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A B S T R A C T

The interaction of confined atoms with a single mode radiation field is the main subject in the theory of cavity
quantum electrodynamics. The constraints imposed by the cavity on matter and radiation fields give rise to
collective phenomena. One possible outcome is the enhanced and coherent spontaneous emission of photons
by the atoms: the superradiance. As predicted by Dicke, conservation laws are essential in superradiance
and are derived from the matter-interaction Hamiltonian. Here, we consider 𝑁 two-level ultracold atoms
interacting with a single mode bosonic field, in the Dicke Hamiltonian, and trapped inside a non-dissipative
optical cavity. Numerical and analytical results derived from finite size regime indicate the matter–radiation
coupling strength, 𝜆, is insufficient to draw the complete picture of the system. Instead, they support the
relevance of 𝑈 (1) symmetry, which prompts the study of (i) particle and angular momentum conservation,
(ii) the constraints imposed to correlation functions and (iii) the influence of symmetries in the system
dynamics. Further exploring the 𝑈 (1) and rotational symmetries permits a simple interpretation of antirotating
contributions as spin–orbit operators. As application, we show two species of ultracold clouds develop
interactions due to antirotating operators.
Introduction

Interference is a crucial phenomenon to tailor optical response of
nanoscale systems [1–3] and lies in the foundation of quantum theories.
It becomes even more relevant when short range interactions are strong
and shape the system dynamics [4]. Examples are readily available in
condensed matter physics such as quantum dots [5], metallic nanopar-
ticles [6] and nanostructures [7]. Quantum interference is also an
integral part of quantum information theory [8,9] and the study of
ultracold atoms [10,11]. In particular, the aorecited physical systems
are known to share at least one superradiant phase. Superradiance is
the collective phenomenon where 𝑁 particles confined inside an optical
cavity spontaneously emit coherent light. The shared electromagnetic
field inside the cavity produces interatomic correlations [12], provided
the typical distance between atoms is smaller than the emitted photon
wavelength [13–15]. In this regime, the spontaneous photon emission
does not occur as 𝑁 independent events, even for small 𝑁 , as verified
by recent experiments [16]. This collective behaviour emerges from
fluctuations which further develop a large positive feedback [17].
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For non-pumped systems, the characteristic cavity photo-emission is
a sharp pulse, with duration 𝜏sr = 𝜏sp∕𝑁 , where 𝜏sp is the standard
spontaneous decay time, and intensity proportional to 𝑁2 [14,18],
which is one hallmark of the superradiance effect.

Central to any discussion regarding cavity models is the inclusion
of antirotating operators. The nomenclature antirotating (or counter-
rotating) is derived from the rotating wave approximation (RWA),
where the rapid oscillations in the interaction picture are neglected,
providing an extensive simplification to the interpretation of particle
absorption–emission process [19]. However, there is enough evidence
supporting that the antirotating terms cannot be discarded [20]. As
demonstrated in Ref. [21], the entanglement among qubits undergoes
a discontinuity due to the antirotating operators. When the RWA is in
place, there is no such observation. Beyond the RWA, an exact solution
for all arbitrary coupling is available in the thermodynamic limit us-
ing the Holstein–Primakoff transformations [22,23], which allows the
identification of quantum phase transitions and chaotic regimes. For
finite 𝑁 , only numerical solutions are available for the whole coupling
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range [24]. As such, several analytical techniques have been introduced
along the years to mitigate the RWA while still keeping its convenient
absorption–emission interpretation [9,25–28].

Despite the experimental and theoretical advances in the study
of cavity models, particle and angular momentum conservation are
often neglected subjects. Here we study the symmetries present in
the Dicke Hamiltonian for a finite number of two-level atoms, at
zero temperature and without dissipation, where both particle and
momentum conservation are crucial. The motivation is quite simple:
the matter–radiation interaction is conservative and relies on bilinear
operator products [29]. Yet, it exhibits neither explicit photon number
nor atomic excitation conservation. However, the electric charge inside
the cavity is a conserved quantity and, thus, the model is 𝑈 (1) invariant.
The existence of such conserved quantity has subtle ramifications: the
average contribution of antirotating operators vanishes for suitable first
kind gauge transformations, as we demonstrate in this research. This
property may also be used to evaluate the mean energy, reducing the
procedure to the minimization of functional equations with constraints.
The other relevant symmetry we considered is the conservation of an-
gular momentum. The underlying conservation law defines a set of Lie
operators sharing one common parameter, the photon cutoff number
𝑙. In the finite regime, the matter–radiation interaction unfolds as a
combination of spin–orbit interactions. As an application, we study the
interference among two distinct and non-interacting gas clouds sharing
the same non-dissipative optical cavity. The constraints imposed by the
cavity, electric charge and angular momentum conservation allow us to
explicitly unveil the interaction between both gas clouds. This property
enables the interference among the atomic clouds and heavily depends
on antirotating operators, therefore neglected under RWA.

