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Traditionally, patient travel history has been used to distinguish imported from auto-

chthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this

approach. Molecular tools offer an alternative method to identify, and map imported cases.

Using machine learning approaches incorporating hierarchical fixation index and decision tree

analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP

and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the

infection’s country of origin. The Matthews correlation coefficient (MCC) for an existing,

commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels

outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at

GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was

established to support data analysis (vivaxGEN-geo). The SNP selection and classifier

methods can be readily amended for other use cases to support malaria control programs.
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The last three World Malaria Reports have revealed a dis-
turbing rise in malaria cases, and, outside Sub-Saharan
Africa, an increasing proportion of malaria due to Plas-

modium vivax, undermining the concerted efforts to reduce
transmission over the past decade1. These trends highlight the
urgent need for new surveillance tools, and the need for greater
attention to non-falciparum Plasmodium species. One particular
challenge for malaria control are highly mobile human popula-
tions, leading to the import of Plasmodium isolates from one
country to another (imported cases) which can hinder local
control efforts and enhance the risks of outbreaks and the spread
of antimalarial drug resistance. To counteract this challenge there
is a critical need to develop tools that can help to determine where
patients acquired their infection.

Distinguishing between local and imported infection is parti-
cularly challenging for P. vivax, in view of the parasite’s ability to
form dormant liver stages (hypnozoites) that can reactivate weeks
to months after the initial infection, as well as its ability to cause
highly persistent, splenic and low-density circulating blood-stage
infections that can evade routine diagnosis2–4. The re-emergence
of P. vivax in multiple regions where it was once almost elimi-
nated highlights the importance of diligent surveillance5,6. In low
endemic settings, the relative proportion of imported cases gen-
erally rises as incidence falls, emphasizing the importance for
surveillance tools that can identify imported P. vivax cases in
these regions in particular5. Traditionally, imported cases have
been identified and mapped using information on patient travel
history, but the persistent splenic and blood stage infections and
late relapses limit the accuracy of this approach for P. vivax.
Molecular tools to identify and map imported P. vivax cases offer
an attractive complement to traditional epidemiological tools.

Amplicon-based sequencing has become a favored approach
for targeted genotyping of malaria parasites7,8. Using highly
parallel sequencing platforms, such as the latest generation of
Illumina sequencers, amplicon-based sequencing can be applied
at moderate to high-throughput, with high accuracy and sensi-
tivity. These platforms are flexible, allowing iterative enhance-
ment of the Single Nucleotide Polymorphism (SNP) barcodes,
which can provide an affordable genotyping approach, amenable
to population-based molecular surveillance.

Previous studies have used mitochondrial and apicoplast
markers to distinguish imported from local P. vivax isolates, but
the resolution of these organellar genomes is constrained9–11. In
2015, a panel of 42 SNPs, commonly referred to as the Broad
barcode, was identified to facilitate parasite finger-printing and
geographic assignment12. The 42-SNP Broad barcode was derived
from genomic data available from 13 isolates from 7 countries
and has been applied to several studies using targeted genotyping
assays12–14. A more recent study identified another P. vivax SNP
barcode using data from 433 isolates from 17 countries15. This
barcode also aimed to facilitate both finger-printing and geo-
graphic assignment, but no experimental assays for this barcode
are available and it remains an in-silico tool only15. Furthermore,
all geographic barcoding studies of malaria to date have relied on
visual methods such as Principal Components Analysis to eval-
uate the country of origin. Whilst this approach has some utility,
it is moderately subjective and does not cater to the needs of
translational end users such as National Malaria Control Pro-
grams (NMCPs), who may not have the genetic epidemiology or
bioinformatic skills required to generate and interpret these plots.

The primary objectives of our study were to establish a fra-
mework to identify P. vivax molecular markers for identifying
and characterizing imported P. vivax cases by classifying country
of origin and to develop an online, open-access informatics
platform for end-users to analyze data generated using the mar-
kers. Our goal is for these new molecular and informatics tools to

support the generation of evidence that can be used by both
researchers and NMCPs to inform strategic decisions on where
and how to deploy malaria control interventions. Our molecular
tools are tailored primarily to surveillance frameworks using
sequencing platforms such as Illumina or MinION (Oxford
Nanopore Technologies), which enable genotyping of dozens of
markers in parallel. Our informatics tools are designed to enable
users with little or no genetics or bioinformatics skills to inde-
pendently analyze and interpret barcode genotyping data gener-
ated in their country or at regional reference laboratories. The
informatics tools are therefore designed to accommodate real-
world malaria samples including polyclonal infections and sam-
ples with incomplete data resulting from genotyping failures.

