(V_1)|} \mid Yy = 0\}$ of Y has dimension 1. Since the vector $\hat{a}^1 \in \mathbb{R}^{|\mathcal{E}_n(V_1)|}$ obtained from a^1 by deleting all components corresponding to edges in $\mathcal{E}_n \setminus \mathcal{E}_n(V_1)$ and the vector $\hat{b} \in \mathbb{R}^{|\mathcal{E}_n(V_1)|}$ obtained from b in the same way satisfy $Y\hat{a}^1 = Y\hat{b} = 0$ and since $\hat{a}^1 \neq 0$ we know that there exists a real number π such that $\hat{b} = \pi\hat{a}^1$. This implies $b_e = \pi a_e^1$ for all $e \in \mathcal{E}_n(V_1)$.

By symmetry we obtain that there exists a real number π' such that $b_e = \pi' a_e^2$ for all $e \in \mathcal{E}_n(V_2)$. By (C.1), $T' = V_1 \cap V_2$ and $|T'| \geq 2$, and by (C.3) $G[T']$ is complete. So there is an edge $f \in E(T') = E_1(T') = E_2(T')$. Since $a_f = a_f^1 = a_f^2 = -1$ we can conclude that $\pi = \pi'$, and thus there exists a real number π such that

$$(1) \quad b_e = \pi a_e \quad \text{for all } e \in \mathcal{E}_n(V_1) \cup \mathcal{E}_n(V_2).$$

Case 2. $e = uv$ with $u \in S'_1$ and $v \in S'_2$.

Let z_1 and z_2 be two different nodes in T' . Let N_1, N_2 be the two matchings existing by (C.7) and let $u' \in T_1 \setminus T'$, $v' \in T_2 \setminus T'$ be the nodes such that $uu' \in N_1$ and $vv' \in N_2$. Set

$$\begin{aligned} A &:= N_1 \cup N_2 \text{ and} \\ B &:= (A \setminus \{uu', vv'\}) \cup \{uv, uz_1, uz_2, vz_1, vz_2, z_1z_2\}. \end{aligned}$$

Then A and B are clique partitionings; χ^A obviously satisfies $\chi^A \in F_a \subseteq F_b$, while (C.3) yields that $\chi^B \in F_a \subseteq F_b$. Thus (1) implies $0 = b^T \chi^A - b^T \chi^B + b_{uu'} + b_{vv'} - b_{uv} - b_{uz_1} - b_{uz_2} - b_{vz_1} - b_{vz_2} - b_{z_1z_2} = -b_{uv} - \pi$. From this we obtain

$$(2) \quad b_e = -\pi \quad \text{for all } e \in [S'_1 : S'_2].$$

Case 3. $e = uv$ with $u \in T_1 \setminus T'$ and $v \in T_2 \setminus T'$.

Let z_1, z_2 be any two nodes in T' and let $M_1(u, z_1) \subseteq E_1[S_1 : (T_1 \setminus T') \cup \{z_1\}]$, $M_2(v, z_2) \subseteq E_2[S_2 : (T_2 \setminus T') \cup \{z_2\}]$ be $|S_i|$ -matchings ($i = 1, 2$) not covering u and v , respectively. Such matchings exist by (C.6). Set

$$A := M_1(u, z_1) \cup M_2(v, z_2), \quad B := A \cup \{e\}.$$

Then A and B are clique partitionings with $\chi^A, \chi^B \in F_a \subseteq F_b$, and we can conclude from $0 = \beta - \beta = b^T \chi^B - b^T \chi^A = b_e$ that

$$(3) \quad b_e = 0 \quad \text{for all } e \in [T_1 \setminus T' : T_2 \setminus T'].$$

Case 4. $e = uv$ with $u \in T_i \setminus T'$ and $v \in S_j$ for $i, j \in \{1, 2\}$, $i \neq j$.

Let $N_j \subseteq E_j[S_j : T_j \setminus T']$ be the $|S_j|$ -matching existing by (C.7) and let $v' \in T_j \setminus T'$ be the node with $vv' \in N_j$. Let z be any node in T' and $M_i(u, z)$ be the $|S_i|$ -matching existing by (C.6). Set

$$A := M_i(u, z) \cup N_j \quad \text{and} \quad B := A \cup \{uv, uv'\}.$$

Then A and B are clique partitionings with $\chi^A, \chi^B \in F_a \subseteq F_b$. So $0 = b^T \chi^B - b^T \chi^A = b_{uv} + b_{uv'}$, and (3) implies

$$(4) \quad b_e = 0 \quad \text{for all } e \in [T_i \setminus T' : S_j] \text{ with } i, j \in \{1, 2\}, i \neq j.$$

Case 5. $e = uv$ with $u \in S_i \setminus S'_i$ and $v \in S_j$ for $i, j \in \{1, 2\}$, $i \neq j$.

