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ON BAYESIAN ESTIMATION OF A SURVIVAL CURVE: 
COMPARATIVE STUDY AND EXAMPLES 

VICTOR H. SALINAS, JOSE S. ROMEO, AND ALEXIS PENA 

ABSTRACT. This paper is concerned with a nonparametric Bayesian approach 
applied to estimate a survival curve by means of a functional of the subsurvival 
functions IIS80ciated to censored and non-censored event. In order to actually com­
pute the Bayesian estimator, a numerical algorithm based on the Runge-Kutta 
fourth-order method is introduced. It provides good accuracy and it is simple to 
program. Using a simulated data set, the performance of the Bayesian estimator 
is compared to the Product-Limit. A descriptive analysis of the results from the 
simulations is presented. The conclusions are given in terms of the proportion 
of the censored data and sample size. Also, the numerical methodology is illus­
trated considering the original Kaplan-Meier data. Finally, the Bayesian analysis 
is applied to a real case of cervix uterine cancer, where the elicitation of the prior 
distribution considers the high proportion of censoring in the sample. 

1. INTRODUCTION 

ConBider the following right censored data model or in a reliability framework, 
a series system with two components. Let X 1,X2 be independently distributed 
random variables, with survival functions S;(t) = Pr(X; > t), j = 1, 2, the vector 
of observed values is (Z, &), where 

{1.1) Z = min(Xi,X2), and 8 = j if Z =Xi, j = 1,2. 

Let 

(1.2) s;(t) = Pr(Z > t, 8 = j), 
be the respective subsurvival function, j = 1, 2. Viewing the model as a series 
systems with two components, the system survival function is given by 

(1.3) S(t) = Pr(Z > t) = s;(t) + Si(t). 
Let (Xii, Xi2), i = 1, ... , n, be n independent latent or imaginary observations on 
(X1, X2). The actual observations are the pairs (Zi, <>i), i = 1, ... , n, which form a 
sample on (Z, 8). 

Key word& and phrosu. Dirichlet process, randomly censored data, subsurvival function, Peter­
son's formula, numerical methods, case study in cancer. 
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The estimation of S1(t) = Pr(X1 > t) have been considered by several authors. 
[1] derived the product-limit (PL) estimator for S1• [2] showed, using a functional 
representation, that the later is a maximum likelihood estimator. 

Peterson's formula is given by 

(1.4) 

where 

{ l dF(s) } IT F(s+) + G(s+) 
(l.5) cp(F(·),G(·);t)=exp Jo F(s)+G(s) t F(s_)+G(s_)' 

t81 = sup{t: S;(t) > 0}, j = 1, 2, and ,; is the integral over the union of intervals 
of points less than t for which F( •) is continuous. CTt indicates the product over the 
set { s $ t : s is a jump point of F}. For ( 1.4) to be well defined it is assumed that 
S1 and S2 have no common discontinuities. li S1 and S2 are continuous, then (1.4) 
reduces to equation (7.5) of [3]: 

[ t dS*(s) ] 
Si(t) = exp }

0 
Si(s) ~ S2(s) · 

[4] used the Dirichlet process prior of [5] for S1, i.e. S1 ~ Do., and obtained a non­
parametric Bayes estimator. This estimator reduces to PL estimator as a(ffi.+) tends 
to zero. [6] complemented this result by showing that the posterior distribution is 
a mixture of Dirichlet processes, but the representation of the mixture is somewhat 
cumbersome. For a survey of works on the Bayesian estimation of survival function 
using Dirichlet proeffiSeS, see [7]. Also, see [8]. 

Other works consider different approaches. 1n particular, [9) studies the problem of 
finding Bayes estimators for cumulative hazard rates and related parameters, con­
sidering a class of Beta processes as a prior distribution. Then the Bayes estimates 
of the survival function is calculated. 

