


ON BAYESIAN ESTIMATION OF A SURVIVAL CURVE:
COMPARATIVE STUDY AND EXAMPLES
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ABSTRACT. This paper is concerned with a nonparametric Bayesian approach
applied to estimate a survival curve by means of a functional of the subsurvival
functions associated to censored and non-censored event. In order to actually com-
pute the Bayesian estimator, a numerical algorithm based on the Runge-Kutta
fourth-order method is introduced. It provides good accuracy and it is simple to
program. Using a simulated data set, the performance of the Bayesian estimator
is compared to the Product-Limit. A descriptive analysis of the results from the
simulations is presented. The conclusions are given in terms of the proportion
of the censored data and sample size. Also, the numerical methodology is illus-
trated considering the original Kaplan-Meier data. Finally, the Bayesian analysis
is applied to a real case of cervix uterine cancer, where the elicitation of the prior
distribution considers the high proportion of censoring in the sample.

1. INTRODUCTION

Consider the following right censored data model or in a reliability framework,
a series system with two components. Let X;, X, be independently distributed
random variables, with survival functions S;(t) = Pr(X; > t), j = 1,2, the vector
of observed values is (Z,4d), where

(1.1) Z =min(X;,X,), andd=3ifZ=X;, j=1,2
Let
(1.2) 53 (t) = Pr(Z > t,6 = j),

be the respective subsurvival function, j = 1,2. Viewing the model as a series
systems with two components, the system survival function is given by

(1.3) S(t) =Pr(Z > t) = S} (t) + S3(2).

Let (Xi1,Xi2), i = 1,...,n, be n independent latent or imaginary observations on
(X1, X2). The actual observations are the pairs (Z;, &), i = 1,...,n, which form a
sample on (Z, ).

Key words and phrases. Dirichlet process, randomly censored data, subsurvival function, Peter-
son’s formula, numerical methods, case study in cancer.
PARTIALLY SUPPORTED BY FONDECYT-CHILE GRANT 1030787 AND CNPQ-
BRASIL
1



ON BAYESIAN ESTIMATION OF A SURVIVAL CURVE 2

The estimation of S;(t) = Pr(X; > t) have been considered by several authors.
[1] derived the product-limit (PL) estimator for S. [2] showed, using a functional
representation, that the later is & maximum likelihood estimator.

Peterson’s formula is given by
(14) Su(t) = p(S3(), S3();t), for t < t* = min(ts, ts,),

where
IR o OB, E )

ts, = sup{t : S;(t) > 0}, = 1,2, and fo is the integral over the union of intervals
of points less than ¢ for which F( ) is continuous. [], indicates the product over the
set {s < t:sis a jump point of F}. For (1.4) to be well defined it is assumed that
S, and S, have no common discontinuities. If S; and S; are continuous, then (1.4)
reduces to equation (7.5) of [3]:

A= [ preaaelk

[4] used the Dirichlet process prior of [5] for S, i.e. S; ~ Da, and obtained a non-
parametric Bayes estimator. This estimator reduces to PL estimator as a(IR*) tends
to zero. [6] complemented this result by showing that the posterior distribution is
a mixture of Dirichlet processes, but the representation of the mixture is somewhat
cumbersome. For a survey of works on the Bayesian estimation of survival function
using Dirichlet processes, see [7]. Also, see [8].

Other works consider different approaches. In particular, [9] studies the problem of
finding Bayes estimators for cumulative hazard rates and related parameters, con-
sidering a class of Beta processes as a prior distribution. Then the Bayes estimates
of the survival function is calculated.