Results
Data preparation for the training dataset. The primary dataset
(Dataset 1) that was derived using the missing data simulations to
minimize genotype failures (Supplementary Fig. 1) comprised
229,317 high-quality informative SNPs and 826 high-quality
samples. The median percentage of heterozygous calls in each
sample ranged from 0.02% to 0.08%. Details on the geographic
locations of the samples in Dataset 1 are presented in Supple-
mentary Table 1. Using country-level assignments derived from
the genome-wide data classification with the likelihood classifier,
27 isolates presented country classifications differing from the
country of presentation, so are potentially imported cases (Sup-
plementary Table 1). After exclusion of these cases, as well as
countries represented by only a single sample, there were a total
of 799 isolates from 21 countries, constituting Dataset 2 (Sup-
plementary Table 1). Neighbor-joining analysis revealed distinct
geographic clustering of most countries (Supplementary Fig. 2).
Exceptions included the isolates from Afghanistan, Iran, India
and Sri Lanka, which appeared to form a single cluster; further
analysis of this geographic region with larger sample sets is clearly
required to resolve inter-country differences. Although several
isolates in border regions including Vietnam relative to Cambo-
dia, and Thailand relative to Myanmar, overlapped between
countries, most isolates in these countries could be differentiated
by national boundaries.

Candidate SNP panel selection. The SNP panel selection process
is summarized in Fig. 1. When the HFST selector was applied with
an FST threshold of 0.90 (HFST-0.90), a set of 33 new candidate
SNPs (herein referred to as GEO33) for geographic assignment
were identified (Supplementary Table 2). On increasing the FST
threshold to 0.95 (HFST-0.95), the HFST model identified 50 SNPs
(herein referred to as GEO50) (Supplementary Table 3). Using the
DT selector alone, 55 SNPs (herein referred to as GEO55) (Sup-
plementary Table 4) were identified. As illustrated in Supplemen-
tary Fig. 3 and Supplementary Table 5, there is no marker overlap
between the 38-SNP Broad panel (herein referred to as BR38) and
the three new SNP panels, but varying levels of SNP overlap are
present between the three new panels. Three SNPs are present in
all three panels; a variant at PvP01_09_v1: 1884013 in the IMC1b
gene (PVP01_0942600) that causes an E141D amino acid
change, a variant at PvP01_10_v1:480601 in the MDR1 gene
(PVP01_1010900) that causes an L845F amino acid change, and a
variant at PvP01_14_v1:1229487 in PVP01_1428700 that causes
and S1136I amino acid change. A further 6 SNPs overlapped
between the GEO33 and GEO50 panels, and 13 SNPs overlapped
between the GEO50 and GEO55 panels. Amongst the SNPs
overlapping between two panels, the most notable is a variant at
PvP01_14_v1:1270401 in the PPPK-DHPS gene (PVP01_1429500)
that causes an A553G amino acid change that has been associated
with sulfadoxine resistance16.
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Comparative assessment of candidate SNP panels with no
missing data. The classification performance of the BR38,
GEO33, GEO50, GEO55, and combinations of BR38 with the
three new GEO panels (i.e., GEO33+ BR38, GEO50+ BR38 and
GEO55+ BR38) was analyzed by 10-fold cross-validation using
the BALK classifier on the samples in Dataset 3. The results of the
evaluations in Dataset 3 are illustrated in Fig. 2 (source data
provided in Supplementary Data 1), and the median MCCs
reflecting the consensus results of the cross-validation are sum-
marized in Table 1. The BR38 barcode exhibited the lowest
pooled (country wide) median MCC (median MCC= 0.84),

followed by GEO33 (median MCC= 0.94) and GEO50 and
GEO55 (both median MCC= 1.00). The pooled median MCCs
for the combined GEO and BR38 panels all exceeded 1.00 but
provided only minor improvements for GEO50 and GEO55.
The percentage of countries exhibiting median MCCs greater
than 0.8 was 62% (13/21) at BR38, 90% (19/21) at GEO33 and
GEO33+ BR38, and 95% (20/21) at GEO50, GEO55, GEO50+
BR38 and GEO55+ BR38. The countries with the lowest pre-
diction performance were Vietnam and Cambodia. Vietnam
exhibited median MCCs < 0.8 with all SNP panels. Cambodia
exhibited median MCCs < 0.8 at BR38, GEO33 and GEO33+

Fig. 1 Overview of the sample processing and marker selection approaches. Hexagons reflect datasets, rectangles reflect processes, triangles reflect SNP
sets, ovals reflect results, and the diamond reflects the web-based classifier application. The BR38 Broad barcode reflects 38 assayable SNPs of the 42
Broad SNPs. The GEO33 set reflects the high-performance SNPs derived from the HFST approach with FST threshold of 0.9. The GEO50 set reflects the
high-performance SNPs from the HFST approach with threshold FST of 0.95. The GEO55 set reflects the SNPs selected by the Decision Tree approach.