The scheme of Fig. 1 illustrates the underlying physical processes
described by the Dicke model. Let 𝐻 be the Dicke Hamiltonian that
describes matter–radiation interaction:

𝐻 = ℏ𝜔𝑎†𝑎 +𝛺𝐽 𝑧 + 𝜆(𝑎 + 𝑎†)(𝐽− + 𝐽+), (1)

where [𝑎, 𝑎†] = 1 for single bosonic field operators trapped in the optical
cavity, with 𝜔 being the frequency of the cavity mode; 𝐽 𝛼 =

∑𝑁
𝑘=1 𝐽

𝛼
𝑘

(𝛼 = 𝑧,±) and 𝐽 𝑧𝑘 corresponds to the energy level operator for each
particle (𝑘 = 1,… , 𝑁); the Lie operators 𝐽 𝛼𝑘 satisfy [𝐽+

𝑚 , 𝐽
−
𝑛 ] = 2ℏ𝐽 𝑧𝑚𝛿𝑚𝑛

and [𝐽 𝑧𝑚, 𝐽
±
𝑛 ] = ±ℏ𝐽±

𝑚 𝛿𝑚𝑛. Due to the above algebraic relations, the
detuned energy difference between two atomic levels is 𝛥𝐸 = ℏ𝛺,
i.e., 𝛺 is the resonance frequency of the atoms. Radiation and matter
operators, as usual, commute with each other, [𝑎, 𝐽 𝛼𝑘 ] = [𝑎†, 𝐽 𝛼𝑘 ] = 0,
for any 𝑘 and 𝛼. The matter–radiation interaction is expressed by the
last parcel in the right-hand side of Eq. (1), quantified by the coupling
𝜆. The interaction is Hermitian and contains two distinct contributions.
The first contribution is the so-called antirotating term, 𝑎†𝐽+

𝑘 + 𝑎𝐽−
𝑘 ,

often misunderstood as the non-conservative interaction while the
opposite holds for the rotating term, 𝑎𝐽+

𝑘 + 𝑎†𝐽−
𝑘 . The puzzling non-

conservative aspect of antirotating operators arises from the duality of
local two-level operators 𝐽𝑘: they share mixed fermionic and bosonic
rules, {𝐽 𝛼𝑘 , 𝐽

𝛽
𝑘 } = (ℏ2∕4)𝛿𝛼,−𝛽 and [𝐽 𝛼𝑘 , 𝐽

𝛽
𝑘′ ] = 0, for 𝑘 ≠ 𝑘′. This severely

impairs the particle absorption–emission interpretation as the particles
under consideration are neither fermions nor bosons [30,31]. The same
phenomenon is a common occurrence in condensed matter problems,
where suitable algebraic transformations are used to select only one be-
haviour. Obviously, if cavity losses are neglected, the Hamiltonian does
not depend explicitly on time and thus conserves the total probability
and also energy.

This paper is organized as follows. In Section ‘‘Finite size effects’’,
we report numerical results for finite number of atoms 𝑁 , at resonant
frequency 𝜔 = 𝛺. Finite size effects are discussed and it is shown their
characterization depends on both coupling strength 𝜆 and number of
photons stored in the cavity. In Section ‘‘𝑈 (1) symmetry’’, the latter
are used as supporting evidence to investigate the electric charge
conservation and 𝑈 (1) symmetry. Gauge invariance is then employed
2

Fig. 1. Matter–radiation interaction in the Dicke model. A state with 𝑛 photons and
𝑀𝑧 + 𝑁∕2 excited atoms undergoes four different process: atomic excitation (decay)
and photon absorption (emission) ; atomic decay (excitation) and photon absorption
(emission). One disregards operators 𝑎𝐽−

𝑘 and 𝑎†𝐽+
𝑘 in the rotating wave approximation.

This approximation eliminates both off diagonal and diagonal operators whenever 𝐻2

is concerned, thus removing corrections to energy and correlations. Examples may be
found even for simple diagonal operators such as (𝑎†𝐽+

𝑘 + 𝑎𝐽−
𝑘 )

2 = 2𝑎†𝑎𝐽+
𝑘 𝐽

−
𝑘 − 𝑎†𝑎 +

𝐽+𝐽 + 1.

to determine the constraint which the system must abide and its impli-
cations to the equations of motion. This constraint allow us to introduce
finite angular momentum operators in Section ‘‘Angular operators’’.
Finally, in Section ‘‘Two atomic species’’, we employ our formalism
to a cavity model describing the interference between non-interacting
ultracold gas clouds, composed by two distinct atomic species.

Finite size effects

Macroscopic properties are often described by atomic and photon
densities, 𝑁∕𝑉 and ⟨𝑛⟩∕𝑉 , respectively. The thermodynamic limit is
reached when both ratios have well defined values as the volume
𝑉 → ∞. In this regime, extensive quantities scale with both mean
number of photons, ⟨𝑛⟩, and mean number of atoms in the excited
state, ⟨𝐽 𝑧∕ℏ+𝑁∕2⟩, trapped inside the cavity. This observation agrees
with general thermodynamic guidelines. However, the finite regime
also stores interesting non-trivial physical properties and are the main
focus of research areas such as quantum information and nanotechnol-
ogy. These properties are derived from finite size effects, which are
non-extensive corrections to extensive quantities. In this section, we
introduce the physical scales to measure the finite size effects within
the Dicke model, which ultimately allow us to investigate its symmetry
content.

For very large photon density, the radiation field inside the cavity
remains nearly unchanged in the limit 𝑁∕𝑉 → 0 and, thus, is described
by coherent states |𝛾⟩. Under these assumptions, the Hamiltonian in
Eq. (1) takes a much simpler form: 𝐻ch = ℏ𝜔|𝛾|2 +𝛺𝐽 𝑧 +2𝜆Re(𝛾)(𝐽− +
𝐽+), i.e, 𝑁 disjoint two-level operators, each with eigenenergies 𝐸± =
±(ℏ𝛺∕2)

√

1 + 16Re(𝛾)2(𝜆∕𝛺)2. Hence, the eigenspectrum is obtained
by combining 𝐸± for 𝑁 atoms, which may be used to compute the
partition function 𝑍(𝑇 ), at a given temperature 𝑇 . However, the crucial
information to be learn here is that the mean photon density ⟨𝑛⟩∕𝑉 =
|𝛾|2∕𝑉 remains unchanged.