The main purpose of this paper is to estimate S;(%) in a Bayesian nonparametric
context under a certain Dirichlet bivariate process prior for the vector of subsurvival
functions. We apply the approach introduced by [10] which considers a series system
with r components or & competing-risks model. Certainly the case when the series
system has only two components corresponds to the random right censored data
model as described above. In order to actually compute the Bayesian estimator of
51(t), a numerical method is formulated. We are also interested in comparing the
performance of the our Bayesian estimator with others estimators already in the
literature.
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In Section 2, Bayes estimates of the (sub)survival functions corresponding to the
randomly censored data are calculated. By substituting the Bayes estimator of
8* = (S}, ;) in Peterson’s (1977) formula we obtain a nonparametric estimator of
51. Following [11], this nonparametric estimator of S; is in fact a Bayes estima-
tor under a bivariate Dirichlet process prior and quadratic loss function, i.e., the
posterior mean of S) given the data. For the numerical computation of the Bayes
estimator of 53, in Section 3 we develop an algorithm based on the Runge-Kutta
fourth-order method, see [12].

In Section 4 we apply the numerical method to a simulated data set. In this section
we compare the performance of the Bayesian alternative with the product-limit esti-
mator. A descriptive statistics analysis is reported. We present our results in terms
of the proportion of censored data and the sample size. Also, using the Kaplan-Meier
data set we report the survival probabilities that are useful for comparison purposes,
in particular, among nonparametric Bayesian methodologies. Furthermore, a real
case study coming from cervix uterine cancer which presents high level of censoring
is analyzed. This last information is incorporated in the prior distribution of the
subsurvival functions. Then, the Bayesian estimator of the survival function is com-
puted and survival probabilities on different times are calculated. Finally, the work
concludes with a detailed discussion on theoretical aspects, applications and future
works.

2. BAYESIAN ANALYSIS OF CENSORED DATA

The purpose of this section is to consider a Bayesian approach to the censored
data problem, specifically, to calculate the Bayes estimators of the subsurvival and
survival functions, (S, S3) and S;, under a certain Dirichlet bivariate process prior
and quadratic loss function.

Let p=Pr(6 =1)=1-Pr(d =2) and {(Z1,4),.-.,(Z4,8,)} be a random sample
on (Z,6). Recall that S*(t) = (S}(t), S3(t)) is the vector of subsurvival functions,
and S(t) = S;(t) + S3(t) = Pr(Z > t) is the survival function of the system.

2.1. Dirichlet Bivariate Processes. We give the definition of a class of Dirichlet
bivariate process priors as defined in [10]. For a general treatment of a Dirichlet
process and properties of the Dirichlet distribution, see [5] and [13], respectively.
Let (X, A) be a measurable space such as (R,,B,) and (2, F, Q) be a probability
space. Consider a stochastic process {P*(A) = (P} (A), P3(A)) : A € A} defined on
(0, F,Q), indexed with sets A in A, and assuming values in the simplex

82 = {(9:1,2:2) 1T,%2 2 0 , 1+ s < 1}
of R,. Note that P* is a random two-dimensional set function.

Definition 1. Let a; and a; be finite, nonnull, and nonnegative measures on (X', A).
A random two-dimensional set function P* = (P}, P;) with values in S; is a Dirichlet
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bivariate process on (X,.A) with parameter (o, &), denoted by P* ~ DB(ay,a2),
if for every k > 0 and measurable partition {Aj1,..., Az} of &, the distribution
of 2(k — 1)-dimensional random vector (P*(41),...,P*(As-1)) is the nonsingular
Dirichlet with parameter (a1(A1), a2(A1); - - - @1 (Ak-1), 22(Ai-1); 01(Ar) +0a(Ar)).

That is P* ~ DB(ay, 03)

We note that the marginal process P} is such that for any partition {Ay,..., Az} of
X, the (k — 1)-dimensional random vector (P} (A1), ... Pf(Ax-1)) is distributed as
the nonsingular Dirichlet with parameter (c1(A),. .., a1 (As-1); a1(Ax) + az(X)).
Consequently, P} is not exactly a Dirichlet process as defined by [5].

