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ABSTRACT: Molecular dynamics simulations have been used in
different scientific fields to investigate a broad range of physical
systems. However, the accuracy of calculation is based on the model
considered to describe the atomic interactions. In particular, ab
initio molecular dynamics (AIMD) has the accuracy of density
functional theory (DFT) and thus is limited to small systems and a
relatively short simulation time. In this scenario, Neural Network
Force Fields (NNFFs) have an important role, since they provide a
way to circumvent these caveats. In this work, we investigate
NNFFs designed at the level of DFT to describe liquid water,
focusing on the size and quality of the training data set considered.
We show that structural properties are less dependent on the size of
the training data set compared to dynamical ones (such as the
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diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good

precision.

B INTRODUCTION

Molecular dynamics simulations have been used in different
scientific fields to investigate a broad range of physical systems,
such as thermodynamic properties of liquids and physico-
chemical aspects of interfaces and biomolecules.' ™ Its success
relies on a number of factors, for example, the functional form
assigned to describe inter- and intra-atomic interactions, the
parametrization procedure (obtaining the potential parame-
ters), and the %uality of data employed - experimental or ab
initio one.”>” ™" Most of the classical potentials are physically
and/or chemically motivated, in which a simple analytical
functional form is usually considered such as the Lennard-
Jones potential.'' As a consequence, transferability and
accuracy are a common issue in this area of research.”"?

In the particular case of water, many classical empirical
models have been proposed to describe its properties.
Although some classical models, such as the MB-Pol, provide
fairly good results for water,””~'> there is no single water
model capable of exactly reproducing all experimental results.'®
In fact, over the last decades, there has been an advance in the
understanding of the properties of water both by theory/
simulations as well as experimentally. However, there are still
some of its properties which are not yet fully understood, for
example, the microscopic origin of the water anomalies.'”
From a microscopic point of view, the quantum nature of the
hydrogen bond network, the interplay between short- and
long-range interactions, and nuclear quantum effects make the
liquid water intrinsically difficult to be modeled. In this way,
based on the nature of the phenomena that governs the

© 2023 American Chemical Society

WACS Publications 1422

physical and chemical properties of liquid water, first-principles
simulations seem to be the most appropriate choice, since they
have, by construction, an accurate predictive potential. These
types of simulations have the advantage of forgoing the
requirement for a model or the parametrization of any
experimental data. In particular, ab initio molecular dynamics
(AIMD) allows one to obtain the energy/forces on-the-fly by a
quantum mechanical method such as density functional theory
(DFT)"® at each time step. The caveat is the limitation to
small system sizes and short simulations time.” Furthermore,
the quality of the AIMD simulations is closely determined by
the chosen exchange-correlation (xc) functional.'” ™!

In this scenario, machine learning (ML) potentials - also
known as ML force fields'* - have introduced a paradigm
change as one can now combine the quantum accuracy of
AIMD with computational efficiency of empirical interatomic
models. This allows one to simulate large systems for a long
time with ab initio accuracy. These methods have been
recognized as promising alternatives to underline new physical
phenomena and aid in materials-discovery processes.”'>***°
In particular, the microscopic comprehension of bulk water can
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benefit from computer simulations based on ML poten-
tials 263134

Many different ML methods have been used to construct
these ML-based potentials, for example, artificial neural
networks, ¥*®37*° kernel-based methods,*>*' Gaussian ap-
proximation potentials,"*** and atomic cluster expansion.** In
particular, deep Neural Network (NN) approaches have been
shown to be a versatile tool able to produce accurate Force
Fields (FFs) trained with DFT calculations.””?® The
successful/accuracy of ML potentials is directly related to the
quality and size of the training data set employed.'>**
Usually, deep NN approaches require a large amount of data
but tipically provide a high accuracy.”*>*” Therefore, having a
deep NN potential trained with less DFT data reference is a
very important issue,"*® since the DFT calculation of the
reference data set is highly computational demanding.

In this work, we investigate deep NNFFs designed at the
level of DFT to describe liquid water, focusing on the size and
quality of the training data set considered. Here, we chose to
investigate the ab initio training data set based on the SCAN
functional,”” since it has shown some promising results for
water.”***°7%° We show that correctly sampling the data set
(selecting reference data for the training process) is a crucial
step, and devising a method to efficiently obtain uncorrelated
structures that provide a good distribution over the phase
space allows one to significantly reduce the amount of data and
the size of the NN required to have accurate NNFFs. As a
result, we also show that the structural properties are less
dependent on the size of the training data set compared to
dynamical ones (e.g, the diffusion coefficient.)