Let N_i and N_j be the matchings existing by (C.7) and let $u' \in T_i \setminus T'$, $v' \in T_j \setminus T'$ be the nodes with $uu' \in N_i$ and $vv' \in N_j$. Set

$$A := N_i \cup N_j, \quad B := A \cup \{uv, u'v', uv', u'v\}.$$

Then A and B are clique partitionings with $\chi^A, \chi^B \in F_a \subseteq F_b$. Therefore, $0 = b_{uv} + b_{u'v'} + b_{uv'} + b_{u'v}$ and (3) and (4) imply

$$(5) \quad b_e = 0 \quad \text{for all } e \in [S_i \setminus S'_i : S_j] \text{ with } i, j \in \{1, 2\}, i \neq j.$$

Case 6. $e = uv$ with $u \in \mathcal{V}_n \setminus V$.

This case is trivial and we obtain

$$b_e = 0 \quad \text{for all } e \notin \mathcal{E}_n(V).$$

Altogether we have now shown that $b = \pi a$, and clearly $\pi \neq 0$. Thus $a^T x \leq \alpha$ defines a facet of \mathcal{P}_n . \square

We would like to remark that the statement of Theorem (2.7) holds under slightly more general conditions. These are, however, rather complicated and technical. We have decided to present here the systems (C.1), ..., (C.7). These assumptions are relatively easy to understand and are sufficient for the derivation of our main classes of facet-defining inequalities. An immediate consequence of Theorem (2.7) is the following.

(2.8) Theorem. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two complete subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$. For $i = 1, 2$, let $\{S_i, T_i\}$ be a partition of V_i and let $T' \subseteq \mathcal{V}_n$ be node sets such that

$$(D.1) \quad V_1 \cap V_2 = T_1 \cap T_2 = T', \quad |T'| \geq 2;$$

$$(D.2) \quad 1 \leq |S_i| \leq |T_i \setminus T'|.$$

Let $G = (V, E)$ be the subgraph of K_n obtained from G_1 and G_2 by Construction $\nabla(S_1, S_2; T')$ and let $S := S_1 \cup S_2$, $T := T_1 \cup T_2$. Then G is strongly $[S, T]$ -valid and the G -induced $[S, T]$ -inequality defines a facet of \mathcal{P}_n .

Proof. For $i = 1, 2$, set $S'_i = S_i$; then the assumptions (C.1), (C.2), (C.3), (C.5), (C.6), (C.7) are obviously satisfied; (C.4) is satisfied by Remark (2.3) (b). Thus (2.8) follows from (2.7). \square

Figure 2.2 shows two graphs that are obtained by Construction ∇ from two complete subgraphs of K_n . The associated general $[S, T]$ -inequalities define facets of \mathcal{P}_n for $n \geq 6$ and $n \geq 9$, respectively, by Theorem (2.8).

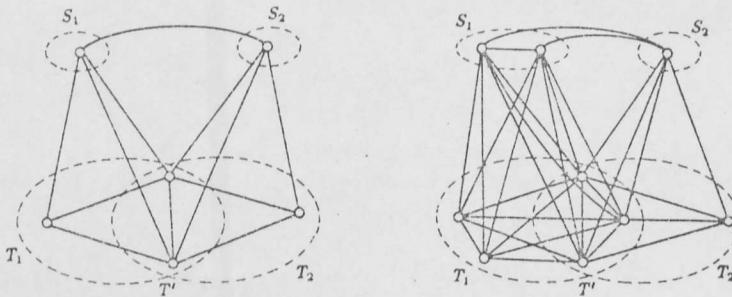


Figure 2.2 Graphs inducing general 2-partition inequalities.

Theorem (2.8) has been cast in a way that Theorem (2.7) is directly applicable. The following version of it is probably easier to remember.

(2.9) Corollary. Let S_1, S_2, T_1, T_2, T be five mutually disjoint subsets of the node set \mathcal{V}_n of K_n such that $|T| \geq 2$ and $1 \leq |S_i| \leq |T_i|$ for $i = 1, 2$. Then the (general 2-partition) inequality

$$x([S_1 : T_1 \cup T]) + x([S_2 : T_2 \cup T]) - x([S_1 : S_2]) - x(\mathcal{E}_n(S_1)) - x(\mathcal{E}_n(S_2)) - x([T_1 : T]) - x([T_2 : T]) - x(\mathcal{E}_n(T_1)) - x(\mathcal{E}_n(T_2)) - x(\mathcal{E}_n(T)) \leq |S_1| + |S_2|$$

defines a facet of \mathcal{P}_n . \square

3. Two Further Compositions

We will now describe two ways of applying Construction ∇ iteratively that can be used to produce new facet-defining inequalities for \mathcal{P}_n .