The main purpose of this paper is to estimate S1(t) in a Bayesian nonparametric 
context under a certain Dirichlet bivariate process prior for the vector of subsurvival 
functions. We apply the approach introduced by [10] which considers a series system 
with r components or a competing-risks model. Certainly the case when the series 
system has only two components corresponds to the random right censored data 
model as described above. In order to actually compute the Bayesian estimator of 
S1 (t), a numerical method is formulated. We are also interested in comparing the 
performance of the our Bayesian estimator with others estimators already in the 
literature. 
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In Section 2, Bayes estimates of the (sub)survival functions corresponding to the 
randomly censored data are calculated. By substituting the Bayes estimator of 
s• = (Si,Si) in Peterson's (1977) formula we obtain a nonparametric estimator of 
S1. Following (11], this nonparametric estimator of S1 is in fact a Bayes estima­
tor under a bivariate Dirichlet process prior and quadratic loss function, i.e., the 
posterior mean of S1 given the data. For the numerical computation of the Bayes 
estimator of S1 , in Section 3 we develop an algorithm based on the Runge-Kutta 
fourth-order method, see (12]. 

In Section 4 we apply the numerical method to a simulated data set. In this section 
we compare the performance of the Bayesian alternative with the product-limit esti­
mator. A descriptive statistics analysis is reported. We present our results in terms 
of the proportion of censored data and the sample size. Also, using the Kaplan-Meier 
data set we report the survival probabilities that are useful for comparison purposes, 
in particular, among nonparametric Bayesian methodologies. Furthermore, a real 
case study coming from cervix uterine cancer which presents high level of censoring 
is analyzed. This last information is incorporated in the prior distribution of the 
subsurvival functions. Then, the Bayesian estimator of the survival function is com­
puted and survival probabilities on different times are calculated. Finally, the work 
concludes with a detailed discussion on theoretical aspects, applications and future 
works. 

2. BAYESIAN ANALYSIS OF CENSORED DATA 

The purpose of this section is to consider a Bayesian approach to the censored 
data problem, specifically, to calculate the Bayes estimators of the subsurvival and 
survival functions, (Si, S2) and 81 , under a certain Dirichlet bivariate process prior 
and quadratic loss function. 
Let p = Pr(o = 1) = 1- Pr(o = 2) and {(Zi,81), ..• , (Zn,On)} be a random sample 
on (Z, 8). Recall that s•(t) = (Si(t), S2(t)) is the vector of subsurvival functions, 
and S(t) = Si(t) + Si(t) = Pr(Z > t) is the survival function of the system. 

2.1. Dirichlet Bivariate Processes. We give the definition of a class of Dirichlet 
bivariate process priors as defined in [10). For a general treatment of a Dirichlet 
process and properties of the Dirichlet distribution, see [5] and [13], respectively. 
Let (X,A) be a measurable space such as (R,.,Br) and (!l,F,Q) be a probability 
space. Consider a stochastic process {P•(A) = (.Pi'(A), P;(A)) : A EA} defined on 
(n,.r,Q), indexed with sets A in A, and assuming values in the simplex 

Si= {(x1,X2): X1,X2 ~ 0' X1 +x2 51} 
of Jl.i . Note that p• is a random two-dimensional set function. 

Definition 1. Let a 1 and o2 be finite, nonnull, and nonnegative measures on {X, A). 
A random two-dimensional set function p• = (Pi, F;) with values in S:z is a Dirichlet 
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bivariate process on {X,.A.) with parameter (0:1,0:2), denoted by p• ~ DB(o:1,a2), 
if for every k > O and measurable partition {A1, ••. , A1:} of X, the distribution 
of 2(k - 1)-dimensional random vector (P*(A1), ... , P•(At-1)) is the nonsingular 
Dirichlet with parameter (o1(A1),o:2(A1), ..• , 01(A1:-1),a2(A1:-1); 01(A1c)+aiA1,)). 

That is p• ~ DB(oi, 02) 

We note that the marginal process Pi is such that for any partition { A 1, .•• , A,.} of 
X, the (k - 1)-dimensional random vector (.Pi(A1), •.• P:(A1:-1)) is distributed as 
the nonsingular Dirichlet with parameter (o:1(A1), . .. , 01(A1:-1)i 01 (A1o) + o:i(X)). 
Consequently, Pi is not exactly a Dirichlet process as defined by [5] . 