2.2. Bayes Estimation. First, note that observing the censored data (Z1,61), ... ,(Zs,d,)
is equivalent to observe, for each ¢ > 0, the random counting vector nS}(t) =
(nS},(t), nS3,(t),n(1 — Sa(t)) from a trinomial distribution with sample size n and
parameters (S7(t), S3(t); 1 — S(t)), where

1 i
(21) S;n(t)=;;I(Zi>t)6i=J)a =12

is the empirical subsurvival function of the j-th component, j = 1,2 and I(-) is the
indicator function. S,(t) = Si,(t) + S, (t) is the empirical survival function of the
system.

Thus, at this stage, the parameter of interest is the vector of subsurvival functions
S* = (S¢,5;) such that the sum of its components is the survival function of the
system. Then our approach considers putting a prior distribution on a functional
space of the form

6 = {(8},853) : S; is such as (1.2), j =1,2, and (1.3) is a survival function}.

To define the prior for the vector S*, consider the positive real line X = (0, co) with
its respective Borel o—algebra, A = Bg). Assume that all random elements are
defined on a common probability space (2, F,Q). The following lemma, obtained
as a direct consequence of the definition of the Dirichlet bivariate process, gives the
prior for 8* = (5%, 53).

Lemma 1. Let oy and aa be finite, non-null, and nonnegative measures on (X, A).
Let p = Pr(6 = 1) ~ Beta{ay(X), a3(X)), T3 (t) = Pr(Z > t|§ = j) ~ Beta(a;(t, 00), 2;(0,
Jj=1,2. Suppose that p, T} (t), T5(t) are mutually independent. Then

(2:2) S*(t) ~ D(a(t, 00), aa(t, 00); 1 (0, 2] + a2(0, ]),
where D(a, b; c) is the non-singular Dirichlet distribution of parameters (a, b; c).
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The marginal prior for S} is given by
(2.3) S53(t) ~ Beta(cSjo(t), (1 — S5o(1))), t > 0,
where ¢ = a1 (X) + ap(X) and S;4(t) = a;(t, 00)/c is the prior mean of S}, j = 1,2.
Also, So(t) = S7,(t) + S34(t) is the prior mean of S.

Then using the Bayes rule, the posterior distribution of $*(t) is an updated Dirichlet
distribution given by

(24) S*(®)InS;(t) ~ D(au(t,o0) +nSt,(t), aa(t, 00) + nS3 (t);
al(oat] + a2(0at] +n 1 - Sn( )))
Consider the quadratic loss function
(25) 18 = [T15°0 -8 I W),
where || - || is the usual R, norm, §* = (§f, §5) is an estimator of 8* = (S}, 5%) and

W(') is a weight function.
Let the m(< n) distinct order statistics of Z be Zf;) < ... < Zp,,. Set

n;=330,1(Z; > Zp,)) and d; = Y0, 1(Z; = Z(J),J—l)jzl,...,m
Define
-1 dor(s, 00)
i{t) = exp {c+n/m_—}’

nt)= [] o1(Zfy, 00) + 0a(Zgy, 0) + 1 — ds
= o (Z;; Gy o) + az(Z('), o0) +n;

and

25, <t

The following proposition is a direct consequence of the conjugated Bayesian analysis
and the main result of {11]. It gives the Bayes estimators for the subsurvival and
survival functions.

Proposition 1. Under the prior (2.2) for S* and loss function (2.5),
a) the Bayes estimator of 53, and S are given by

(2.6) 85 = =S50+ —-Sh(0), i=12,
(2.7) 8(t) = 510+ 55(0),

and
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b) suppose that the functions f;j(s) = aj(s,00), j = 1,2, are continuous on
(0,t), for eacht > 0, and S; and S have no common discontinuities. The
‘Bayes estimator of S, is given by

(2.8) S1(t) = (51, 53;8) = S(E)it)m(2).
Remark 1.

(a) [2] proved that the PL estimator of S; is obtained evaluating the functional
(1.4) on the vector of empirical subsurvival functions (S3,(-), S3.("))- This
implies that if 0;(0, c0) and a2(0, c0) tend to zero, the estimator S; reduces
to the Kaplan-Meier estimator.