(3.1) Definition. Let $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$, $p \geq 2$, be complete subgraphs of K_n , let $\{S_i, T_i\}$ be a partition of V_i , $i = 1, \dots, p$, and let T'_i , $i = 1, \dots, p-1$, be disjoint subsets of \mathcal{V}_n such that

$$(E.1) \quad V_i \cap V_{i+1} = T_i \cap T_{i+1} = T'_i \quad \text{for } i = 1, \dots, p-1;$$

$$(E.2) \quad V_i \cap V_{i+k} = \emptyset \quad \text{for } i = 1, \dots, p-2 \text{ and } k = 2, \dots, p-i.$$

Set $\tilde{G}_1 := G_1$, and for $i = 2, \dots, p$, let \tilde{G}_i be the graph obtained from \tilde{G}_{i-1} and G_i by Construction $\nabla(S_{i-1}, S_i; T'_{i-1})$. Let us denote the graph \tilde{G}_p constructed this way by $G = (V, E)$. We say that G is the graph obtained from complete graphs G_1, \dots, G_p by

Construction $\nabla(S_1, \dots, S_p; T'_1, \dots, T'_{p-1})$, or (not specifying details) by a **repeated nonoverlapping ∇ -construction**. \square

Figure 3.1 shows the scheme of a repeated nonoverlapping ∇ -construction.

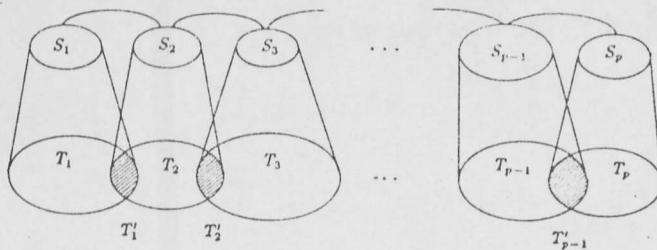


Figure 3.1

(3.2) Theorem. Let $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$, $p \geq 2$, be complete subgraphs of $K_n = (\mathcal{V}_n, \mathcal{E}_n)$, let $\{S_i, T_i\}$ be a partition of V_i for $i = 1, \dots, p$; and let T'_i , $i = 1, \dots, p-1$, be disjoint subsets of \mathcal{V}_n such that

- (F.1) $V_i \cap V_{i+1} = T_i \cap T_{i+1} = T'_i$ and $|T'_i| \geq 2$ for $i = 1, \dots, p-1$;
- (F.2) $V_i \cap V_{i+k} = \emptyset$ for $i = 1, \dots, p-2$ and $k = 2, \dots, p-i$;
- (F.3) $1 \leq |S_i| \leq |T_i| - \max\{|T'_{i-1}|, |T'_i|\}$ for $i = 2, \dots, p-1$,
 $1 \leq |S_1| \leq |T_1| - |T'_1|$, $1 \leq |S_p| \leq |T_p| - |T'_{p-1}|$.

Let $G = (V, E)$ be the subgraph of K_n obtained from G_1, \dots, G_p by Construction $\nabla(S_1, \dots, S_p; T'_1, \dots, T'_{p-1})$ and let $S := \bigcup_{i=1}^p S_i$, $T := \bigcup_{i=1}^p T_i$. Then G is strongly $[S, T]$ -valid and the G -induced $[S, T]$ -inequality defines a facet of \mathcal{P}_n .

Proof. The assumptions imply that the repeated nonoverlapping ∇ -construction (3.1) can be performed. Let us denote the graphs constructed in this process by $\tilde{G}_i = (\tilde{V}_i, \tilde{E}_i)$ and set $\tilde{S}_i := \bigcup_{j=1}^i S_j$, $\tilde{T}_i := \bigcup_{j=1}^i T_j$, $\tilde{S}'_i := S_i$, $i = 1, \dots, p$.

By Theorem (1.1) (d) all \tilde{G}_i -induced $[S_i, T_i]$ -inequalities define facets of \mathcal{P}_n , and applying Theorem (2.8) to $\tilde{G}_1 = G_1$ and G_2 we get that, for the graph $\tilde{G}_2 = (\tilde{V}_2, \tilde{E}_2)$ obtained by Construction $\nabla(\tilde{S}'_1, S_2; T'_1)$ from \tilde{G}_1 and G_2 , the \tilde{G}_2 -induced $[\tilde{S}_2, \tilde{T}_2]$ -inequality is strongly valid for \mathcal{P}_n and defines a facet of \mathcal{P}_n . It is easy to see that $\tilde{G}_2 = (\tilde{V}_2, \tilde{E}_2)$ and $G_3 = (V_3, E_3)$ with the partitions $\{\tilde{S}_2, \tilde{T}_2\}$ of \tilde{V}_2 and $\{S_3, T_3\}$ of V_3 and additional sets $S'_1 := \tilde{S}'_2$, $S'_2 := S_3$, $T' := T'_2$ satisfy all assumptions of Theorem (2.7). So, for the graph $\tilde{G}_3 = (\tilde{V}_3, \tilde{E}_3)$ obtained from \tilde{G}_2 and G_3 by Construction $\nabla(S'_1, S'_2; T') = \nabla(\tilde{S}'_2, S_3; T'_2)$, the \tilde{G}_3 -induced $[\tilde{S}_3, \tilde{T}_3]$ -inequality is strongly valid for \mathcal{P}_n and defines a facet of \mathcal{P}_n .