Fig. 2 Comparison of country prediction performance between the SNP panels. The boxplots present the MCC scores from 500 repeats with stratified
10-fold cross validation for each SNP set. Country labels are provided on the y-axis; median and min reflect the respective summary statistics for the pooled
MCC scores across all countries. Each bar presents the median, interquartile range and min and max MCC for the given country and model. The BR38
panel generally exhibited the lowest MCC scores (i.e., lowest prediction accuracy). Amongst the newly selected panels, GEO55 generally gave the highest
MCC scores followed by GEO50, and then GEO33. The addition of the BR38 panel to the GEO panels generally only provided modest if any increase in the
median MCC. The analyses were based on n= 799 biologically independent samples.
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BR38. Six countries (Philippines, Myanmar, Malaysia, Thailand,
Papua New Guinea and Bangladesh) exhibited median MCCs <
0.8 with BR38 but exceeded 0.8 in all the GEO combinations.

Comparative assessment of candidate SNP panels with missing
data simulations. To compare the performance of the BR38
barcode, GEO33, GEO50, GEO55 and combinations of BR38
with the three new GEO panels (i.e., GEO33+ BR38, GEO50+
BR38 and GEO55+ BR38) with differing levels of genotype
failures, we simulated 10%, 20% and 30% missing data propor-
tions in each country using Dataset 3 and performed 10-fold
cross-validations using the BALK classifier. The simulated gen-
otyping failures had the greatest impact on the GEO33 barcode
(Fig. 3 and accompanying source data in Supplementary Data 2,
Supplementary Table 6). The pooled (country wide) median
MCC for GEO33 dropped from 0.96 with no missing data to 0.89,
0.81 and 0.73 with 10%, 20% and 30% missing data respectively.
The impact of missing data on the combined GEO33+ BR38
panel was lower, with pooled median MCCs dropping from 1.00
with no missing data to 0.98, 0.96 and 0.94 with 10%, 20% and
30% missing data respectively. In all other panels, the pooled
median MCC dropped by ≥0.1 between the simulations with no
(0%) versus 30% missing genotype calls: from 0.87 to 0.77 at
BR38, 0.96 to 0.85 at GEO50, 0.98 to 0.89 at GEO55, and 1.00 to
0.98 at GEO50+ BR38 and GEO55+ BR38.

Assessment of the candidate SNP panels in independent vali-
dation samples. After exclusion of low-quality and suspected
imported samples, a total of 142 samples (Independent Validation
Dataset) that were not included in the training (i.e., not in Dataset
1, 2 or 3) were available to independently evaluate the perfor-
mance of the candidate SNP panels with the trained classifiers.
The Independent Validation Dataset comprised samples from
each of 7 countries that were represented in the training dataset
(Dataset 2). The geographic clustering patterns of the Indepen-
dent Validation Dataset relative to the training dataset is

illustrated in the neighbour-joining trees in Supplementary Fig. 3.
The prediction performance of the samples in the Independent
Validation Dataset at the SNP panels with the trained classifiers is
presented in Table 2. The BR38 panel exhibited the lowest pre-
diction accuracy, with a pooled (country wide) median MCC of
0.44. The GEO33 panel also exhibited generally low prediction
accuracy (pooled median MCC= 0.64), but this was improved in
the combined GEO33+ BR38 panel (pooled median MCC=
0.81). The GEO50, GEO55, GEO50+ BR38 and GEO55+ BR38
panels all exhibited generally high prediction accuracy with
pooled median MCCs exceeding 0.80 (range 0.83-0.89). Figure 4
presents heat maps for each of the SNP panels illustrating the
proportion of correct recalls for each country of origin (source
data is provided in Supplementary Data 3). The heat maps
demonstrate that, in all SNP panels, incorrect classifications
generally reflected predictions to neighbouring countries, thus
retaining regional geographic mapping accuracy.

Discussion
The primary objective of the study was to develop molecular tools
amenable to population-based surveillance frameworks that can
be used to identify, and map imported P. vivax infections. Three
new SNP panels (GEO barcodes) were identified with high
country classification performance, that were able to distinguish
imported P. vivax infections across a range of endemic scenarios.
The most parsimonious panel, GEO33, exhibited high country
classification when there was no missing data, and can be cost-
effectively appended to the 38 bi-allelic, assayable Broad barcode
SNPs (BR38) for improvement in predictive capacity in samples
with moderate levels of missing data. The combined GEO33+
BR38 barcode generated robust country classification in most
endemic areas, even when the proportion of missing data rose to
30%. However, the predictive capacity of the GEO33+ BR38
barcode between Cambodia and Vietnam was moderate, likely
reflecting frequent human and associated P. vivax gene flow
across the border between these two countries. The GEO50 and

Table 1 Summary of MCC scores from the results of 500 repeats of the stratified 10-fold cross-validation of the SNP panels.