(b) The Bayes estimators 8 = (§{,§;) and S are strongly consistent. For
instance, using Glivenko-Cantelli Theorem and the fact that p, = 25 | 0,
it can be shown that S* converges to S* uniformly w.p. 1.

(c) The strong consistency of 5 follows from the continuity of the functional ¢
in (1.4) and the strong consistency of § = (§{, §;).

Also, ||S; — PL|| — 0 w.p. 1, where PL is the Kaplan-Meier estimator of S;.

3. NUMERICAL COMPUTATION OF THE BAYES ESTIMATOR §;

In equation (2.8) of the estimator 5} (¢), the second term in the product, i(t), must
be numerically computed. So, we are interested in an approximation via numerical

algorithm of the integral ¢(t) := [y %3]

Let 2yy, - - -, 2,y be the realizations of the random variables Z7,y,..., Zj,,) and sup-
pose that % = ga(s)ds, with g,(s) = %(%), i.e., g € ), where ) is the Lebesgue
measure on tixe real line, then we must solve the differential equation

{w(t) =a(t), te0,z,]
#(0) =0.

The Runge-Kutta fourth-order method {12] and its variations for solving ordinary
differential equations are very popular. It provides good accuracy, it is simple
to program, it requires minimum storage and it is stable. In our case, we ap-
ply the method considering a differential equation for each one of the intervals,
{o, z(l)), [O,z(‘z)), veey 0,2(',")).

First, we solve the differential equation ¢/(t) = g(t), ¢(0) = 0; t € [0,2(,]
Then we solve the differential equations ¢/(t) = ga2(t), é(2{;_y)) = ¢j, in the in-
tervals [0, 27;)), where (}_, is obtained from the solution of the differential equation
in the previous interval [0, i) I =2,...,m.
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For simplicity, let [0,5) be one of the intervals [O,z(‘j)), and {ty,...,t} a partition
of [0,b) such that t; — t;., = % =h, l =1,...,k. Then a numerical approximation
of the function ¢(t) on the interval [0, ) is obtained using the formula:

G=CGo1+ Boa(tir) +Hg(tia + D + @i +A) I=1,.. .,k

Co=0(0), to=0.
where (; is the solution evaluated on ¢;.

(3.1)

Thus, the expression 5, @) =3¢ )i i(t)m(¢) in the equation (2.8) is numerically approx-

imated in the interval [0 b) by pairs { (£, 5(t) § 7(£))}, where § = exp{~¢/(c (0, 00)+
a3(0,00) +n)}, I=1,... k.

Through the methodology described above, only point estimates of the survival
probability S; are obtained. With the purpose of finding a full Bayesian solution to
inference questions we make use of Monte Carlo methods for evaluating S;(t). For
each t, we draw d times (S}, S3) from it posterior distribution (2.4) and compute 5
from the functional relation (2.8), i.e., calculating S(t)n(t) and evaluating i(t) as it
was mentioned previously.

4. COMPARATIVE STUDY

We apply the numerical method described in the previous section. First, we
consider a simulated data set from a specific probability distribution. Then, we
compare the performance of the our Bayesian alternative to PL-estimator via the
Ly —norm calculated on the sample range. The second part is devoted to the analysis
of two examples of applications. We compare our estimator with other Bayesian
approaches involving the well-know Kaplan-Meier data set and an application to a
real case study of cervix uterine cancer in patients treated at the Instituto Nacional
del Cancer of Chile.