Repeating this process iteratively we can conclude that for $G = \tilde{G}_p = \tilde{G}_{p-1} \nabla G_p$ the G -induced $[S, T]$ -inequality is strongly valid and defines a facet of \mathcal{P}_n . \square

An easier to read version of the above theorem — which includes Corollary (2.9) as a special case — is the following.

(3.3) Corollary. Let $S_1, \dots, S_p, T_1, \dots, T_p, T'_1, \dots, T'_{p-1}$, $p \geq 2$, be mutually disjoint subsets of the node set \mathcal{V}_n of K_n . Set (for notational convenience) $T'_0 := T'_p := \emptyset$ and assume that

$$\begin{aligned} |T'_i| &\geq 2 \quad \text{for } i = 1, \dots, p-1; \\ 1 \leq |S_i| &\leq |T_i| + \min\{|T'_i|, |T'_{i-1}|\} \quad \text{for } i = 1, \dots, p \end{aligned}$$

is satisfied. Then the (general 2-partition) inequality

$$\begin{aligned} \sum_{i=1}^p x([S_i : T_i \cup T'_i \cup T'_{i-1}]) - \sum_{i=1}^{p-1} x([S_i : S_{i+1}]) - \sum_{i=1}^p x([T_i : T'_i \cup T'_{i-1}]) \\ - \sum_{i=1}^p (x(\mathcal{E}_n(S_i)) + x(\mathcal{E}_n(T_i)) + x(\mathcal{E}_n(T'_i))) \leq \sum_{i=1}^p |S_i| \end{aligned}$$

defines a facet of \mathcal{P}_n . □

Figure 3.2 shows a graph obtained by a repeated nonoverlapping ∇ -construction of complete graphs.

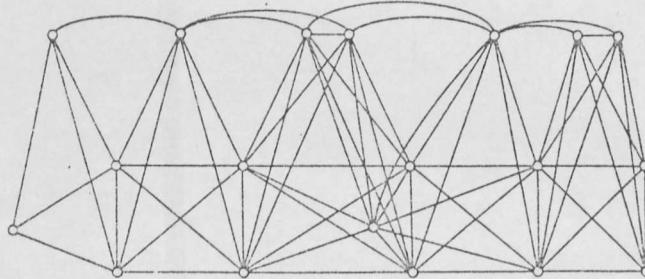


Figure 3.2 Nonoverlapping ∇ -composition of complete graphs.

Another way of making iterative use of Construction ∇ is the following.

(3.4) Definition. Let $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$, $p \geq 2$, be complete subgraphs of K_n , let $\{S_i, T_i\}$ be a partition of V_i for $i = 1, \dots, p$ and let T' be a subset of \mathcal{V}_n such that

$$(G.1) \quad V_i \cap V_j = T_i \cap T_j = T' \text{ for } 1 \leq i < j \leq p.$$

Set $\overline{G}_1 := G_1$, and for $i = 2, \dots, p$, let \overline{G}_i be the subgraph of K_n obtained from \overline{G}_{i-1} and G_i by Construction $\nabla(S_1 \cup \dots \cup S_{i-1}, S_i; T')$. Let us denote the graph \overline{G}_p obtained this way by $G = (V, E)$. We say that G is the graph obtained from complete graphs G_1, \dots, G_p by Construction $\nabla(S_1, \dots, S_p; T')$, or (without specifying details) by a repeated totally overlapping ∇ -construction. □

The basic scheme of a repeated totally overlapping ∇ -construction is displayed in Figure 3.3.

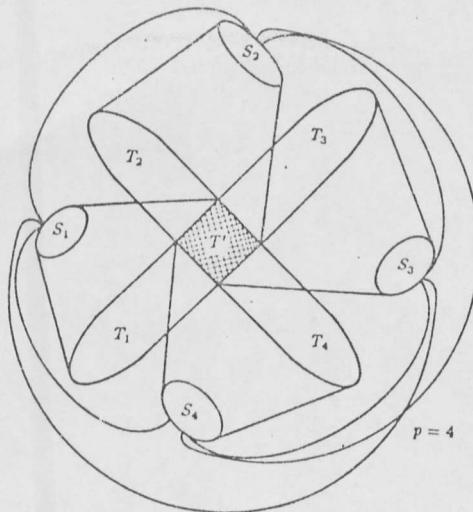


Figure 3.3

Facet-defining inequalities can be obtained with the repeated totally overlapping ∇ -construction as follows.

(3.5) Theorem. Let $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$, $p \geq 2$, be complete subgraphs of K_n , let $\{S_i, T_i\}$ be a partition of V_i for $i = 1, \dots, p$ and let $T' \subseteq V_n$ such that

$$(H.1) \quad V_i \cap V_j = T_i \cap T_j = T' \text{ for } 1 \leq i < j \leq p, \quad |T'| \geq 2;$$

$$(H.2) \quad 1 \leq |S_i| \leq |T_i| - |T'| \text{ for } i = 1, \dots, p.$$

Let $G = (V, E)$ be the subgraph of K_n obtained from G_1, \dots, G_p by Construction $\nabla(S_1, \dots, S_p; T')$ and let $S := \bigcup_{i=1}^p S_i$, $T := \bigcup_{i=1}^p T_i$. Then G is strongly $[S, T]$ -valid and the G -induced $[S, T]$ -inequality defines a facet of \mathcal{P}_n .