Country BR38 GEO33 GEO33+ BR38 GEO50 GEO50+ BR38 GEO55 GEO55+ BR38

Afghanistan 0.835 0.850 0.946 0.908 0.946 0.889 0.940
Bangladesh 0.784 1.000 1.000 1.000 1.000 1.000 1.000
Bhutan 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Brazil 0.892 0.892 1.000 1.000 1.000 1.000 1.000
Cambodia 0.520 0.756 0.794 0.823 0.816 0.870 0.874
China 0.864 1.000 1.000 1.000 1.000 1.000 1.000
Colombia 0.870 1.000 1.000 1.000 1.000 1.000 1.000
Ethiopia 0.923 1.000 1.000 1.000 1.000 1.000 1.000
India 0.812 0.864 0.892 0.892 1.000 0.864 0.864
Indonesia 0.913 0.939 0.985 0.985 1.000 1.000 1.000
Iran 1.000 1.000 1.000 0.892 1.000 1.000 1.000
Madagascar 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Malaysia 0.794 0.933 0.933 0.933 0.933 0.933 0.933
Mexico 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Myanmar 0.620 0.910 0.892 0.910 0.892 0.892 1.000
Papua New Guinea 0.344 0.812 0.892 1.000 1.000 1.000 1.000
Peru 0.817 0.940 0.940 1.000 1.000 1.000 1.000
Philippines 0.663 0.892 1.000 0.864 1.000 1.000 1.000
Sudan 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Thailand 0.588 0.927 0.952 0.975 0.955 0.976 0.976
Vietnam 0.277 0.520 0.617 0.676 0.648 0.769 0.755
Pooled median 0.835 0.939 1.000 1.000 1.000 1.000 1.000
Pooled min 0.277 0.520 0.617 0.676 0.648 0.769 0.755
Pooled Q1 0.663 0.892 0.933 0.908 0.955 0.933 0.976

The analyses were based on n= 799 biologically independent samples.
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Fig. 3 Comparison of country prediction performance between the SNP panels with simulated missing data. MCC scores generated from 250 repeats
with n= 25 biologically independent samples per country with no (0%) missing data (a) and simulating missing data (genotype fails) of 10% (b), 20% (c)
and 30% (d); median and min reflect the respective summary statistics for the pooled MCC scores across all countries. Each bar presents the median,
interquartile range and min and max MCC for the given country and model. With missing data, the combined BR38 and GEO panels (i.e., BR38+GEO33,
BR38+GEO50 and BR38+GEO55) demonstrated better results than the single panels in retaining prediction performance, likely owing to moderate
levels of redundancy between some of the SNPs.

Table 2 Summary of MCC scores in the independent validation dataset.

Country N BR38 GEO33 GEO33+ BR38 GEO50 GEO50+ BR38 GEO55 GEO55+ BR38

Brazil 7 0.742 0.551 0.814 0.655 0.742 0.808 0.881
Cambodia 65 0.412 0.635 0.674 0.903 0.833 0.860 0.890
Colombia 1 0.441 0.495 0.705 1.000 1.000 1.000 1.000
Ethiopia 18 0.902 0.902 0.968 1.000 1.000 0.907 1.000
Peru 14 0.715 0.921 0.921 0.842 0.854 0.897 0.921
Thailand 12 0.280 0.764 0.859 0.818 0.818 0.765 0.818
Vietnam 25 0.357 0.521 0.575 0.887 0.776 0.833 0.867
Pooled median 142 0.441 0.635 0.814 0.887 0.833 0.86 0.89
Pooled min 142 0.28 0.495 0.575 0.655 0.742 0.765 0.818
Pooled Q1 142 0.3845 0.536 0.6895 0.83 0.797 0.8205 0.874

The analyses were based on n= 142 biologically independent samples.
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Fig. 4 Heatmap illustrating country prediction accuracy at the BR38 and GEO barcodes in the Independent Validation Dataset. Each plots presents the
prediction performance of the given SNP panel (panels a–g) in the Independent Validation Dataset (n= 142 biologically independent samples) visualized as
a heatmap showing the correlation between country of Origin and Prediction. Each cell is colour-coded to reflect the proportion of samples from the given
country of Origin that were correctly assigned to the corresponding Prediction country. Colour-coding scaled from light blue (low proportion) to dark blue
(high proportion). Only countries that were predicted by at least one of the SNP panels are presented, and Prediction countries that were not represented
in the Independent Validation Set (i.e., not on the Origin axis) are labelled in red. Where samples’ country of Origin did not directly match the country of
Prediction, they generally mapped to neighboring countries (i.e., still within the correct regional geography). The BR38 panel exhibited lower prediction
accuracy than the GEO and combined GEO+ BR38 panels. Across the SNP panels, majority of incorrect predictions occurred between Cambodia, Vietnam
and Thailand.
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GEO55 panels achieved better resolution than the GEO33+
BR38 panel in these areas, and even greater characterization of
parasite transmission across borders with high levels of gene flow
may be possible with additional markers suited to an analysis of
identity-by-descent17. In some geographic regions, where
national borders have little or no impediment on parasite gene
flow, even genome-wide data will not provide resolution of
infections between neighboring countries: in these regions,
country-level classification of infection origin may have limited
utility. However, using genetic data to demonstrate that the
parasites from different sides of the border form a single homo-
genous population may be helpful to strengthen the case for
cross-country collaborative efforts to tackle vivax malaria. Fur-
thermore, the tools described in this study can be adapted to
characterize other population boundaries that may be of rele-
vance to NMCPs. As the density of available genomic data on P.
vivax increases, it may also be possible to use higher-resolution
genetically defined infection boundaries for classification
purposes.