The remaining case occurs when the average photon density also
vanishes in the thermodynamic limit, ⟨𝑛⟩∕𝑉 → 0. In this regime, finite
size effects are expected to produce relevant corrections. Therefore,
to investigate them, one must first reduce or limit the average num-
ber of photons in the cavity. One may consider an adiabatic process
where one photon is removed from the cavity, while kept at very low
temperatures, 𝑇 → 0. If the process is iterated, the assumption that
the radiation fields are well described by coherent states no longer
holds. The assumption breaks when ⟨𝑛⟩ approaches ⟨𝐽 𝑧∕ℏ + 𝑁∕2⟩
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Fig. 2. Finite size effects. Number of excited atoms ⟨𝐽 𝑧∕ℏ+𝑁∕2⟩ and the mean number of photons ⟨𝑛⟩ for the ground state in the Dicke model, in (a) and (b), respectively, against
photon cutoff 𝑙. Corrections due to finite 𝑙 are observable for both quantities, approaching constant values, at distinct rates, at the critical photon cutoff 𝑙𝑐 (𝜆) for each coupling 𝜆.
n (c), the arrow shows the ratio 𝑟𝑁 (𝜆, 𝑙) = ⟨𝑛⟩∕⟨𝐽 𝑧∕ℏ +𝑁∕2⟩ ≡ 𝑟 develops a crossing point at the line 𝑙 = 𝑁 for any 𝜆 > 𝜆𝑐 , below which 𝜕𝑟∕𝜕𝜆 = 0 and strongly suppress finite
ize effects.
u
c

s a continuous function of matter–radiation coupling 𝜆. The same
esult is obtained if one introduces an explicit photon cutoff, 𝑙, for
hoton number inside the cavity, as done numerically in Ref. [32].
his procedure is equivalent to truncate the Fock space, allowing the
tudy of finite size effects on lower energy levels. It is important to
ention that states with higher energies often contains more photons

nd are more susceptible to the photon cutoff. In light of the above
onsideration, we restrict the following analysis to the lowest energy
evels, with strong emphasis on the ground state.

With the photon cutoff in place, one studies the average number
f photons, ⟨𝑛⟩, evaluated in the ground state as a function of 𝑙 and
, for fixed 𝑁 , 𝜔 and 𝛺. By varying 𝑙 while keeping 𝜆 fixed, one
inds the value 𝑙𝑐 above which any increase in 𝑙 keeps the photon
ensity unchanged. Similar behaviour is expected for ⟨𝐽 𝑧∕ℏ +𝑁∕2⟩ as
ell, since matter fields are coupled to radiation fields. Fig. 2 displays
umerical results for both ⟨𝐽 𝑧∕ℏ + 𝑁∕2⟩ and ⟨𝑛⟩ with 𝜆∕𝜔 = 𝑚∕10
3

𝑚 = 2, 3, 4) and 𝑁 = 10.
For 𝑙 ≫ 𝑁 , both average number of photons and average number
of excited atoms are expected to assume constant values. Thus, the
ratio 𝑟𝑁 (𝜆, 𝑙) = ⟨𝑛⟩∕⟨𝐽 𝑧∕ℏ + 𝑁∕2⟩ also acquires constant value and is
sed to identify the physical regime. In what follows, the analysis is
entred at the photon cutoff 𝑙 = 𝑁 , where finite size effects are expected

to be relevant, since the maximum number of photons in the Fock
space is equal to the number of atoms. In accordance with our previous
argument, corrections due to finite number of photon are expected for
increasing 𝜆 and 𝑙 → 𝑁 . In fact, numerical results obtained from exact
diagonalization of Eq. (1) show there exists a coupling value 𝜆𝑐 , at
𝑙 = 𝑁 plane, above which 𝑟𝑁 (𝜆 ⩾ 𝜆𝑐 , 𝑙 = 𝑁) ≡ 𝑟𝑐 (𝑁) and depends only
on 𝑁 as Fig. 2 illustrates. Thus, 𝜆𝑐 demarks two distinct behaviours for
the ground state with 𝑙 = 𝑁 . In the first region, 𝜆 < 𝜆𝑐 , the ground state
is insensitive to non-extensive corrections due to the finite number of
photons; in the second region, finite effects are relevant.

Note that these results were obtained for finite 𝑁 ∼ 𝑜(101) since the

computational code performs the numerical diagonalization of Eq. (1)
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Fig. 3. Noise-to-signal. In (a), the ground state signal-to-noise ratio 𝜇∕𝜎 is shown with 𝑁 = 10. At small matter–radiation coupling 𝜆 → 0, the lowest eigenenergy 𝐸0 = −ℏ𝛺𝑁∕2 is
ndependent on ⟨𝑛⟩ and the ground state exhibits strong resistance towards finite size corrections. For large coupling values, 𝜆 > 𝜆𝑐 , 𝜇∕𝜎 develops positive gradient with increasing
and 𝜆, thus requiring large 𝑙 to minimize surface effects. In (b), 𝑁 = 8 and similar behaviour is observed.
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hile the Fock space grows as 𝑙 × 2𝑁 . Nevertheless, inspired by our
revious result, we define 𝜆𝑐 as the coupling value where 𝑟𝑁 (𝜆, 𝑙 =
) is maximum, 𝜕 𝑟𝑁∕𝜕𝜆𝑐 = 0. In what follows, the Fock space is

rganized in a particular way to provide a simpler picture of ground
tate properties. Let the integer 𝜈 = 0,… , 𝑙 × 2𝑁 − 1 be the index for
ach vector |𝜙𝜈⟩ such that the ground state is |𝜓0⟩ =

∑

𝜈 𝑐𝜈 |𝜙𝜈⟩, with
= 𝛼 + ℎ𝑚, ℎ is the dimension of atomic Hilbert space, 𝛼 = 0,… , ℎ − 1
nd 𝑚 = 0,… , 𝑙−1. Under this data organization scheme, the number of
hotons increases by one every ℎ vectors. In addition, let 𝜇 =

∑

𝜈 𝜈|𝑐𝜈 |
2

nd 𝜎2 = ∑

𝜈 (𝜈 − 𝜇)2|𝑐𝜈 |2 be the ground state mean index and variance,
espectively. Increments in ⟨𝑛⟩ are related to increments in 𝜇; similarly,
ncrements of 𝜎2 are related to variations in both mean number of
hotons and mean number of excited atoms. At the particular case
= 𝑁 , the ground state is insensitive to finite size effects for 𝜆 < 𝜆𝑐 and,
ence, the signal-to-noise ratio, 𝜇∕𝜎, also follows the same behaviour,
s Fig. 3 illustrates.