2.2. Bayes Estimation. First, note that observing the censored data (Z1, 61), ... , (Zn, dn) 
is equivalent to observe, for each t > 0, the random counting vector nS~(t) = 
(nSin(t), nSi,.(t), n(l - Sn(t)) from a trinomial distribution with sample size n and 
parameters (Sj(t), Si(t); 1 - S(t)), where 

(2.1) SJn(t) = .!_ tl(Z; > t,6; = j), j = 1,2, 
n '-1 

is the empirical subsurvival function of the j-th component, j = 1, 2 and I(·) is the 
indicator function. Sn{t) = Sin(t) + 8;,.(t) is the empirical survival function of the 
system. 
Thus, at this stage, the parameter of interest is the vector of subsurvival functions 
S• = (Si, Si) such that the sum of its components is the survival function of the 
system. Then our approach considers putting a prior distribution on a functional 
space of the form 

e = {(Sj,Si): Sj is such as (1.2), j = 1,2, and (1.3) is a survival function}. 

To define the prior for the vectors•, consider the positive real line X = (0, oo) with 
its respective Borel u-algebra, .A = Bco,oo}· Assume that all random elements are 
defined on a common probability space (n, .r, Q). The following lemma, obtained 
as a direct consequence of the definition of the Dirichlet bivariate process, gives the 
prior for s• = (Si,Si). 

Lemma 1. Let a 1 and a:i be finite, non-null, and nonnegative measures on (X,.A.). 
Let p = Pr(6 = 1) ~ Beta{o1(X), o:2(X)), TJ(t) = Pr(Z > t16 = j) ~ Beta(o;(t, oo), o;(O, 
j = 1, 2. Suppose that p, 'Ji(t), T;(t) are mutuall11 independent. Then 

(2.2) s•(t) ~ D(o1(t, oo), o:2(t, oo); 01(0, t] + 02(0, t]), 

where D(a, b; c) is the non-singular Dirichlet distribution of parameters (a, b; c). 
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The marginal prior for Sj is given by 

(2.3) s;(t) ~ Beta (cSj,0(t), c(l - s;,0(t))), t > 0, 

where c = a 1(X)+a2(X) and Sj,0 (t) = o:;(t,oo)/c is the prior mean of SJ, j = 1,2. 
Also, So(t) = St_0 (t) + s;,0(t) is the prior mean of S. 

Then using the Bayes rule, the posterior distribution of s•(t) is an updated Dirichlet 
distribution given by 

(2.4) S*(t)lnS~(t) ~ D(a1(t,oo) +nStn(t),a2(t,oo) + ns;n(t); 
01 (0, t] + 02(0, t] + n(l - Sn(t))). 

Consider the quadratic loss function 

(2.5) L(S*,§•) = lX) II S*(t)- S*(t) 11 2 dW(t), 

where II· II is the usual R2 norm,§•= (Si ,82) is an estimator of s• = (Si,S2) and 
W(,) is a weight function. 
Let them($ n) distinct order statistics of Z be Zci> < . . . < ZcmJ· Set 
n1 = E~1 I(Z; ~ Zui) and d; = E~1 I(Z; = z(i)' 8, = 1), j = 1, ... , m. 
Define 

it=exp -- ~ ' '() { -1 1tdo:2(s,oo)} 
c+ n o S(s) 

and 

II 
a1(Zfo,oo)+a2(Z(i)'oo)+n. - d; 

?r(t) = • • . 
·-z• <t a1(Z(i)'oo)+a2(Z(i)'oo)+n; 
•• (<)-

The following proposition is a direct consequence of the conjugated Bayesian analysis 
and the main result of (11]. It gives the Bayes estimators for the subsurvival and 
survival functions. 

Proposition 1. Under the prior (2.2} for s• and loss function (2.5}, 
a) the Bayes estimator of SJ, and S are given by 

~ C n 
(2.6) s;(t) = c+ns;,0(t) + c+ns;n(t), j = 1,2, 

(2.7) s(t) = Si(t) + Si(t), 

and 
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b) suppose that the functions f;(s) = a;(s, oo), j = 1, 2, are continuous on 
(0, t), for each t > 0, and S1 and S2 have no common discontinuities. The 
Bayes estimator of S1 is given by 

(2.8) 81(t) = cp(B;,82;t) = s(t)i(t)1r(t). 

llemark 1. 

(a) [2) proved that the PL estimator of S1 is obtained evaluating the functional 
{1.4) on the vector of empirical subsurvival functions (Sin(-), Sin(·)). This 
implies that if o:1(0,oo) and o:2(0,oo) tend to zero, the estimator 81 reduces 
to the Kaplan-Meier estimator. 