B METHODS

Computational Details. A crucial step in the development
of the NN force field was to carefully select the bulk water
configurations, which included configurations with long and
short OH bonds before computing the DFT energies and
forces used in the training process. The protocol to obtain
those configuration was as follows: (i) the selected
configurations were obtained considering nuclear quantum
effects (NQEs) in classical MD simulations by carrying out
partially adiabatic centroid molecular dynamics (PACMD)>’
simulations using a flexible water model (q—TIP4P/ F force
field®®) for a system composed of 64 water molecules; (ii)
good phase space sampling was obtained by performing
simulations with different temperatures (T = 300 and 600 K)
and densities (p = 0.88, 1.0, and 1.2 g/cm?) and (iii) selecting
uncorrelated configurations (i.e, geometrical structures)
through radial distribution functions, choosing those that
maximized the Jensen-Shannon distance.’” In this way, a broad
range of intra- and intermolecular geometric configurations
were present in the training set.*®

For each set of PACMD simulations (different T and p), the
geometries were collected every 100 fs from a total simulation
time of 1 ns (10* configurations). After geometric selection
criteria, the number of configurations was 5000 (1000) for T =
300 K (600 K), which resulted in 18 X 10° snapshots. Then,
for each configuration, we performed a single point DFT
calculation to obtain the total energies and forces. In our
particular case, the reference data were obtained using the
Vienna Ab initio Simulation Package (VASP)® and SCAN
functional.”” The plane wave basis was set up to an energy
cutoff of 1600 eV (118 Ry), and the core—valence interaction
was treated by the projected augmented wave (PAW)
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method.®" Note that all DFT calculations are completely
independent from each other and thus can be performed
separately.

Training Process. A crucial point in the design of neural
network-trained force fields is to determine the minimum size
of the training set to obtain ab initio quality results. In this way,
we trained our NNFFs using a randomly selected subset of the
training data set ranging from 10% to 100% of the total data
set.

We first selected 90% of the configurations as the training set
and 10% as the testing set for assessment, which means 16200
(training) and 1800 (testing) structures. It is important to
emphasize that the data used in the training is 1. = fpergy +
Mo We have one energy value per configuration (64 H,0),
Meyergy = 16200. Whereas for force, there are three components,
{f, f, £}, for each atom, ie. ng,, = 16200 X 3 X 192.
Therefore, we have ny,, = 9347400 training data.

On the other hand, in order to avoid overfitting (when the
model performs worse on the testing data than on their
training set), the number of fitted parameters, Mpary cannot be
larger than the number of training data points. In this work, we
chose 1444/ 1y to be at least 8. Note that in order to avoid
overfitting one can either increase the size of the training set or
reduce the number of layers and/or the number of neurons of
each layer.”*

Therefore, we scaled down the neural network in order to
keep the total number of fitted parameters in the same
proportion. For example, for the NN topology, the number of
hidden layers is 4, and the number of neurons in each layer is
set to (32, 16, 4, 2) and (320, 160, 32, 16) for the 10% and
100% cases, respectively.

We used the current version of the DeePMD-kit code® to
generate deep neural network potentials for bulk water based
on the SCAN functional. In particular, we use the Deep
Potential-Smooth Edition descriptor, where the full relative
coordinates are used to build the descriptor.”®* The number of
hidden layers is kept fixed, and the hyperbolic tangent was used
as an activation function in the hidden layers. The loss function
was minimized with the Adam stochastic gradient descent
method,** composed by the mean squared errors of the
energies and forces with a starting and stopping learning rate
equal to 107 and 3.51 X 107% respectively. The training
process undergoes 2 X 10° steps in total. Further computa-
tional details can be found in the Supporting Information (SI).

Deep NN Molecular Dynamics. After we have obtained
different deep NNFFs for liquid water trained with subsets of
our DFT training data set, we can then perform deep NN
Molecular Dynamics (NN MD) using the LAMMPS
simulation package® and the DeepMD plugin.® In this way,
we can investigate the effects of the training data set size on the
convergence of physical properties of water.

Simulations of water at different temperatures T and
pressures P were performed to investigate the density
convergence as a function of the training set size. These
systems were first equilibrated over 50 ps by performing
isothermal—isobaric (NPT) simulations (using the Nose-
Hoover thermostat and barostat®). The equilibrium densities
were then obtained averaging over 2 ns.