For 𝜆 > 𝜆𝑐 , 𝜇∕𝜎 increases either due to increasing 𝜇 or decreasing
, which case requires the introduction of the Fano factor, 𝐹𝑁 (𝜆, 𝑙) =
2∕𝜇 ≡ 𝐹 , also known as dispersion index. Fig. 4 shows 𝐹 possess
maximum for 𝑙 ⩾ 𝑁 at 𝜆 = 𝜆𝑐 . Furthermore, 𝐹 is insensitive to

inite size effects as long as 𝑙 ⩾ 𝑁 and 𝜆 < 𝜆𝑐 , in agreement with our
revious result. However, it also describes three regions with distinct
haracteristics. In the first region , 𝑅1, Fano factor is a rapid decreasing
unction of 𝜆, suggesting strong finite size corrections; in the second
egion, 𝑅2, 𝐹 still decreases with 𝜆 but at slower rates than in 𝑅1,
reating large plateaus for 𝑙 ≫ 𝑁 . Thus, in 𝑅2 the shape of ground state
robability distribution remains approximately constant with varying
.

(𝟏) symmetry

Despite 𝜆𝑐 being defined via ground state, all remaining eigenstates
𝜓𝑘⟩ and eigenenergies 𝐸𝑘 exhibit corrections due to the finitude of
hoton cutoff 𝑙. To investigate the complete eigenspectrum, it is con-
enient to further examine the discrete symmetries present in Eq. (1),
articularly those concerning the atomic states. This is performed by
he cyclic permutation operator, 𝑇 , which acts over atomic states. For
nstance, let |↑↓ ⋯ ↓⟩ represent an atomic configuration with 𝑁 atoms,
ne of which is excited and indicated by the symbol ↑. The action
f 𝑇 over |↑↓ ⋯ ↓⟩ is 𝑇 |↑↓ ⋯ ↓⟩ = |↓↑↓ ⋯ ↓⟩. The eigenvectors
↑↓ ⋯ ↓, 𝑝⟩ of 𝑇 are constructed as linear combination, |↑↓ ⋯ ↓, 𝑝⟩ =
1∕𝑁𝑝)

∑𝑁−1
𝑘=0 (e2𝚤𝜋𝑝∕𝑁𝑇 )𝑘|↑↓ ⋯ ↓⟩, holding the permutation quantum

umber 𝑝 = 0,… , 𝑁 − 1. The normalization factor is 𝑁𝑝 and the
igenvalue equation reads 𝑇 |↑↓ ⋯ ↓, 𝑝⟩ = e−2𝚤𝜋𝑝∕𝑁 |↑↓ ⋯ ↓, 𝑝⟩. The
eneralization for additional excited atoms is straightforward.

Since the operators 𝐽±,𝑧 are symmetric under permutations, they
[ ±,𝑧 ]
4

lso commute with 𝑇 , 𝐽 , 𝑇 = 0, meaning the Hamiltonian in Eq. (1) h
ay be put in block diagonal form, one block or sector for each 𝑝. In
articular, the ground state |𝜓0⟩ is found at 𝑝 = 0 sector. Fig. 5 displays
he energy spectrum within the 𝑝 = 0 sector and the unfolding of
dditional symmetries with non-vanishing matter–radiation interaction
nd increasing photon cutoff 𝑙. Finite size effects due to finite photon
utoff are readily shown by the energy difference 𝛥𝐸(𝜆) = 𝐸1(𝜆)−𝐸0(𝜆),
here 𝐸0 and 𝐸1(𝜆) are the energies of ground and the first excited

tates within the same permutation sector, respectively, as show in
ig. 6. Accordingly, there exists a finite energy gap 𝛥𝐸(𝜆 < 𝜆𝑐 ) > 0,
hich is independent of 𝑙, for 𝑙 > 𝑁 . For 𝜆 > 𝜆𝑐 the model develops

inite size corrections as the first energy gap vanishes.
In the vanishing 𝜆 limit, Eq. (1) conserves both mean number

f photons ⟨𝑛⟩ and number of excited atoms ⟨𝐽 𝑧∕ℏ + 𝑁∕2⟩, which
s translated into the 𝑈 (1) ⊗ 𝑈 (1) symmetry or independent particle
onservation. However, for non-vanishing 𝜆, this picture does not hold
s the ratio ⟨𝑛⟩∕⟨𝐽 𝑧∕ℏ + 𝑁∕2⟩ depends on the ratio 𝜆∕𝜔. To examine
his claim, consider the action of Eq. (1) in the strong coupling regime
≫ 𝜔 = 𝛺 on the entropic state

𝜓⟩ =

[ 𝑁
∏

⊗

|↑⟩ − |↓⟩
√

2

]

⊗

[

∑𝑙
𝑚=0|𝑚⟩
√

𝑙 + 1

]

. (2)

It is a straightforward task to compute the following inequalities:

−2ℏ𝜆𝑁𝑙1∕2 ⩽ ⟨𝜓|𝜆(𝑎† + 𝑎)(𝐽+ + 𝐽−)|𝜓⟩ ⩽ −ℏ𝜆𝑁𝑙1∕2, (3)

hich produce −2ℏ𝜆𝑁𝑙1∕2 ⩽ ⟨𝜓|𝐻|𝜓⟩ − ℏ𝜔𝑙∕2 ⩽ −ℏ𝜆𝑁𝑙1∕2 and whose
xtremal condition occurs at 𝑁(𝜆∕𝜔)2 ⩽ 2⟨𝑛⟩∕𝑁 ⩽ 4𝑁(𝜆∕𝜔)2.