The application and wider validation of the new GEO barcodes
is underway, with Illumina amplicon-based sequencing assays
already established by the Wellcome Sanger Institute malaria
program for the 38-Broad barcode SNPs13 and by collaborators at
the Institute for Tropical Medicine, Antwerp, for GEO-3318.
Further work will be needed to establish frameworks for imple-
mentation of parasite genotyping into the day-to-day activities of
NMCPs: insights may be gained from the GenRe-Mekong fra-
mework, which has successfully implemented parasite genotyping
into NMCP activities in several countries in the Greater Mekong
Subregion for the purpose of tracking antimalarial drug resistance
in P. falciparum7. The GenRe-Mekong framework currently
focuses on conducting genotyping using the Illumina platform in
centralized laboratories (such as national reference laboratories)
with strong molecular biology expertise and equipment. However,
assays for the geographic barcodes described in this study can be
readily designed for other genotyping platforms such as the
highly portable minION sequencers (Oxford Nanopore Tech-
nologies), which can theoretically be implemented in environ-
ments with minimal molecular laboratory equipment.

The analysis and interpretation of “real-world” genotyping data
raises substantial challenges from low-quality samples such as
those collected on dried blood spots. In anticipation of these
needs we established a likelihood-based classifier framework with
the capacity to deal with polyclonal infections as well as missing
data. This framework has been integrated into the vivaxGEN-geo
online platform (http://geo.vivaxgen.org), so that users can ana-
lyze and interpret their data without needing complex bioinfor-
matics skills and avoiding the subjective visual inspection of
neighbour-joining trees or principal component plots. Whilst the
informatics tools implemented in vivaxGEN-geo are tailored to P.
vivax, a similar approach can be adapted to other species. To
facilitate wider application the source code is publicly available.

The variants in the GEO SNP panels are located in genes
representing a range of functions, some of which may be unstable
over time such as the variants in drug resistance-associated genes.
These variants can readily be replaced with new variants as
populations evolve. The rate at which allele frequencies change in
a population will depend on various factors including the
population size, extent of gene flow, and selection dynamics.

Although our dataset represents one of the most geographically
diverse panels of P. vivax isolates currently available, with
representation of all the major vivax-endemic regions, the pre-
dictive capacity of the derived tools is likely to be constrained by
the geographic representation of the reference panel. The classi-
fier cannot assign a prediction to a country that is not represented
in the genetic reference panel, and countries that have a small or

non-representative reference sample set may have limited classi-
fication accuracy. The limited representation from areas such as
the Indian subcontinent is an important gap that needs to be
filled. However, the reference panel has good representation of
isolates from regions of public health relevance, including the
epicenter of chloroquine-resistant P. vivax in Papua Indonesia,
western Thailand and Myanmar, where a high frequency of P.
vivax infections with mefloquine resistance-associated MDR1
(PVP01_1010900) copy number variants have been reported, and
Ethiopia, which comprises the largest reservoir of P. vivax in
Africa and where infections that are able to invade duffy negative
human red blood cells have been reported19–24. The strong
representation of these areas in the genetic reference panel
ensures that NMCPs can accurately identify when infections have
been imported from these regions and effect appropriate case
management responses. It is also important to acknowledge that
the likelihood-based classifier framework is amenable to re-
evaluation of the current maker sets as new genomic data become
available, facilitating iterative development of refined SNP panels.
As the reference panel expands with increasing data generated at
the barcode SNPs, the accuracy of the likelihood-based classifi-
cations will improve.

The likelihood-based classifier framework has been designed to
allow geographic predictions to be assigned to polyclonal infec-
tions carrying two or more clones, as are common in high
endemicity regions; these infections are commonly omitted from
population genetic analyses. However, it should be acknowledged
that the classifier does not attempt to phase individual clones,
rather the infection is analyzed as a composite, yielding a single
prediction of most likely origin. Nonetheless, it is important to
note that, by design, the GEO panels selected by the framework
should exhibit low within-country diversity (with diversity rather
being between countries). Polyclonal infections deriving from a
single country should therefore exhibit a low frequency of het-
erozygote positions at the selected GEO barcodes. In cases where
a combination of clones deriving from different countries are
present within a single infection, yielding many heterozygote
positions, the classifier will be constrained in its ability to detect
country of origin and a low confidence in the prediction will
accordingly be assigned. Future developments that combine GEO
markers with high-resolution finger-printing markers such as
microhaplotypes may enable polyclonal infections to be phased
and subsequently analyzed for geographic origin.