4.1. Simulation Study. We implement a numerical example through a simulation
study. A comparison is made between the Bayes estimator obtained in the previous
section and the Kaplan-Meier estimator, in terms of the fit to a theoretical distribu-
tion. For this purpose we consider two independent random samples of size n of the
failure time variable X; with exponential distributions of mean 3, and the censoring
variable X,, with gamma distributions of parameters (g, 1) for different values of p.
Thus, the survival functions are S;{t) = exp(—t/3) and Sz(t) = 1 — I(u,t), where
I(k,t) = (k)™ [ u*le¥du is the incomplete gamma function.
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It follows a description of the class of prior distributions used in the simulation
study. According to equation (2.2), we consider

(4.1) it 00) = M;—t, 0<t < Mj, j=1,2,

measures in [0, 00). Note that a,(M,,oo) =0, a;{0,t) = t, (0, M;) = M;, 0 <
t < M, j = 1,2. Thus, the priori distribution of S*(t) is a non-singular Dirichlet
distribution of parameters (M; — t, Ma — t;2t). Then the marginal distribution of
Si(t) is

42) S}t~ Beta(M- —t,M;+1), t>0, j#i, ji=12

Note that, Sjy(t) = Y5~ is the marginal prior guess of Sj(t), j =1,2; ¢ = M1+ M.

We simulate random samples of size n = {50,100,200} from Xj, the variable of
interest, and from X;. This process is repeated r=1000 times for p = 1, 2, 4, ob-
taining, after observing (Z, ), 75, 55 and 30 percent of censoring, respectively. We
consider M; = M, > 13 with different values for each sample size and percentage
of censoring. Note that Pr(X; > 13) and Pr(X; > 13) are less than 0.015, and the
prior distribution of the proportion of failures p = Pr(X; < Xj) is a symmetric Beta
distribution reflecting non-information about this proportion.

Table 1 presents the different values for M; (= M) that were used in the simulations.
Tables 2, 3 and 4 present a descriptive statistic analysis of Ls — norm calculated on
[0, 2¢,,)), which is given by

81— 5 llo= { / 50 - §1(t)>2dt}m ,

where ) (t) is the true survival (exponential distribution) and 5} (t) is the respective
estimator of 5;(t). Specifically, we calculate mean, median, minimum, maximum,
the 25th percentile, the 75th percentile, and standard deviation of the r = 1000
values of the Ly — norm for Bayesian and frequentist estimates, for the different
proportions of censoring and sample size.

TABLE 1. Selection of M, for each sample size and percent of censoring

percent of censoring n=50 n =100 n =200
75 15 30 52
55 13 20 30
30 13 16 30
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TABLE 2. Descriptive statistics of Ly — norm, n=50

75% of censoring Mean Median Min Max P25 P75 S.D.
IS1—-8llz 0165 0154 0032 0.730 0.120 0.191 0.071
|| $1 —PL ||z 0.208 0.176 0.053 1.233 0.132 0.249 0.122
55% of censoring
8-Sl 0151 0142 0025 0531 0.104 0.182 0.066
| S1 —PL |, 0.200 0.174 0.057 1.343 0.129 0.236 0.110
30% of censoring
ISi-Slla 0164 0153 0037 0.445 0.113 0.201 0.068
| S —PL ||z 0.177 0.160 0.049 0.582 0.122 0.214 0.078

TABLE 3. Descriptive statistics of Ly, — norm, n=100

75% of censoring Mean Median Min  Max P25 P75 S.D.

Il S1 =51 |l2 0.201 0.171 0.07t 0.853 0.137 0.231 0.098

{| §1 —PL || 0.185 0.158 0.043 0.874 0.119 0.218 0.103
55% of censoring

1Si—-Sifz 0164 0157 0.036 0.563 0.122 0.194 0.065

|| 1 —PL |l 0.161 0.143 0.051 0.628 0.108 0.196 0.076
30% of censoring

It S1— 512 0.133 0.132 0.037 0.424 0.100 0.160 0.045
I 51 —PL |2 0.136 0.125 0.044 0.651 0.096 0.159 0.061

TABLE 4. Descriptive statistics of Ly — norm, n=200

75% of censoring Mean Median Min Max P25 P75 S.D.
I 51 =512 0.232 0.211 0.097 0.678 0.166 0.271 0.091
| S —PL|; 0156 0138 0.042 0568 0.105 0.185 0.076
55% of censoring
| 51— 812 0.191 0.187 0.078 0.511 0.161 0.214 0.047
|| S1 —PL |2 0.134 0.118 0.042 0.922 0.088 0.162 0.069
30% of censoring
151 —=51 |2 0.157 0.149 0.052 0.347 0.121 0.185 0.051
IS ~PLj, 0105 0094 0.033 0381 0074 0.124 0.045