(b} The Bayes estimators §• = (Si, 82) and 8 are strongly consistent. For 
instance, using Glivenko-Cantelli Theorem and the fact that Pn = C-::n ! 0, 
it can be shown that §• converges to s• uniformly w .p. 1. 

(c) The strong consistency of 81 follows from the continuity of the functional cp 
in (1.4) and the strong consistency of s· = (Si' S2). 
Also, ll81 -PLII - 0 w.p. 1, where PL is the Kaplan-Meier estimator of S1. 

3. NUMERICAL COMPUTATION OF THE BAYES ESTIMATOR S1 
In equation (2.8) of the estimator 81(t), the second term in the product, i(t), must 

be numerically computed. So, we are interested in an approximation via. numerical 
algorithm of the integral ¢(t) := J: ~\~

1
001 . 

Let zfo, ... , z(m) be the realizations of the random variables Zfo, ... , Zcml and sup­

pose that da~~~)oo) = n2(s)ds, with 92(s) =~'i.e., o:2 <,\,where ,\ is the Lebesgue 
measure on the real line, then we must solve the differential equation 

{
¢/(t) = !fl(t), t E [O, Z(m)J 
¢(0) = 0. 

The Ruilge-Kutta fourth-order method (12] and its variations for solving ordinary 
differential equations are very popular. It provides good accuracy, it is simple 
to program, it requires minimum storage and it is stable. In our cMe, we ap­
ply the method considering a differential equation for each one of the intervals, 
(0, zfo), [0, Zc21), ..• , [0, z(m)). 

First, we solve the differential equation <l>'(t) = !fl(t), ¢(0) = 0; t E [0, zc1)]. 

Then we solve the differential equations ¢/(t} = 92(t), ¢(z0_1l) = (J_1 in the in­
tervals [0, zfo), where q_1 is obtained from the solution of the differential equation 
in the previous interval [0, z0_1)), j = 2, ... , m. 
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For simplicity, let [0, b) be one of the intervals [0, zfo), and {to, ... , tk} a partition 

of [0, b) such that t1 - t1-1 = l = h, l = 1, ... , k. Then a numerical approximation 
of the function <f,(t) on the interval [0, b) is obtained using the formula: 

{ 

(i = G-1 + t[g2(t1-1) + 492(t1-1 + !) + g2(t1- 1 + h)]; l = 1, ... , k 
(3.1) 

(o = ¢,(0), to = 0. 

where (1 is the solution evaluated on t1• 

Thus, the expression S1(t) = S(t)i(t)1r(t) in the equation (2.8) is numerically approx­
imated in the interval [0, b) by pairs {(t, S(t) (i 1r(t))}, where (i = exp{-(i/(o1 (0, oo)+ 
02(0, oo) + n)}, l = 1, ... , k. 

Through the methodology described above, only point estimates of the survival 
probability 81 are obtained. With the purpose of finding a full Bayesian solution to 
inference questions we make use of Monte Carlo methods for evaluating S1(t). For 
each t, we draw d times (S!, B;) from it posterior distribution (2.4) and compute 81 
from the functional relation (2.8), i.e., calculating S(t)1r(t) and evaluating i(t) as it 
was mentioned previously. 

4. COMPARATIVE STUDY 

We apply the numerical method described in the previous section. First, we 
consider a simulated data set from a specific probability distribution. Then, we 
compare the performance of the our Bayesian alternative to PL-estimator via the 
~-norm calculated on the sample range. The second part is devoted to the analysis 
of two examples of applications. We compare our estimator with other Bayesian 
approaches involving the well-know Kaplan-Meier data set and an application to a 
real case study of cervix uterine cancer in patients treated at the Instituto Nacional 
del Cancer of Chile. 