Proof. The result follows — as in the proof of (3.2) — by induction from Theorem (2.7). The proof is straightforward and is left to the reader. \square

A more digestible form of Theorem (3.5) is the following.

(3.6) Corollary. Let $S_1, \dots, S_p, T_1, \dots, T_p, T'$, $p \geq 2$, be mutually disjoint subsets of the node set V_n of K_n . Set $S := \bigcup_{i=1}^p S_i$ and assume that

$$\begin{aligned} |T'| &\geq 2; \\ 1 \leq |S_i| &\leq |T_i| - |T'| \quad \text{for } i = 1, \dots, p \end{aligned}$$

holds. Then the (general 2-partition) inequality

$$\sum_{i=1}^p x([S_i : T_i \cup T']) - x(\mathcal{E}_n(S)) - x(\mathcal{E}_n(T')) - \sum_{i=1}^p (x(\mathcal{E}_n(T_i)) + x([T_i : T'])) \leq |S|$$

defines a facet of \mathcal{P}_n . \square

A graph obtained by a repeated totally overlapping ∇ -construction from 3 complete graphs is shown in Figure 3.4. Here $|T'| = 2$ and the edge forming $\mathcal{E}_n(T')$ is drawn by a thick line. The sets S_1 , S_2 , and S_3 have cardinality 1, 1, and 2 respectively.

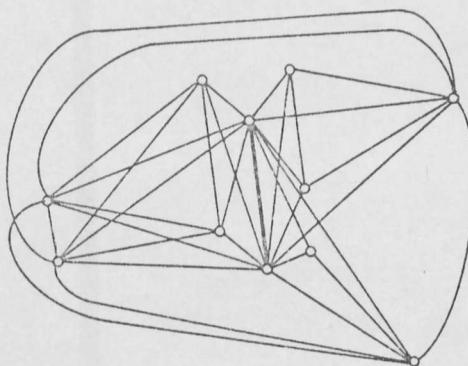


Figure 3.4 Totally overlapping ∇ -composition of complete graphs.

References

- [1] Grötschel, M. & Wakabayashi, Y. [1987a]: "Facets of the clique partitioning polytope", Report No. 6, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, Universität Augsburg, Augsburg, West Germany.
- [2] Grötschel, M. & Wakabayashi, Y. [1987b]: "A cutting plane algorithm for a clustering problem", Report No. 9, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, Universität Augsburg, Augsburg, West Germany.
- [3] Marcotorchino, J. F. & Michaud, P. [1980]: "Optimisation en analyse des données relationnelles", in: Diday, E. et al. (eds.), *Data Analysis and Informatics*, North-Holland (1980) 655-670.
- [4] Opitz, O. & Schrader, M. [1984]: "Analyse qualitativer Daten: Einführung und Übersicht", *OR Spektrum* 6 (1984) 67-83.
- [5] Tüshaus, U. [1983]: *Aggregation binärer Relationen in der qualitativen Datenanalyse*, Mathematical Systems in Economics 82, Hain, Königstein, 1983.
- [6] Wakabayashi, Y. [1986]: *Aggregation of Binary Relations: Algorithmic and Polyhedral Investigations*, Ph. D. Thesis, Universität Augsburg, West Germany (1986).

Addresses of the authors:

M. Grötschel
Institut für Mathematik
Universität Augsburg
Memminger Str. 6
8900 Augsburg
West Germany

Y. Wakabayashi
Universidade de São Paulo
Instituto de Matemática e Estatística
Caixa Postal 20.570 (Agência Iguatemi)
01498 São Paulo SP
Brazil

"RELATÓRIO TÉCNICO"
DEPARTAMENTO DE MATEMÁTICA APLICADA
TÍTULOS PUBLICADOS

RT-MAP-7701 - Ivan de Queiroz Barros

On equivalence and reducibility of Generating Matrices
of RK-Procedures - Agosto 1977

RT-MAP-7702 - V.W. Setzer

A Note on a Recursive Top-Down Analyzer of N.Wirth - Dezembro 1977

RT-MAP-7703 - Ivan de Queiroz Barros

Introdução a Aproximação Ótima - Dezembro 1977

RT-MAP-7704 - V.W. Setzer, M.M. Sanches

A linguagem "LEAL" para Ensino básico de Computação - Dezembro 1977

RT-MAP-7801 - Ivan de Queiroz Barros

Proof of two Lemmas of interest in connection with discretization
of Ordinary Differential Equations - Janeiro 1978