From the Tables 2-4, we conclude that for the simulated data from the exponential
of mean 3, the Bayes estimator fits better than the Kaplan-Mejer estimator, for the
case of low sample size and every level of censoring. The inverse situation happens
when large sample is observed. When we consider a sample size of 100 and a level of
censoring greater than 50 percent, the PL estimator has a better performance, and
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when the number of failures corresponds to approximately 70 percent of the sample
both estimators have about the same behavior.

4.2. Tllustrative Examples.

Example 1. For illustration, using the Kaplan-Meier data set we apply the method-
ology described in Section 2. This data set has been extensively ezamined by many
authors in a Bayesian nonparametric contest, given a practical method of compari-
son between different methodologies. For ezample see [14], [15] and [8].

Based on a simulation of d=2000 Dirichlet random variates, for each t, Table 5
present the posterior mean, standard deviation and a 90% interval for the survival
probabilities. We consider My = My=24, i.e., approzimately two times the marimum
time of the Kaplan-Meier data set.

TABLE 5. Posterior mean, [standard deviation] and {(90% interval) of
the survival probabilities for the Kaplan-Meier data

t  Si{t) S.D. 90% interval
0.8 0.932 [0.089] (0.857; 0.982)
1.0 0.896 [0.048] (0.807; 0.963)
2.7 0.784 [0.064] (0.672; 0.881)
8.1 0.743 [0.071] (0.619; 0.850)
5.4 0.612 [0.078] (0.489; 0.726)
7.0 0.514 [0.075] (0.389; 0.642)
9.2 0.408 [0.07] (0.289; 0.5%6)
12.1 0.280 [0.066) (0.177: 0.894)

Considering a particular class of Beta process and an algorithm based in the Lévy
formula, [15] report for t = 1.0, 0.8911, [0.0724] and (0.7486, 0.9760). Note that
our estimates for the same time have less dispersion. In Figure 1 is plotted the
posterior density of Sl(l .0). We observe that the shape of the posterior density is
asymmetric as i3 also showed in [15] and [8].
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FIGURE 1. Posterior distribution of $;(1.0)

Example 2. The Bayesian nonparametric methodology is applied to the statistical
analysis of a real-life case. The data set consists of survival times of 31 post-operated
women, who were diagnosed with cerviz uterine cancer of type IBI accordingly to In-
ternational Federation of Gynecology and Obstetrics (FIGO). The analyzed patients
correspond to a homogeneous subset of patients that presented commitment of bor-
ders when the operation was carried out and they did not present commitment of
ganglions. The data were collected between 1997-2000, in the Instituto Nacional del
Cancer of Chile and were measured in o range of 14 to 175 months. The average
age of the patients at the time of the surgery was 52.2 (627 months approzimately).
The lifetime data present 61 percent of censoring. This information is incorporated
in the prior distribution of the subsurvival functions S}(t) and Si(t).

According to equation (2.2), we consider a;(t,00) = M, exp(—t/M;), t > 0 and
az(t,00) = Mz —t, 0 <t < M,. If the patients do not die in 7 years (M, = 84
months), the ezpectancy mazimum life is 85 years, i.e., My = (1020 — 627) = 393
months. From this selection of prior distribution, the prior of the proportion of cen-
sorship Pr(6 = 2) = Pr(X,; > X;) is a nonsymmetric Beta distribution with mode
greater than 0.5.