We also carried out NVT simulations of bulk water (512
molecules), controlling the temperature via a stochastic
velocity rescaling thermostat.’° These large systems were
equilibrated over 150 ps, and then additionally, 2 ns
simulations were carried out at the production stage.
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Figure 1. Parity graphs for energy and forces evaluated on the training and test data sets, where a) and b) refer to the 100% case while c) and d)
refer to the case of 10%. The Eyy and Fyy are the NN predicted energy and force, respectively. The DFT data reference are represented by Eppy

and Fppr.

B RESULTS AND DISCUSSION

In order to illustrate the performance of our deep NN
potential, we show in Figure 1 the parity graphs for the (a)
energy and (b) force components. In this particular case, we
tested our model on the test set (10% of DFT data reference)
and also on the training set itself (90% of DFT data reference),
which shows that the NN operates well on both data sets with
roughly similar errors, that is a good feature to indicate that the
fitted NN is neither underfitting nor overﬁtting.8

In particular, we find that the RMSEs (Root Mean Squared
Errors) on the test set are ~46 meV/ A (force) and ~0.53
meV/atom (energy). As recently pointed out by Wen and
collaborators,” the RMSE for forces and energy for a good
(high accuracy) deep potential should be of the order of <50
meV/ A and ~1 meV/atom, respectively.

We performed a K-fold cross-validation procedure (see the
SI for technical details), where our DFT reference data (18,000
snapshots) were separated into 10 subsets of equal size. We
then trained/tested different models with different training
subsets, while keeping the proportion of 90% for training and
10% for testing. We show in the SI the RMSEs obtained
(Table 1-SI). We find that the testing errors do not change
considerably with different training subsets, and the average of
RMSE errors for energy and forces is equal to 0.533 meV/
atom and 46.6 meV/ A, respectively. The deviations are on the
order of 0.002% (energy) and 0.12% (force), which represents
that the DFT reference data are uncorrelated.

In other words, the cross-validation tells us that the trained
NNFF does not depend on a particular partition of the DFT
data set. Thus, we can train different NNs using a randomly
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selected subset of the training data set. To exemplify it, we
show in Figure 1c) and d) the parity graphs for the 10% case
(1620 randomly selected snapshots used to train a deep
NNFF), which shows that this NNFF also performs well on
both the testing and training data sets. In this way, we show in
Figure 2 the RMSE and MAE (Mean Absolute Error) for
energy (top panel) and force (bottom panel) as a function of
the training data set size.

As we can see in Figure 2, the four curves show an initial
decrease in error values, and after the size of the data set has
reached 20%, they become essentially constant. However, it
should be mentioned that even the 10% case is within the
accuracy reported in the literature.’

Nonetheless, the observation only based on the errors
evaluated on test data sets is not enough to affirm that the
NNFF will work for a long MD simulation. For example, we
considered a different case, where the NNFF was built with
correlated data obtained from a 330 K NVT AIMD simulation
with the van der Waals exchange—correlation functional (vdW-
BH®). In this case, the training data set has a size similar to
the 50% uncorrelated case presented in Figure 2. Although we
found the RMSE errors on the test data set smaller than those
presented in Figure 2, we cannot simulate bulk water for a long
time. The energy is only conserved up to ~20 ps; after that, the
system makes nonphysical bonds between the atoms, and the
energy is no longer conserved. See the SI for further details.

On the other hand, the deep NNFF trained with only
uncorrelated 1620 frames (10% case) allows one to simulate
water systems for long times, which shows that correct phase
sampling is more important than just the amount of data used
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Figure 2. RMSE and MAE for energy (top panel) and forces (bottom
panel) as a function of the training set size.

in the training process. For example in Table 1, we show the
equilibrium water densities, p,,, obtained at different temper-

Table 1. Equilibrium Densities, p,,, for Liquid Water with
128 H,O at Pressure Equal to 1 Bar and Temperature Equal
to 300 and 350 K“

10% p,, [g/cm’] 100% p,, [g/cm’]

water: T = 300 K 1.015 1.013
water: T = 350 K 1.020 1.024
ice I: T =273 K 0.957 0.961

“We also show the density result for ice I, with 96 H,O at T =273 K
and P = 1 bar.

atures and at fixed ambient pressure for the 10% and 100%
cases. We also show the result for the hexagonal ice I, with 96
H,0 at T =273 K and P = 1 bar.

It is worth mentioning that for liquid water both NNFFs
result in densities with the same precision although one was
trained with 1620 samples and another one was trained with
ten times more data points. Moreover, it also captures the ice
I, density in reasonable agreement with other SCAN results
under similar thermodynamic conditions (AIMD:*° 0.964 +
0.023; SCAN DFT>® 0.957 + 0.004; NNFF°® 0.949 + 0.001).