RT-MAP-7802 - Silvio Ursic, Cyro Patarra

Exact solution of Systems of Linear Equations with Iterative Methods

Fevereiro 1978

RT-MAP-7803 - Martin Grötschel, Yoshiko Wakabayashi

Hypohamiltonian Digraphs - Março 1978

RT-MAP-7804 - Martin Grötschel, Yoshiko Wakabayashi

Hypotraceable Digraphs - Maio 1978

RT-MAP-7805 - W. Hesse, V.W. Setzer

The Line-Justifier: an example of program development by transformations

Junho 1978

RT-MAP-7806 - Ivan de Queiroz Barros

Discretização

Capítulo I - Tópicos Introdutórios

Capítulo II - Discretização

Julho 1978

RT-MAP-7807 - Ivan de Queiroz Barros

(Γ', Γ) - Estabilidade e Métodos Preditores-Corretores - Setembro 1978

RT-MAP-7808 - Ivan de Queiroz Barros

Discretização

Capítulo III - Métodos de passo progressivo para Eq. Dif. Ord. com
condições iniciais - Setembro 1978

RT-MAP-7809 - V.W. Setzer

Program development by transformations applied to relational Data-Base
queries - Novembro 1978

RT-MAP-7810 - Nguiffo B. Boyom, Paulo Boulos

Homogeneity of Cartan-Killing spheres and singularities of vector
fields - Novembro 1978

TÍTULOS PUBLICADOS

- RT-MAP-7811 - D.T. Fernandes e C. Patarra
Sistemas Lineares Esparsos, um Método Exato de Solução - Novembro 1978
- RT-MAP-7812 - V.W. Setzer e G. Bressan
Desenvolvimento de Programas por Transformações: uma Comparação entre dois Métodos - Novembro 1978
- RT-MAP-7813 - Ivan de Queiroz Barros
Variação do Passo na Discretização de Eq. Dif. Ord. com Condições Iniciais - Novembro 1978
- RT-MAP-7814 - Martin Grötschel e Yoshiko Wakabayashi
On the Complexity of the Monotone Asymmetric Travelling Salesman Polytope I: HIPOHAMILTONIAN FACETS - Dezembro 1978
- RT-MAP-7815 - Ana F. Humes e E.I. Jury
Stability of Multidimensional Discrete Systems: State-Space Representation Approach - Dezembro 1978
- RT-MAP-7901 - Martin Grötschel, Yoshiko Wakabayashi
On the complexity of the Monotone Asymmetric Travelling Salesman Polytope II: HYPOTRACEABLE FACETS - Fevereiro 1979
- RT-MAP-7902 - M.M. Sanches e V.W. Setzer
A portabilidade do Compilador para a Linguagem LEAL - Junho 1979
- RT-MAP-7903 - Martin Grötschel, Carsten Thomassen, Yoshiko Wakabayashi
Hypotraceable Digraphs - Julho 1979
- RT-MAP-7904 - N'Guiffo B. Boyom
Translations non triviales dans les groupes (transitifs) des transformations affines - Novembro 1979
- RT-MAP-8001 - Ângelo Barone Netto
Extremos detectáveis por jatos - Junho 1980
- RT-MAP-8002 - Ivan de Queiroz Barros
Medida e Integração
Cap. I - Medida e Integração Abstrata - Julho 1980
- RT-MAP-8003 - Routh Terada
Fast Algorithms for NP-Hard Problems which are Optimal or Near-Optimal with Probability one - Setembro 1980
- RT-MAP-8004 - V.W. Setzer e R. Lapyda
Uma Metodologia de Projeto de Bancos de Dados para o Sistema ADABAS
Setembro 1980
- RT-MAP-8005 - Imre Simon
On Brzozowski's Problem: $(luA)^m = A^*$ - Outubro 1980
- RT-MAP-8006 - Ivan de Queiroz Barros
Medida e Integração
Cap. II - Espaços Lp - Outubro 1980