The apparent dependence of ⟨𝐽 𝑧⟩ on ⟨𝑛⟩ is further clarified from
he viewpoint of the unitary transformation 𝑈 (𝜃) = exp[𝚤𝜃

(

𝑎†𝑎 −𝑁∕2
+𝐽 𝑧∕ℏ)]. Under the 𝑈 (1) symmetry, both matter and radiation fields

odify themselves coherently, due to the cavity constraint, creating
conserved charge 𝑞. We now address the existence of an additional

lobal 𝑈 (1) symmetry in Eq. (1). For simplicity sake, let us firstly con-
ider the non-interacting scenario in Eq. (1). The Hamiltonian clearly
dmits 𝑈 (1)⊗𝑈 (1) symmetry for vanishing 𝜆, namely,
±
𝑘 → e∓𝚤𝜙𝐽±

𝑘 , 𝑎→ e𝚤𝜃𝑎, (4)

here the real phases 𝜙 and 𝜃 label the gauge transformations of
irst kind for atomic and the respective radiation field. These transfor-
ations maintain both radiation and matter algebras unchanged. At

ame time, the foundation of both operators lies in the electromagnetic
heory and, as such, the first kind gauge invariance ultimately trans-
ate into charge conservation. Since the fields are non-interacting, the
harge is independently conserved for each field.

For 𝜆 ≠ 0, however, there exists interaction between the atomic
lectric dipole and radiation field. In absence of relativistic effects and

igh energy photons, anti-matter creation is negligible and electric
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Fig. 4. Fano factor 𝐹𝑁 (𝜆, 𝑙) for ground state. In (a) 𝑁 = 10 while (b) 𝑁 = 8 atoms. Both share three distinguishable regions: 𝑅1 (𝑅3), where finite size effects are dominant
(irrelevant); and the intermediate region 𝑅2 where 𝐹𝑁 is a slow decreasing function of 𝜆, i.e., an increase in 𝜇 is followed by similar increase in variance 𝜎2, creating a plateau.
(c) shows the Fano factor with 𝑁 = 10 and 𝑙 = 2, 10, 30. The dotted line indicates 𝜆𝑐 where 𝐹𝑁 develops a maximum. For 𝑙 ⩾ 𝑁 and 𝜆 < 𝜆𝑐 , ground state properties are not affected
by photon cutoff 𝑙.
charge conservation is tied to both fields. This requirement introduces
mutual dependence of matter gauge 𝜙 with radiation gauge 𝜃, i.e., 𝜙 ≡
𝜙(𝜃). This relation breaks down the 𝑈 (1) ⊗ 𝑈 (1) symmetry to 𝑈 (1),
leading to additional constraints the Dicke model must satisfy. The
Hamiltonian in Eq. (1) under the transformations of Eq. (4) reads

𝐻 = 𝐻0 + 𝜆
𝑁
∑

𝑘

(

𝑎𝐽+
𝑘 e

𝚤(𝜃−𝜙(𝜃)) + hc
)

+ 𝜆
𝑁
∑

𝑘

(

𝑎𝐽−
𝑘 e

𝚤(𝜃+𝜙(𝜃)) + hc
)

. (5)

Here 𝐻0 = ℏ𝜔𝑎†𝑎 + 𝛺𝐽 𝑧 is the diagonal contribution. The energy
spectrum in 𝑝 = 0 sector is shown in Fig. 7, normalized by the
maximum energy stored by the field in the cavity, for varying photon
gauge parameter 𝜃. As expected, the energy spectrum is gauge invariant
since physical observables should not depend on any particular gauge
choice 𝜃 or 𝜙(𝜃). This observation may be used to design additional
constraints to simplify the evaluation of physical observables, including
the antirotating contributions to energies.
5

The two most convenient observables are the mean number of
photons, ⟨𝑎†𝑎⟩, and the mean atomic magnetization, ⟨𝐽 𝑧⟩, which are
naturally invariant by gauge transformations of first kind. The gauge
invariance constraints are set by (𝑑∕𝑑𝜃)⟨𝑎†𝑎⟩ = (𝑑∕𝑑𝜃)⟨𝐽 𝑧⟩ = 0. These
constraints are applied to both equations of motion, 𝚤ℏ(𝑑∕𝑑𝑡)⟨𝑂⟩ =
⟨[𝑂,𝐻]⟩, with 𝑂 = 𝑎†𝑎, 𝐽 𝑧. The results are

−ℏ
𝜆
𝑑
𝑑𝜃

𝑑
𝑑𝑡

⟨𝑎†𝑎⟩ = 0 =
𝑁
∑

𝑘=1

⟨(

1 +
𝑑𝜙
𝑑𝜃

)

(𝑎𝐽−
𝑘 e

𝚤(𝜃+𝜙) + 𝑎†𝐽+
𝑘 e

−𝚤(𝜃+𝜙))
⟩

+
𝑁
∑

𝑘=1

⟨(

1 −
𝑑𝜙
𝑑𝜃

)