4.1. Simulation Study. We implement a numerical example through a simulation 
study. A comparison is made between the Bayes estimator obtained in the previous 
section and the Kaplan-Meier estimator, in terms of the fit to a theoretical distribu­
tion. For this purpose we consider two independent random samples of size n of the 
failure time variable X 1 with exponential distributions of mean 3, and the censoring 
variable X 2, with gamma distributions of parameters(µ, 1) for different values ofµ. 
Thus, the survival functions are S1(t) = exp(-t/3) and S2{t) = 1 - I(µ, t), where 
I(k, t) = I'(k)-1 J; uk-le-udu is the incomplete gamma function. 
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It follows a description of the class of prior distributions used in the simulation 
study. According to equation (2.2), we consider 

(4.1) a;(t, oo) = M; - t, 0 < t < M;, j = 1, 2, 

measures in [O, oo). Note that a;(M;, oo) = 0, o;(O, t) = t, a;(O, M,) = M;, 0 < 
t < M;, j = 1, 2. Thus, the priori distribution of S•(t) is a non-singular Dirichlet 
distribution of parameters (M1 - t, M2 - t; 2t). Then the marginal distribution of 

s;(t) is 

(4.2) Sj(t)~Beta(M,-t,M,+t), t>O, J'Fi, j,i=l,2. 

Note that, Sj,0(t) = M~-t is the marginal prior guess of Sj(t), j = 1, 2; c = M1 +M2. 

We simulate random samples of size n = {50,100,200} from X1, the variable of 
interest, and from X 2• This process is repeated r=lOO0 times forµ= 1, 2, 4, ob­
taining, after observing (Z,5), 75, 55 and 30 percent of censoring, respectively. We 
consider M1 = M2 ~ 13 with different values for each sample size and percentage 
of censoring. Note that Pr(X1 > 13) and Pr(X2 > 13) are less than 0.D15, and the 
prior distribution of the proportion of failures p = Pr(X1 < X2) is a symmetric Beta 
distribution reflecting non-information about this proportion. 

Table 1 presents the different values for M 1 ( = M 2 ) that were used in the simulations. 
Tables 2, 3 and 4 present a descriptive statistic analysis of Li - norm calculated on 
[O, z(m)), which is given by 

II S1 - 81 ll2= {foz(•l {S1(t) - 81(t))2dt} l/'l, 

where S1(t) is the true survival (exponential distribution) and 81 (t) is the respective 
estimator of S1(t). SpecificaJ.ly, we calculate mean, median, minimum, maximum, 
the 25th percentile, the 75th percentile., and standard deviation of the r = 1000 
values of the ~ - norm for Bayesian and frequentist estimates, for the different 
proportions of censoring and sample size. 

TABLE 1. Selection of M1 for each sample size and percent of censoring 

percent of censoring 
75 
55 
30 

n=50 
15 
13 
13 

n = 100 
30 
20 
16 

n=200 
52 
30 
30 
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TABLE 2. Descriptive statistics of~ - norm, n=50 

75% of censoring Mean Median Min Ma.x P25 P75 S.D. 
II S1 -S1 112 0.165 0.154 0.032 0.730 0.120 0.191 0.071 

JI S1 -PL lb 0.208 0.176 0.053 1.233 0.132 0.249 0.122 
55% of censoring 

II S1 - S1112 0.151 0.142 0.025 0.531 0.104 0.182 0.066 
II S1 -PL 112 0.200 0.174 0.057 1.343 0.129 0.236 0.110 

30% of censoring 

II S1 - S1 112 0.164 0.153 0.037 0.445 0.113 0.201 0.068 
II S1 -PL 112 0.177 0.160 0.049 0.582 0.122 0.214 0.078 

TABLE 3. Descriptive statistics of Li - norm, n=lOO 

75% of censoring Mean Median Min Max P25 P75 S.D. 
II S1 -S1 112 0.201 0.171 0.071 0.853 0.137 0.231 0.098 

II S1 -PL 112 0.185 0.158 0.043 0.874 0.119 0.218 0.103 
55% of censoring 

II S1 -S1 ll2 0.164 0.157 0.036 0.563 0.122 0.194 0.065 
II S1 -PL 112 0.161 0.143 0.051 0.628 0.108 0.196 0.076 

30% of censoring 
II S1 - Si 112 0.133 0.132 0.037 0.424 0.100 0.160 0.045 
II S1 -PL 112 0.136 0.125 0.044 0.651 0.096 0.159 0.061 

TABLE 4. Descriptive statistics of Li - norm, n=200 

75% of censoring Mean Median Min Max P25 P75 S.D. 
II S1 -S1 112 0.232 0.211 0.097 0.678 0.166 0.271 0.091 
II S1 -PL 112 0.156 0.138 0.042 0.568 0.105 0.185 0.076 