As well as new geographic markers, future iterations of the
SNP barcode are being developed to address other use cases.
These will include markers of drug resistant P. vivax as well as
markers to characterize recurrent infections, that will support the
interpretation of clinical trials, epidemiological cohorts and
parasite surveillance (see microhaplotype description in8). Whilst
the geographic origin of a P. vivax infection can provide some
insights into a parasite’s likely relapse periodicity, the risks and
frequency of recurrent infections are influenced by a range of
factors including transmission intensity, hypnozoite burden and
host immunity, which confound correlation between parasite
genotype and an individual’s risk of relapse4,25.

In 2017, up to 100% of all confirmed malaria cases in 17
malaria-endemic countries in the Asia-Pacific region, the Middle
East and the Americas, where P. vivax infections predominate,
were reported as being imported infections1. In these countries
national malaria control programs can utilize information derived
from our molecular tools to assess the efficacy of ongoing inter-
ventions in reducing local transmission. One of the key require-
ments by the World Health Organization for certifying malaria
elimination is demonstration that all malaria cases detected in-
country over at least three consecutive years were imported. Our
genotyping approach has potential to identify imported infections
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thus reducing ambiguity in elimination certification. For this
purpose, countries approaching elimination will need to maintain
archival samples for future molecular comparisons against puta-
tively imported cases.

The molecular P. vivax geographic classification tools pre-
sented are designed to empower users in malaria-endemic
countries to compare local genotyping data with globally avail-
able datasets. Amplicon-based sequencing of geographic barcodes
will be combined with other surveillance markers at central
laboratories in endemic partner countries of the Asia Pacific
Malaria Elimination Network (www.apmen.org). The data gen-
erated from these centers will inform researchers, National
Malaria Control Programs and other key stakeholders on the
incidence, epidemiology and key reservoirs of imported malaria
and, in doing so, help to target resources to where they are
needed most.

Methods
Overview of data analysis methods. The project aimed to generate two major
outputs: a new framework to identify P. vivax geographic barcodes (i.e., marker
selection) and an online, open-access informatics platform for end-users to analyze
data generated using the barcode. A flow diagram outlining the steps involved in
identifying P. vivax geographic barcodes is provided in Fig. 1. The process involved
three key steps: 1) data preparation to produce a dataset with the optimal balance
of number of samples and SNPs and with no missing data (i.e. no genotype fails),
2) SNP selection using Decision Tree and HFST approaches to obtain candidate
SNP panels suitable for the classifier developed in this study (a Bi-Allele Likelihood,
BALK classifier) and, and 3) comparative evaluation of the candidate SNP panels,
assessment of the impact of missing data (i.e., genotype fails), and assessment of the
prediction accuracy with an independent dataset. An online, open-access infor-
matics platform was then developed and equipped with BALK classifiers trained
against the candidate SNP panels. A more comprehensive description of the
methods is provided in the Supplementary Methods.

Data set. The study used genomic data on P. vivax derived from the Malaria
Genomic Epidemiology (MalariaGEN) P. vivax Genome Variation Project release 4
(Pv4), which has recently been published as an open dataset26. The Pv4 open data
set comprises genomes from 26 countries. At the time of conducting our analysis
(i.e., prior to the Pv4 open access release), a dataset comprising 1873 (of the
1895 samples described in the release) samples was available for our study. For the
analysis in this study, the dataset was divided into two parts, a training dataset, and
a validation dataset. The validation set consisted of isolates from 7 countries
(Brazil, Cambodia, Colombia, Ethiopia, Peru, Thailand, and Vietnam) derived
from a clinical trial conducted by GlaxoSmithKline (GSK)26. All remaining isolates
were included in the training dataset, which comprised representation of all the
countries in the validation set. The GSK samples were selected for independent
validation owing to convenience as the samples from this study were sequenced
later than the other studies and, hence, the data was made available later.