(𝑎𝐽+
𝑘 e

𝚤(𝜃−𝜙) + 𝑎†𝐽−
𝑘 e

−𝚤(𝜃−𝜙))
⟩

. (6)

−1
𝜆
𝑑
𝑑𝜃

𝑑
𝑑𝑡

⟨𝐽 𝑧⟩ = 0 =
𝑁
∑

𝑘=1

⟨(

1 +
𝑑𝜙
𝑑𝜃

)

(𝑎𝐽−
𝑘 e

𝚤(𝜃+𝜙) + 𝑎†𝐽+
𝑘 e

−𝚤(𝜃+𝜙))
⟩

−
𝑁
∑

⟨(

1 −
𝑑𝜙

)

(𝑎𝐽+
𝑘 e

𝚤(𝜃−𝜙) + 𝑎†𝐽−
𝑘 e

−𝚤(𝜃−𝜙))
⟩

. (7)

𝑘=1 𝑑𝜃
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Fig. 5. Degeneracy. Normalized energy spectrum for 𝑁 = 10 atoms (𝛺 = 𝜔) for varying
photon number cutoff 𝑙, in the permutation sector 𝑝 = 0. The red diamonds are the
energies in the non-interacting regime, 𝜆∕𝜔 = 0, and are offset by 𝛿𝑙 for clarity sake. In
this regime, the normalized lowest (highest) energy level is 𝐸∓∕ℏ𝜔𝑙 = ∓(𝑁∕2𝑙)+(1∓1)∕2.
The black crosses show the normalized energy levels for 𝜆∕𝜔 = 1∕5. The matter–
radiation interaction lifts degeneracy and shifts the density of energy levels towards
the lowest level for increasing 𝑙, resulting in non-trivial mean photon occupation.

These equations set up suitable gauge choices for matter and radiation
operators. In fact, an illuminating correlation function is uncovered and
related to the RWA when 𝑑𝜙∕𝑑𝜃 = 1:
𝑁
∑

=1
⟨𝑎𝐽−

𝑘 e
2𝚤𝜃 + 𝑎†𝐽+

𝑘 e
−2𝚤𝜃

⟩ = 0. (8)

Setting 𝜃 = 𝑚𝜋, 𝑚 = 0,±1,…, is equivalent to state that the RWA is
accurate if and only if there is no correlation or interference among
the atoms and radiation composing the ensemble. It is amusing that
even though RWA imposes such a severe restriction on the system, an-
tirotating operators provide null contribution when averaged over the
ensemble, which explains the general validity and broad applicability
of RWA. The other simple gauge choice, which will not be considered
in this study, is 𝑑𝜙∕𝑑𝜃 = −1. It states the total energy is gauge
invariant and continuously flows back and forth from field to matter,
with opposite rates. Nonetheless, the constraint in Eq. (8) should always
be employed whenever antirotating operators are concerned, despite
their trivial average contribution to energy.

One useful property is obtained from energy equations: the con-
straint Eq. (8) changes the energy eigenvalue equation into a functional
minimization problem. Let |𝜑𝑟⟩ be an eigenstate of the Hamiltonian 𝐻 ,
ubjected to the RWA, with eigenvalue 𝐸RWA

𝑟 . If the linear combination
𝜓⟩ =

∑

𝑟 𝑐𝑟|𝜑𝑟⟩, with associated density matrix 𝜌, satisfies Eq. (8), then
the energy equation reduces to Tr

[

𝜌
(

𝐻 −𝐻RWA)] = 0, which is an
energy functional equation for the solution 𝜌, ⟨𝐸⟩ = ∑

𝑟 𝐸
RWA
𝑟 𝜌𝑟𝑟.

Angular operators

The atomic effects mediated by the radiation field are most evident
when one considers the effects and constraints imposed by global
rotation. For that purpose, the operators in Eq. (1) require additional
transformations to exhibit rotational content and must preserve the
permutation quantum number 𝑝. We start considering the case where
0 ≤ 𝑛 ≤ 𝑙 photons are confined inside the optical cavity without atoms,
𝑁 = 0. In this scenario, the net physical angular momentum is 𝛥𝑚 = ℏ𝑛
and the energy is 𝐸 = ℏ𝜔𝑛. The complete energy spectrum is derived by
varying 𝑛 = 0, 1,… , 𝑙; the eigenstates correspond to the basis of orbital
momentum operator, |𝑙, 𝑚⟩, with 𝑚 = −𝑙,−𝑙 + 1,… ,+𝑙. This simple
model permits the identification 𝑞 = 𝑙 as the total angular momentum
eigenvalue while 𝑞 = 𝑚 is the 𝑧-projected eigenvalue. These results
6

𝑧 c
must be generalized to non-vanishing 𝑁 . For that purpose, one make
extensive use of Holstein–Primakoff transformations [33] and define
the conserved charge 𝑞𝑧 = ⟨𝑄𝑧⟩∕ℏ, whose associated operators are

𝑄𝑧 ≡ 𝐿𝑧 + 𝐽 𝑧, (9)

𝑄+ ≡ 𝐿+ + 𝐽+, (10)

𝑄− ≡ 𝐿− + 𝐽−, (11)

with 𝐿+ = ℏ
√

𝑙 + 1 − 𝑎†𝑎 𝑎† and 𝐿𝑧 = ℏ(2𝑎†𝑎 − 𝑙). The operator
𝐿− is obtained by the usual Hermitian conjugation. Here 𝑙 is the
utoff value for number of photons trapped inside the cavity for each
osonic mode. Under this assumption, one obtains [𝑄+, 𝑄−] = 2ℏ𝑄𝑧

nd [𝑄𝑧, 𝑄±] = ±ℏ𝑄±. Moreover, the Jacobi identity is satisfied,
𝑄𝑧, [𝑄+, 𝑄−]]+[𝑄−, [𝑄𝑧, 𝑄+]]+[𝑄+, [𝑄−, 𝑄𝑧]] = 0, thus defining a com-
act Lie algebra. The algebraic machinery constructed so far encourages
he interpretation of 𝑄𝑧 as the 𝑧-projected angular momentum opera-
or. Therefore, radiation operators are interpreted as orbital angular
omentum operators, while matter analogue plays the role of spin.
oth claims naturally lead to the definition of Casimir operator 𝑄2 =
𝑄𝑧)2 + (1∕2){𝑄+, 𝑄−}. It is worth mentioning, the finite photon cutoff
eads naturally to the Holstein–Primakoff transformations to photon
ields, instead of atomic fields as usually done.