55% of censoring 
II S1 - S1 112 0.191 0.187 0.078 0.511 0.161 0.214 0.047 
II S1 -PL 112 0.134 0.118 0.042 0.922 0.088 0.162 0.069 

30% of censoring 
II S1-S1112 0.157 0.149 0.052 0.347 0.121 0.185 0.051 
II S1 -PL 112 0.105 0.094 0.033 0.381 0.074 0.124 0.045 

From the Tables 2-4, we conclude that for the simulated data from the exponential 
of mean 3, the Bayes estimator fits better than the Kaplan-Meier estimator, for the 
case of low sample size and every level of censoring. The inverse situation happens 
when large sample is observed. When we consider a sample size of 100 and a level of 
censoring greater than 50 percent, the PL estimator has a better performance, and 
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when the number of failures corresponds to approximately 70 percent of the sample 
both estimators have about the same behavior. 

4.2. Illustrative Examples. 

Example 1. For ill'UStmtion, using the Kaplan-Meier data set we apply the method­
ology describe.d in Section 2. This data set has been extensively examined by many 
authors in a Bayesian nonparametric context, given a practical method of compari­
son between different methodologies. For example see [14], [15] and [8] . 
Based on a simulation of d=2000 Dirichlet random variates, for e.o.ch t, Table 5 
present the posterior mean, standard deviation and a 90% interval for the survival 
probabilities. We consider M1 = M2=24, i.e., approximately two times the maximum 
time of the Kaplan-Meier data set. 

TABLE 5. Posterior mean, [standard deviation] and {90% interval) of 
the survival probabilitiffi for the Kaplan-Meier data 

t 
0.8 
1.0 
2.7 
9.1 
5.,1 
7.0 
9.2 
12.1 

S1(t S.D. 
0.932 0.039 
0.896 [0.048/ 
0. 784 {0.064/ 
0.149 {0.071/ 
0.612 {0.079/ 
0.514 {0.075/ 
0.408 {0. 074/ 
0.280 {0.066} 

90% interval 
0. 857; o. 982 

{0.807; 0.963} 
(0.672; 0.881) 
{0.619; 0.850} 
{0.489; 0. 726} 
(0.389; 0.6,12} 
(0.289,· 0.536) 
(0.177; 0.394) 

Considering a particular class of Beta process and an algorithm based in the Le'tlfJ 
formula, [15] report fort = 1.0, 0.8911, [0.072,lj and (0. 7486, 0.9760}. Note that 
our estimates /or th~ same time have less dispersion. In Figure 1 is plotted the 
posterior density of 81(1.0). We observe that the shape of the posterior density is 
asymmetric as is also showe.d in [15] and [8] . 
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o.e 0.7 0.0 o.• 1.0 
Sur.tvat ftnmabftfty at t-1 .0 

FIGURE 1. Posterior distribution of Si (1.0) 

Example 2. The Bayesian nonparametric methodology is applied to the statistical 
analysis of a real-life case. The data set consists of suroival times of 91 post-operated 
women, who were diagnosed with ceroix uterine cancer of type IBI accordingly to In­
ternational Federation of Gynecology and Obstetrics {FIGO}. The analyzed patients 
correspond to a homogeneous subset of patients that presented commitment of bor­
ders when the operation was carried out and they did not present commitment of 
ganglions. The data were collected between 1997-2000, in the Instituto Nacional del 
Cancer of Chile and were measured in a range of 1~ to 115 months. The average 
age of the patients at the time of the surgery was 52.2 {627 months approximately). 
The lifetime data present 61 percent of censoring. This information is incorporated 
in the prior distrilrution of the subsuroival functions Si(t) and S;(t) . 

According to equation (2.2), we consider o:1(t, oo) = M1 exp(-t/M1), t > 0 and 
a 2(t,oo) = M2 - t, 0 < t < M2 • If the patients do not die in 7 yenrs {M1 = 84 
months}, the expectancy maximum life is 85 years, i.e., M2 = (1020- 627) = 393 
months. From this selection of prior distribution, the prior of the proportion of cen­
sorship Pr(o = 2) = Pr(X1 > X2) is a nonsymmetric Beta distribution with mode 
greater than 0.5. 