Data preparation. An overview of the data preparation steps is outlined in section
a) of the flowchart presented in Fig. 1. Briefly, the training dataset was filtered to
exclude recurrent infections and samples from countries represented by less than 4
independent P. vivax genomes, resulting in an initial dataset comprising
1,348 samples from 21 countries (Supplementary Table 1, Supplementary Fig. 4).
With this initial dataset, from the initial 2,671,112 variants discovered in the
MalariaGEN Pv4 project26, we derived a set of 662,641 high-quality bi-allelic SNPs
with VQSLOD score > 0, minimum depth of 1 and minimum Minor Allele Count
(MAC) of 2 to produce Dataset 0. The restriction to bi-allelic SNPs is a standard
approach undertaken in malaria population genomics to simplify downstream
computations and does not impose constraints on the analysis of polyclonal
infections, which are still detectable through the composite of allelic variants across
the respective SNPs (see27–29). Individual genotype calls were defined as hetero-
zygotes based on an arbitrary threshold of a minor allele ratio > 0.1 and a mini-
mum of 2 reads for each allele; all other genotype calls were defined as homozygous
for the major allele. Dataset 0 was further filtered to exclude non-independent
samples, defined arbitrarily as isolate pairs with genetic distance less than 0.001,
resulting in 1,227 samples with 662,641 SNPs, denoted as Dataset 1. Dataset 1 was
then subjected to iterative data quality filtering to derive the best representative
number of samples and informative SNPs without any genotype missingness by
iteratively removing samples with higher missingness and calculating the number
of informative SNPs (defined as SNPs with MAC >= 2), from the remaining
samples. Based on the plot of the result of this data quality filtering (Supplementary
Fig. 1), we identified 826 samples and 229,317 SNPs to be included in Dataset 2.
The isolates in Dataset 2 were initially assigned to country based on the available
metadata, which was further evaluated using 1) country-level prediction using the
BALK classifier against all 229,317 SNPs and 2) manual confirmation by

constructing a neighbor-joining tree based on genetic distance. Isolates whose
country assignment differed from the prediction result and that were not in the
same country cluster as observed manually from the neighbor-joining tree were
considered suspected imported infections and removed from the dataset to produce
Dataset 3, comprising 799 samples and 229,317 SNPs. For comparative assessment
of candidate SNP panels, a new dataset (Dataset 4) was produced which comprised
the samples in Dataset 3, but only the SNPs selected by the consecutive SNP
selection process (we refer to these SNP panels as GEO barcodes) and 38 assayable
SNPs from a commonly used 42-SNP P. vivax barcode developed by the Broad
institute12. The SNP panel comprising the 38 assayable Broad Institute barcode
SNPs is referred to as BR38. The BR38 SNP panel was integrated in the study for
evaluation on its own as well as in combination with the newly selected GEO SNP
panels as it has been implemented in several countries.

A similar filtering process was applied to the validation set. All recurrent
infections were removed, and the SNP positions were filtered to only include the
229,317 SNPs defined in the training Dataset 4. Any remaining non-independent
samples were then removed using the same 0.001 threshold of genetic distance,
using a similar procedure to that described for the training set. Country-level
assignment was assessed using the same trained BALK classifier as the training set,
and a neighbor-joining tree was constructed by combining with Dataset 3 for
manual confirmation. After the various filters, a set of 142 samples remained in the
validation set. Supplementary Fig. 2 presents the neighbor-joining tree of Dataset 3
combined with the 142 validation samples at the 229,317 SNPs. Further SNP
filtering to only include the BR38 panel and newly selected GEO SNPs were
performed to produce the Independent Validation Dataset. More detailed
information on the data preparation methods is available in the Supplementary
Methods.

Bi-Allele likelihood classifier. Our study required the development of flexible
methods to classify P. vivax infections/genetic data by country. For this purpose, we
required a classifier with the following properties: 1) capable of evaluating existing
SNP panels, 2) amenable to new SNP additions to accommodate new countries or
genetic shifts over time, 3) able to classify data inputs containing genotype fails and
bi-allelic heterozygous genotype calls arising from polyclonal infections, and 4) able
to provide confidence values of prediction. We identified the Naive Bayes classifier
as having the properties that cater to the above requirements after application of
several modifications. We derived a Bi-Allele Likelihood (BALK) classifier from
Bernoulli Naive Bayes with modification by replacing the likelihood equation of its
classification rule from the Bernoulli probability distribution to a binomial N= 2
distribution to handle the heterozygous calls and setting the prior probability to a
uniform distribution, making the classifier only depend on the likelihood of the
SNP data. The BALK classification rule is presented in equation 1.

maxPrðCjXÞ � PrðXjCÞ ¼
Yn

i

pxii � ð1� piÞð2�xiÞ ð1Þ

Where X is the SNP data set of a sample, C is a group (or a country), xi is the
number of alternate alleles at position i and pi is the frequency of the alternate allele
at position i of country C counted as diploid samples. A more comprehensive
description of the development of BALK classifier is available as Supplementary
Methods.

Candidate SNP selection. Our objective was to identify the most parsimonious
SNP panels for country-level classification, aiming for less than 60 SNPs in these
panels; this threshold for the new SNP panels was based on several considerations.
In accordance with the multiplexing features of the Illumina platform and con-
sidering primer, library preparation and sequencing costs, as well as the practical
challenges of preparing PCR pools across large numbers of primers, we identified a
maximum of 100 SNPs in total (across the new SNP panels and previously
described Broad barcode i.e., BR38) as a feasible threshold for a geographic barcode
for P. vivax.