Another interesting point is that although our DFT data
reference was obtained for liquid water at different temper-
atures and densities, the NNFFs were able to estimate the ice
density. In fact, the capability of an ML potential trained on
liquid water alone predicting the properties of the ice phases
was also recently reported by Monserrat et al.*”
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In Figure 3, we show the pair correlation functions for
oxygen—oxygen (goo), oxygen—hydrogen (goy), and hydro-
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Figure 3. Radial distribution function for (a) O—0, (b) O—H, and
(c) H-H pairs obtained via NNMD. Each percentage presented
refers to the fraction of the original data set used for training. The goo
and gop results® obtained from AIMD based on the SCAN functional
for 55 water molecules at T = 300 K are represented by dashed lines.
The insets in the goo panel show the points of the first and second
peaks. The experimental results from Soper®® are also shown.

gen—hydrogen (guz1), which are the main structural descriptors
for water.””~’% These results were obtained for liquid water
composed by 512 molecules at fixed density (p = 0.997 g/cm?)
and temperature (T = 300 K). We also show the AIMD results
for the SCAN functional for 55 water molecules at the same
temperature recently presented by Yao and Kanai.>® As it can
be seen, all results are very similar.

For a better comparison between the NNFFs, we measured
the relative error between the radial oxygen—oxygen
distribution function for each trained NNFF with respect to
the hundred percent case, as it is shown in Figure 4. Note that
the errors are roughly the same, fluctuating around zero
(approximately 2% of error). The only exception is the 10%
case that presents errors of ~6% in the range of 3 < r < 5 A.

Furthermore, we also analyzed the vibrational spectra
obtained from different molecular dynamics simulations
(deep NNFFs trained with 10% and 100% of the training
data set). All of them have approximately the same pattern,

https://doi.org/10.1021/acs.jpcb.2c09059
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Figure 4. Relative error of the O—O radial distribution function for
different data set sizes, as a function of the distance, , in angstrom.

which means that the results for the structural and vibrational
properties of bulk water are mostly independent of the size of
the training data set employed to build deep NNFFs for liquid
water, as long as they have been well chosen.

More importantly, since MD simulations can now be
performed for a long time scale, we can investigate the
dynamical properties as a function of time. An important
feature of bulk water that is not usually well described by
AIMD is its self-diffusion coefficient.”® In fact, the self-diffusion
coeflicient can depend on many factors even when obtained
from a classical MD simulation.'®”" In Figure 5, we show the
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Figure S. Self-diffusion coefficient as a function of simulation time, for
512 water molecules at T = 300 K and p = 0.997 g/cm’.

self-diffusion coefficient as a function of simulation time, where
it was obtained from the Einstein equation of the mean square
displacements of the center of mass of water molecules. For
further technical details, see ref 26. As it can be seen, as the
time increases, the fluctuations are reduced, and the value of D
converges. As already shown, this only occurs after 2 ns, way
above conventional AIMD capabilities. At a final time (2000
ps), the 10% case is the only one that presents a higher
deviation with respect to the 100%.

It should be mentioned that in earlier works,”® the training
data set used to build the ML force fields typically came from
AIMD simulations. For example, the data obtained for a short
simulation time (~20 ps), resulted in a total of 40 X 10°
correlated conﬁgurations.8 On the other hand, more recently
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active learning procedures have allowed for the construction of
a ML potential with fewer training data points.” In the work of
Malosso et al,, for example, the ML potential for liquid water
was trained with 4000 conﬁgurations,56 which is in agreement
with the size of the training data set required for the
convergence of the self-diffusion coefficient present in Figure
S. Thus, it is possible that by combining uncorrelated
snapshots and active learning the size of the data set could
be reduced even further.

Bl CONCLUSIONS

In this work, we analyzed deep neural network potentials for
liquid water/ice T, based on the SCAN xc-functional.*” We
show that the structural properties such as the equilibrium
densities at different temperature and pressures for water are
quite independent of the size of the training data set
considered, as the minimum amount employed here was the
energy and forces of 1620 structures (64 H,0). This quantity
is much smaller than what is typically used in the training of
other NN. This can be attributed to the method of selecting
the snapshots for training, which provide a breadth of
structures that best samples the phase space. In this way, we
have found that the density, vibrational spectra, and the radial
distribution function of water are less dependent on the size of
the training data set compared to dynamical ones (e.g, the
diffusion coefficient.) Finally, we envision that the uncorrelated
physical inspired training data set procedure proposed here
(sets that include a broad range of short and long OH bonds)
together with active learning can be a way to produce reliable
ML potentials constructed with fewer DFT training data
points.
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