In Figure 2 is displayed the Bayesian estimator for the suroival function for the post­
operated women with ceroix uterine cancer. We considered a simulation of d=2000 
.Dirichlet random variates, for each t . Since the Kaplan-Meier estimator remains 
constant between the last time of failure and the following times of censorship, the 
Bayesian estimador can be calculated on all observed times, including censoring 
time. Note that these cancer data presents high proportion of censoring, then it is 
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reasonable to apply the Bayesian methodology for this case. Table 6 presents the 
posterior mean, standard deviation and a 90% interval for the estimated survival 
probability for 2, 9, 5 and 10 years. 

a.,.......,,.,._,...,IIINllc -
00 100 

Time (monthe.) 

1110 

FIGURE 2. Bayesian estimated survival function for the post-operated women 

TABLE 6. Posterior mean, [standard deviation] and (90% interval) of 
the survival probabilities for the post-operated women data 

t {months) 
24 
36 
60 

120 

S1(t) S.D. 
0.866 /0.024] 
0.823 /0.027] 
0.685 /0.093} 
0.484 {0.096} 

5. DISCUSSION 

90 % interval 
{0.822; 0.905} 
(0. 776; 0.866} 
{0.631,- o. 740) 
{0.426; 0.546) 

In this paper we were interested in the estimation problem of a survival curve. 
Several aspects were considered: a nonparametric Bayesian framework for randomly 
censored data under a Dirichlet bivariate process prior, numerical computation of 
the Bayesian estimator, a comparative study with the PL-estimator, and an appli­
cation of the Bayesian approach to a case study in cancer. 
First, the Bayesian setup proposed here considers a certain Dirichlet prior distribu­
tion placed on the vector of the subsurvival functions. Then the Bayesian estimator 
is calculated via the Peterson formula. We remark that the analysis is conjugated. 
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Our approach is different from others existing in the literature. For instance, as­
suming the censoring times to be constant [4] analyzed a model considering an usual 
Dirichlet process for the survival of interest. The subjectivity of the choice of the 
hyperparameters did not allow a comparison with our estimator. Also, their repre­
sentation of the posterior is somewhat cumbersome. On the other hand the model 
proposed by [9] places a Beta process prior with non-negative independent incre­
ments for the cumulative hazard function. Below we will refer to some numerical 
aspects of this estimator in relation to our results. 
In order to actually compute the nonparametric Bayesian estimator of the sur­
vival function we have introduced an algorithm based on Runge-Kutta fourth-order 
method, which is very popular for solving ordinary differential equations. It pr~ 
vides good accuracy and it is stable. In our case the application of the method 
has been very direct and simple to program. It is interesting to remark that the 
Runge-Kutta method was applied on each one of the intervals (0, zfo), j = 1, . .. , m; 
where zfo < z(2) • • • < z(ml are the realizations of the distinct order statistics of the 
observable variable Z = min(X1, X2). Extensions from the right randomly censored 
model to a competing risks model can be considered in a similar way. The essential 
idea of the method is the same. 
The comparative study has been divided in two parts. From the simulations ( ex­
ponential distribution competing with gamma distribution) we conclude that the 
Bayesian estimator of the exponential survival fits better than the PL-estimator for 
low sample size and every censoring level. So our estimator is a possible alternative 
to be considered in that conditions. 
The Bayesian methodology was illustrated considering the original data of [1]. A 
comparison is made with the results obtained by [15], whom implemented the ap­
proach introduced by [9]. For instance S1(t = 1.0) is similar in both cases, but in 
our case the standard deviation of the estimator is smaller. 
The other example has been devoted to apply the Bayesian framework to a real case 
of cervix uterine cancer. In this case the lifetime data present a high proportion of 
censoring. This fact is incorporated as a relevant information in the elicitation of the 
prior distribution. Some survival probabilities of medical interest were computed. 
The scheme of subsurvival functions presented in this work, i.e., to consider as space 
of parameters 8 = {(Si, s;) : Si + s; is a survival function}, allows directly com­
pute the Bayes estimator of the proportion of censoring q = Pr(6 = 2). Note that 
the number of { 6, = 2} follows a Binomial distribution of parameters (n, Pr(6 = 2)). 
It concludes q = limt.....o+ Si(t) is the Bayes estimator of q under a Beta prior distri­
bution and quadratic loss function. 
It should be possible to apply the subsurvival scheme to the estimation problem of 
a cured fraction in survival analysis. This topic is theme of our current research. 
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