In Figure 2 is displayed the Bayesian estimator for the survival function for the post-
operated women with cerviz uterine cancer. We considered a simulation of d=2000
Dirichlet random variates, for each t. Since the Kaplan-Meier estimator remains
constant between the last time of failure and the following times of censorship, the
Bayesian estimador can be colculated on all observed times, including censoring
time. Note that these cancer data presents high proportion of censoring, then it is
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reasonable to apply the Bayesian methodology for this case. Table 6 presents the
posterior mean, standard deviation and a 90% interval for the estimated survival
probability for 2, 8, 5 and 10 years.

-] L] 100 180
Time (months)

FIGURE 2. Bayesian estimated survival function for the post-operated women

TABLE 6. Posterior mean, [standard deviation] and (90% interval) of
the survival probabilities for the post-operated women data

t (months) Si(t) S.D. 90% interval
24 0.866 [0.024] (0.822; 0.905)
36 0.828 [0.027] (0.776; 0.866)
60 0.685 [0.033] (0.631; 0.740)
120 0.484 [0.036] (0.426; 0.546)

5. DISCUSSION

In this paper we were interested in the estimation problem of a survival curve.
Several aspects were considered: a nonparametric Bayesian framework for randomly
censored data under a Dirichlet bivariate process prior, numerical computation of
the Bayesian estimator, a comparative study with the PL-estimator, and an appli-
cation of the Bayesian approach to a case study in cancer.

First, the Bayesian setup proposed here considers a certain Dirichlet prior distribu-
tion placed on the vector of the subsurvival functions. Then the Bayesian estimator
is calculated via the Peterson formula. We remark that the analysis is conjugated.
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Our approach is different from others existing in the literature. For instance, as-
suming the censoring times to be constant [4] analyzed a model considering an usual
Dirichlet process for the survival of interest. The subjectivity of the choice of the
hyperparameters did not allow a comparison with our estimator. Also, their repre-
sentation of the posterior is somewhat cumbersome. On the other hand the model
proposed by [9] places a Beta process prior with non-negative independent incre-
ments for the cumulative hazard function. Below we will refer to some numerical
aspects of this estimator in relation to our results.

In order to actually compute the nonparametric Bayesian estimator of the sur-
vival function we have introduced an algorithm based on Runge-Kutta fourth-order
method, which is very popular for solving ordinary differential equations. It pro-
vides good accuracy and it is stable. In our case the application of the method
has been very direct and simple to program. It is interesting to remark that the
Runge-Kutta method was applied on each one of the intervals o, zZi))’ i=1,...,m;
where 27y, < z{yy ... < 2{,, are the realizations of the distinct order statistics of the
observable variable Z = min(X, Xs). Extensions from the right randomly censored
model to a competing risks model can be considered in a similar way. The essential
idea of the method is the same.

The comparative study has been divided in two parts. From the simulations (ex-
ponential distribution competing with gamma distribution) we conclude that the
Bayesian estimator of the exponential survival fits better than the PL-estimator for
low sample size and every censoring level. So our estimator is a possible alternative
to be considered in that conditions.

The Bayesian methodology was illustrated considering the original data of [1]. A
comparison is made with the results obtained by [15], whom implemented the ap-
proach introduced by [9]. For instance S (t = 1.0) is similar in both cases, but in
our case the standard deviation of the estimator is smaller.

The other example has been devoted to apply the Bayesian framework to a real case
of cervix uterine cancer. In this case the lifetime data present a high proportion of
censoring. This fact is incorporated as a relevant information in the elicitation of the
prior distribution. Some survival probabilities of medical interest were computed.
The scheme of subsurvival functions presented in this work, i.e., to consider as space
of parameters © = {(S},53) : ST + 53 is a survival function}, allows directly com-
pute the Bayes estimator of the proportion of censoring ¢ = Pr(§ = 2). Note that
the number of {4; = 2} follows a Binomial distribution of parameters (n, Pr(é = 2)).
It concludes § = lim,_,o+ §{(t) is the Bayes estimator of g under a Beta prior distri-
bution and quadratic loss function.

It should be possible to apply the subsurvival scheme to the estimation problem of
a cured fraction in survival analysis. This topic is theme of our current research.
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