An overview of the candidate SNP selection steps is outlined in section b) of the
flowchart presented in Fig. 1. Optimal SNPs for country classification were selected
using the following approaches: DecisionTree, HFST-0.90 and HFST-0.95 (HFST
with Fst threshold of 0.9 and 0.95 respectively), which are detailed in the
Supplementary Methods. Briefly, for the DecisionTree (DT) approach, Dataset 3
was subjected to a DT implementation of the Python sklearn library. The SNP set
selected by DT was then reassessed with the BALK classifier in the training set
using country-level MCC (Matthew Correlation Coefficient) scores as well as
pooled (cross-country) median and minimum MCC scores. The MCC provides a
measure of the quality of the classifications, ranging from -1 (total disagreement) to
1 (perfect prediction)30. For the HFST (Hierarchical FST) approach, as a
bifurcating tree guide, a neighbor-joining population tree was constructed based on
Nei’s net average population genetic distance matrix and then re-rooted at the
midpoint (Supplementary Fig. 5). The HFST approach entailed traversing across
the bifurcating guide tree and randomly selecting the SNPs with FST higher than a
certain threshold between the two populations represented by the two nodes of the
branch. If none of the SNPs were above the threshold during guide tree traversal,
the DT method was employed to obtain additional SNPs to separate the two nodes
of the branch. As with the DT approach, country-level MCC scores and pooled
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(cross-country) median and minimum MCC scores of each of selected SNP set
were calculated using the BALK classifier trained against the selected SNPs with
Dataset 3.

For each approach, Dataset 3 was used for both training and testing set in 500
repeats to obtain 500 SNP sets. The top-25 SNP sets from the 500 SNP sets, ranked
based on the average of their minimum MCC and median MCC scores over
country-level MCC scores, were collected and subjected to the 500 repeats of
stratified 10-fold cross-validation to avoid over-fitting each SNP set by re-ranking
based on their average minimum MCC and median MCC scores to derive the best
SNP set for each approach.

Comparative assessment of candidate SNP panels. An overview of the steps
involved in the comparative evaluation of the SNP panels is outlined in section c)
of the flowchart presented in Fig. 1. To compare the Broad SNP panel to the three
new candidate SNP panels identified by DT, HFST-0.90, and HFST-0.95 approach
a 500 repeat, stratified 10-fold cross-validation was undertaken on each SNP panel
using Dataset 3.

Additionally, to assess the durability of prediction performance of the candidate
SNP panels with different levels of missing data (analogous to genotyping failures),
simulations were run after removing genotype data randomly. The BALK classifier
was trained against the candidate SNP panels using all samples. For each country,
25 samples were sampled randomly with replacement and genotype calls were
removed from the SNP sets in 10%, 20% and 30% proportions. The random
samples were then subjected to the trained classifier. This process was run in 250
repeats and the MCC score of the prediction for each country was reported.

To evaluate the performance of the candidate SNP panels with new sample sets
(as opposed to using the re-sampling technique of the cross-validation strategy),
the trained BALK classifiers were run on the Independent Validation Dataset and
MCC scores reported for each country.

Web-based data analysis and sharing platform for end-users. To establish
accessible informatics tools for end users, an online platform was created incor-
porating data classification tools for determining the most likely country of origin
of a sample using genetic data derived from different barcodes. Existing source
code, developed for a microsatellite-based P. vivax data sharing and analysis
platform31, was modified to create a new web-based platform (vivaxGEN-geo), to
collate SNP data generated at the geographic barcode. This approach was chosen
owing to the ability to i) incorporate manual SNP sets allowing incremental
improvements of the barcode in future, ii) evaluate barcodes with incomplete data
owing to genotyping failures, and iii) evaluate heterozygous genotype calls, which
reflect polyclonal infections. For optimal accuracy, the BALK classifier provided on
the online platform has been trained with 941 samples, comprising Dataset 2
(N= 799) plus the Independent Validation Dataset (N= 142). The classifier tool
reports the three highest likelihoods for country of origin and their associated
probabilities. The classifier tool reports the three highest likelihoods for country of
origin and their associated probabilities. The probabilities were computed using the
isotonic method as implemented in CalibratedClassfierCV of sklearn library, with
stratified 4-fold cross-validation for the calibration dataset. The web platform can
receive the input data in string-based barcode representation, column-based tab-
delimited text files, and VCF files.

Ethics. All samples were collected with written informed consent from patients, or
their legal guardians as detailed in the Malaria Genomic Epidemiology (Malaria-
GEN) P. vivax Genome Variation Project release 4 data note26.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The study used genomic data from the MalariaGEN P. vivax Genome Variation Project
release 4 (Pv4)26. VCF and zarr format files containing the genotype calls used in the
study are available open access on the MalariaGEN data resource page at https://www.
malariagen.net/resource/3026.

Code availability
All custom, in-house scripts used for data filtering, analyses and visualization are
available from https://github.com/vivaxgen/geo. The VivaxGEN-geo web service is
accessible at http://geo.vivaxgen.org/. In addition to the new geographic SNP panels
described in this study, vivaxGEN-geo provides classification of other SNP panels
including a published Vietnamese barcode (VN40)18.
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