TÍTULOS PUBLICADOS

- RT-MAP-8101 - Luzia Kazuko Yoshida e Gabriel Richard Bitran
Um algoritmo para Problemas de Programação Vetorial com Variáveis
Zero-Úm - Fevereiro 1981
- RT-MAP-8102 - Ivan de Queiroz Barros
Medida e Integração
Cap. III - Medidas em Espaços Topológicos - Março 1981
- RT-MAP-8103 - V.W. Setzer, R. Lapyda
Design of Data Models for the ADABAS System using the Entity-Relationship
Approach - Abril 1981
- RT-MAP-8104 - Ivan de Queiroz Barros
Medida e Integração
Cap. IV - Medida e Integração Vetoriais - Abril 1981
- RT-MAP-8105 - U.S.R. Murty
Projective Geometries and Their Truncations - Maio 1981
- RT-MAP-8106 - V.W. Setzer, R. Lapyda
Projeto de Bancos de Dados, Usando Modelos Conceituais
Este relatório Técnico complementa o RT-MAP-8103. Ambos substituem o
RT-MAP-8004 ampliando os conceitos ali expostos. - Junho 1981
- RT-MAP-8107 - Maria Angela Gurgel, Yoshiko Wakabayashi
Embedding of Trees - Agosto 1981
- RT-MAP-8108 - Ivan de Queiroz Barros
Mecânica Analítica Clássica - Outubro 1981
- RT-MAP-8109 - Ivan de Queiroz Barros
Equações Integrais de Fredholm no Espaço das Funções A-Uniformemente Contínuas
- Novembro 1981
- RT-MAP-8110 - Ivan de Queiroz Barros
Dois Teoremas sobre Equações Integrais de Fredholm - Novembro 1981
- RT-MAP-8201 - Siang Wun Song
On a High-Performance VLSI Solution to Database Problems - Janeiro 1982
- RT-MAP-8202 - Maria Angela Gurgel, Yoshiko Wakabayashi
A Result on Hamilton-Connected Graphs - Junho 1982
- RT-MAP-8203 - Jörg Blatter, Larry Schumaker
The Set of Continuous Selections of a Metric Projection in $C(X)$
- Outubro 1981
- RT-MAP-8204 - Jörg Blatter, Larry Schumaker
Continuous Selections and Maximal Alternators for Spline Approximation
- Dezembro 1981
- RT-MAP-8205 - Arnaldo Mandel
Topology of Oriented Matroids - Junho 1982
- RT-MAP-8206 - Erich J. Neuhold
Database Management Systems; A General Introduction - Novembro 1982
- RT-MAP-8207 - Béla Bollobás
The Evolution of Random Graphs - Novembro 1982

TÍTULOS PUBLICADOS

- RT-MAP-8208 - V.W. Setzer
Um Grafo Sintático para a Linguagem PL/M-80 - Novembro 1982
- RT-MAP-8209 - Jayme Luiz Szwarcfiter
A Sufficient Condition for Hamilton Cycles - Novembro 1982
- RT-MAP-8301 - W.M. Oliva
Stability of Morse-Smale Maps - Janeiro 1983
- RT-MAP-8302 - Belá Bollobás, Istvan Simon
Repeated Random Insertion into a Priority Queue - Fevereiro 1983
- RT-MAP-8303 - V.W. Setzer, P.C.D. Freitas e B.C.A. Cunha
Um Banco de Dados de Medicamentos - Julho 1983
- RT-MAP-8304 - Ivan de Queiroz Barros
O Teorema de Stokes em Variedades Celuláveis - Julho 1983
- RT-MAP-8305 - Arnaldo Mandel
The 1-Skeleton of Polytopes, oriented Matroids and some other lattices -
- Julho 1983
- RT-MAP-8306 - Arnaldo Mandel
Alguns Problemas de Enumeração em Geometria - Agosto 1983
- RT-MAP-8307 - Siang Wun Song
Complexidade de E/S e Projetos Optimais de Dispositivos para Ordenação -
- Agosto 1983
- RT-MAP-8401-A - Dirceu Douglas Salvetti
Procedimentos para Cálculos com Splines
Parte A - Resumos Teóricos - Janeiro 1984
- RT-MAP-8401-B
Parte B - Descrição de Procedimentos - Janeiro 1984
- RT-MAP-8401-C
Parte C - Listagem de Testes - Janeiro 1984
- RT-MAP-8402 - V.W. Setzer
Manifesto contra o uso de computadores no Ensino de 1º Grau - Abril 1984
- RT-MAP-8403 - G. Fusco e W.M. Oliva
On Mechanical Systems with Non-Holonomic Constraints: Some Aspects of the
General Theory and Results for the Dissipative Case - Julho 1984
- RT-MAP-8404 - Imre Simon
A Factorization of Infinite Words - Setembro 1984 - São Paulo - IME-USP
7 pg.
- RT-MAP-8405 - Imre Simon
The Subword Structure of a Free Monoid - Setembro 1984 - São Paulo - IME-USP
6 pg.
- RT-MAP-8406 - Jairo Z. Gonçalves e Arnaldo Mandel
Are There Free Groups in Division Rings? - Setembro 1984 - São Paulo - IME-USP
25 pg.
- RT-MAP-8407 - Paulo Feofiloff and D.H. Younger
Vertex-Constrained Transversals in a Bipartite Graph - Novembro 1984
São Paulo - IME-USP - 10 pg.

TÍTULOS PUBLICADOS

RT-MAP-8408 - Paulo Feofiloff

Disjoint Transversals of Directed Coboundaries - Novembro 1984
Sao Paulo - IME-USP - 126 pg.

RT-MAP-8409 - Paulo Feofiloff e D.H. Younger

Directed cut transversal packing for source-sink connected graphs -
Sao Paulo - IME-USP - 16 pg. - Novembro 1984

RT-MAP-8410 - Caetano Zampieri e Ângelo Barone Netto

Attractive Central Forces May Yield Liapunov Instability - Dezembro 1984
Sao Paulo - IME-USP - 8 pg.

RT-MAP-8501 - Siang Wun Song

Disposições Compactas de Árvores no Plano - Maio 1985
Sao Paulo - IME-USP - 11 pg.