Finite size corrections due to the finite photon cutoff 𝑙 occurs in
qs. (9)–(11) after the linearization procedure,

+ = ℏ
√

𝑙 + 1
(

1 − 𝑎†𝑎
2𝑙 + 2

)

𝑎† + 𝑜(𝑙−3∕2). (12)

p to order 𝑙−1, one may compute the inverse operator
1 − 𝑎†𝑎∕(𝑙 + 1)]−1∕2 = 1+𝑎†𝑎∕2(𝑙+1)+𝑜(𝑙−2). It allows one to rewrite the
osonic operators 𝑎† and 𝑎 using the orbital counterparts, 𝐿+ and 𝐿−,

respectively. This results provides an elucidating interpretation for both
rotating and antirotating contributions: they are expressed as spin–orbit
operators, which naturally favour the eigenstates of Casimir operator.
Further analysis leads to two important results. First, rotating operators
are diagonal:

𝑎𝐽+ + 𝑎†𝐽− ≈ 1
ℏ
√

𝑙 + 1

[

(

𝑄2 − (𝑄𝑧)2 − 2𝐿𝑧𝐽 𝑧
)

(

1 + 𝑙
4(𝑙 + 1)

+ 𝐿𝑧

2ℏ(𝑙 + 1)

)]

.

(13)

t reflects the simplicity of rotating operators and their contributions,
n agreement with earlier claim that RWA is unable to account for in-
erference phenomena. The second result is that antirotating operators
roduce non-diagonal contributions:

†𝐽 †+𝑎𝐽 ≈ 2
ℏ
√

𝑙 + 1

[

(𝐿𝑥𝐽𝑥 − 𝐿𝑦𝐽 𝑦)
(

1 + 𝑙
4(𝑙 + 1)

+ 𝐿𝑧

2ℏ(𝑙 + 1)

)]

, (14)

hich, unlike Eq. (13), couples different sectors of 𝑞𝑧 for a given 𝑞
igenvalue.

wo atomic species

One model which allows the investigation of particle and rotational
ymmetries is the system composed by two distinct atomic species
= 1, 2, confined within a high-quality optical cavity, as illustrated in
ig. 8. Each ensemble holds 𝑁𝜉 two-level atoms that only interact with
heir respective bosonic modes, characterized by photons with energy
𝜔𝜉 and spin 𝑚𝜉 = (−1)𝜉−1. In short, the cavity holds two two-level
tomic species and two bosonic polarized modes. Since polarization is
aken in account, atomic transitions for each ensemble satisfy strict
election rules. Again, as in the case studied in Section ‘‘Angular
perators’’, the cavity imposes strong constraints on matter and ra-
iation fields within its boundaries. Here, the shared electromagnetic
ield couples both atomic ensembles, which would otherwise be non-
nteracting in open environments. Interference occurs when both gas
louds are brought together, with interactions mediated by quantized
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Fig. 6. Energy gap. First energy gap for 𝑁 = 10 atoms (𝛺 = 𝜔) for varying photon number cutoff 𝑙, in the permutation sector 𝑝 = 0. In (a), the photon number cutoff is fixed
and additional corrections are not observed with 𝑙 ⩾ 𝑁 and 𝜆 < 𝜆𝑐 . (b) At 𝜆𝑐 , the first energy gap decreases exponentially with 𝜆 and 𝑙. (c) 𝛥𝐸∕ℏ𝜔 colourmap at 𝑝 = 0 sector. 𝜆𝑐
is the coupling that separates finite 𝛥𝐸 phase from exponentially degenerate ground states.
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and confined radiation fields, as long as the system and cavity remain
coherent for long time intervals. The interference among the atomic
clouds are most evident when one considers the constraints imposed
by 𝑈 (1) and rotational symmetries, as we show in what follows.

So far, the 𝑈 (1) symmetry has been considered for a single atomic
species. When both gas clouds are present, the superposition of elec-
tromagnetic fields inside the optical cavity couples both parameters
𝜃1,2. This is a necessary condition to ensure the conservation of electric
charge in the theory. Therefore, the gauge parameters satisfy 𝜃1 = 𝜃2 =
𝜃. This unique feature dictates that the density operator for each gas
cloud are not separable as one would expect: Eq. (8) for each ensemble
are coupled by the shared gauge parameter 𝜃. For instance, given the
density matrix 𝜌′1 associated with the ensemble 𝜉 = 1, one might try
to find a suitable 𝜃′ as solution of Eq. (8). To obtain the complete
solution, one would then solve Eq. (8), with fixed 𝜃′, for the density
matrix 𝜌′2 associated with ensemble 𝜉 = 2. Thus, solutions obtained
from Eq. (8) for one atomic species restrict the configuration state for
the other atomic species.