RT-MAP-8502 - Paulo Feofiloff

Transversais de Cortes Orientados em Grafos Bipartidos - Julho 1985
Sao Paulo - IME-USP - 11 pg.

RT-MAP-8503 - Paulo Domingos Cordaro

On the Range of the Lewy Complex - Outubro 1985
Sao Paulo - IME-USP - 113 pg.

RT-MAP-8504 - Christian Choffrut

Free Partially Commutative Monoids - Setembro 1985
Sao Paulo - IME-USP - 110 pg.

RT-MAP-8505 - Valdemar W. Setzer

Manifesto Against the use of Computers in Elementary Education - Outubro 1985
Sao Paulo - IME-USP - 40 pg.

RT-MAP-8506 - Ivan Kupka and Waldyr Muniz Oliva

Generic Properties and Structural Estability of Dissipative Mechanical
Systems - Novembro 1985
Sao Paulo - IME-USP - 32 pg.

RT-MAP-8601 - Gaetano Zampieri

Determining and Construting Isochronous Centers - Abril 1986
Sao Paulo - IME-USP - 11 pg.

RT-MAP-8602 - G. Fusco e W.M. Oliva

Jacobi Matrices and Transversality - Abril 1986
Sao Paulo - IME-USP - 25 pg.

RT-MAP-8603 - Gaetano Zampieri

Il Teorema di A.E. Nother per finiti gradi di libertà e per i Campi -
Maio 1986 Sao Paulo - IME-USP - 18 pg.

RT-MAP-8604 - Gaetano Zampieri

Stabilità Dell'Equilibrio Per $\dot{x}+xf(x)=0$, $\dot{y}+yf(x)=0$, $f \in C^0$.
Sao Paulo - IME-USP - 16 pg.

TÍTULOS PUBLICADOS

RT-MAP-8605 - Angelo Barone Netto e Mauro de Oliveira Cesar
Nonconservative Positional Systems - Stability - Junho 1986
Sao Paulo - IME-USP - 14 pg.

RT-MAP-8606 - Júlio Michael Stern
Fatoração L - U e Aplicações - Agosto 1986
Sao Paulo - IME-USP - 105 pg.

RT-MAP-8607 - Afonso Galvão Ferreira
O Problema do Dobramento Optimal de PLAs - Agosto 1986
Sao Paulo - IME-USP - 73 pg.

RT-MAP-8608 - Gaetano Zampieri
Liapunov Stability for Some Central Forces - Novembro 1986
Sao Paulo - IME-USP - 17 pg.

RT-MAP-8701 - A. Bergamasco, P. Cordaro and J. Hounie
Global Properties of a Class of Vector Fields in the Plane - Fevereiro 1987
Sao Paulo - IME-USP - 37 pg.

RT-MAP-8702 - P. Cordaro and J. Hounie
Local Solvability in C^∞_c of Over-Determined Systems of Vector Fields -
Fevereiro - Sao Paulo - IME-USP - 32 pg.

RT-MAP-8703 - Imre Simon
The Nondeterministic Complexity of a Finite Automaton - Fevereiro 1987
Sao Paulo - IME-USP - 20 pg.

RT-MAP-8704 - Imre Simon
Infinite Words and a Theorem of Hindman - Abril 1987
Sao Paulo - IME-USP - 8 pg.

RT-MAP-8705 - Sônia Regina Leite Garcia
Relations Between Critical Points of f and its "Radial Derivate" -
Junho 1987 - IME-USP - 38 pg.

RT-MAP-8706 - Gaetano Zampieri
On the Periodic Oscillations of $\ddot{x} = g(x)$. - Abril 1987
Sao Paulo - IME-USP - 25 pg.

RT-MAP-8707 - Imre Simon
Factorization Forests of Finite Height - Agosto 1987
Sao Paulo - IME-USP - 36 pg.

RT-MAP-8708 - Mauro de O. César e Gaetano Zampieri
On Liapunov Stability for $\ddot{x} + xf(x)=0, \ddot{y} + yw(x)=0$ - Dezembro 1987
Sao Paulo - IME-USP - 19 pg.

RT-MAP-8709 - Routh Terada
Um Código Criptográfico para Segurança em Transmissão e Base de Dados -
Março - São Paulo - IME-USP - 31 pg.

"RELATÓRIO TÉCNICO"
DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
TÍTULOS PUBLICADOS

- RT-MAP-8710 - W.M. Oliva, J.C.F. de Oliveira and M.S.A.C. Castilla
Topics on Hamiltonian Systems - Dezembro 1987.
- RT-MAC-8801 - Martin Grötschel, Yoshiko Wakabayashi
Facets of the Clique Partitioning Polytope
Janeiro 1988
- RT-MAC-8802 - Martin Grötschel, Yoshiko Wakabayashi
A Cutting Plane Algorithm for a Clustering Problem
Fevereiro 1988
- RT-MAC-8803 - Martin Grötschel, Yoshiko Wakabayashi
Composition of the Clique Partitioning Polytope
Marco 1988