As in the previous case, we start by considering the case where
0 ≤ 𝑛𝜉 ≤ 𝑙 photons are confined inside the optical cavity without
atoms, 𝑁 = 𝑁 = 0, producing net physical angular momentum 𝛥𝑚 =
7

1 2 r
ℏ(𝑛1−𝑛2) and energy 𝐸 = ℏ𝜔1𝑛1+ℏ𝜔2𝑛2. Again, one identifies 𝑞 = 𝑙 and
𝑧 = 𝛥𝑚 as the total angular momentum eigenvalue and the 𝑧-projected
igenvalue, respectively. These results are generalized to non-vanishing
𝜉 using Eqs. (6) and (7), for both gas clouds. The natural choice (and

ften used) would be 𝑞𝑧 =
∑

𝜉⟨𝑎
†
𝜉𝑎𝜉+𝐽

𝑧
𝜉 ∕ℏ⟩. However, this option is only

iable while using the RWA, in agreement with Eq. (8), as it disregards
orrelations among atoms in either the same or distinct ensembles.
he Holstein–Primakoff transformations [33] are employed again with
harge 𝑞𝑧 = ⟨𝑄𝑧⟩∕ℏ. The rotation generators are

𝑄𝑧 ≡ ℏ(𝑎†1𝑎1 − 𝑎
†
2𝑎2) + 𝐽

𝑧
1 − 𝐽 𝑧2 , (15)

+ ≡ 𝐿+
1,𝑙 + 𝐿

−
2,𝑙 + 𝐽

+
1 + 𝐽−

2 , (16)

𝑄− ≡ 𝐿−
1,𝑙 + 𝐿

+
2,𝑙 + 𝐽

−
1 + 𝐽+

2 . (17)

where 𝐿+
1,𝑙 = ℏ

√

𝑙 + 1 − 𝑎†1𝑎1 𝑎
†
1 and 𝐿−

2,𝑙 = ℏ𝑎2
√

𝑙 + 1 − 𝑎†2𝑎2. Eqs. (15)–
(17) provide the same algebraic structure as in the single specie case,
leading to interpretation of 𝑄𝑧 as projected angular momentum opera-
tor and 𝑄2 = (𝑄𝑧)2 + (1∕2){𝑄+, 𝑄−} as the Casimir operator.

The new Hilbert space and 𝑄 operators are natural candidates to
tudy the interference between two gas clouds in the superradiant
egime. The superradiant phase is characterized by large amounts of
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Fig. 7. Gauge invariance. Normalized eigenspectra for several gauge values 𝜃 with
𝑁 = 8 atoms, photon cutoff 𝑙 = 32, 𝜆∕𝜔 = 1∕4 and permutation sector 𝑝 = 0. Changes
in gauge parameter 𝜃 produces no observable modifications in the energy spectrum,
evidencing the gauge invariance of first kind.

Fig. 8. Two distinct two-level atomic ensembles inside an high-quality optical cavity.
Each kind of atom is labelled by the integer 𝜉 = 1, 2 and interact only with their
respective radiation fields. For 𝜉 = 1, atoms only absorb photons with energy ℏ𝜔1 and
spin 𝑚 = +1 while atoms with 𝜉 = 2 absorbs photons with energy ℏ𝜔2 and spin 𝑚 = −1.
Each atomic ensemble holds 𝑁𝜉 atoms.

energy stored in matter fields, which is coherently discharged as a
short pulse. For a non-dissipative cavity, this also implies the en-
ergy available from electromagnetic sources are lower than those in
non-superradiant phases. Thus, the photon number 𝑛𝜉 is expected to
be much smaller than the photon cutoff value 𝑙, with ratio 𝛿𝑛𝜉 =
⟨𝑎†𝜉𝑎𝜉⟩∕𝑙 ≪ 1. This observation justifies the linearization of Holstein–
Primakoff transformations for arbitrary values of 𝑁𝜉 , since the relevant
expansion parameter is the shared cutoff value 𝑙. Within this approxi-
mation, the linearized orbital momentum operator 𝐿+

1,𝑙 up to first order
in 𝑙−1∕2 is

𝐿+
1,𝑙 ≈ ℏ

√

𝑙 + 1

(

1 −
𝑎†1𝑎1
2𝑙 + 2

)

𝑎†1. (18)

Analogous expansions are obtained for the remaining ladder operators
𝐿±
𝜉,𝑙.

Up to order 𝑙−1, one may compute the inverse operator
[1 − 𝑎†𝜉𝑎𝜉∕(𝑙 + 1)]−1∕2 = 1+ 𝑎†𝜉𝑎𝜉∕2(𝑙+1)+ 𝑜(𝑙−2). It allows one to rewrite
the bosonic operators 𝑎†𝜉 and 𝑎𝜉 using the orbital counterparts, 𝐿+

𝜉,𝑙 and
𝐿−
𝜉,𝑙, respectively. Again, the rotating and antirotating contributions are

interpreted as spin–orbit operators. However, their action now connects
the time evolution of two atomic species via the shared electromagnetic
field even though the atoms themselves do not interact with each other.

Due to the conservation of 𝑞𝑧 and 𝑞, the antirotating contribu-
tions now require the employment of 𝑄2 operator and its associated
8

eigenspace. This condition mix both atomic states, which in turn per-
mits the interference among the distinct gas clouds. For instance,
consider the case where the system is initially found in the configura-
tion containing one superradiant cloud and one completely discharged,
both with 𝑁 atoms. For simplicity sake, let us additionally consider 𝑁
photons with spin 𝑚 = −1 are available inside the cavity. This particular
configuration is represented as |𝑁, 0; 0, 𝑁⟩ with 𝑞𝑧 = 0. After a time
interval 𝑡, one may measure the state |0, 𝑁 ;𝑁, 0⟩. The state |0, 0; 0, 0⟩
also carries 𝑞𝑧 = 0 and can be measured as well. While the former event
is expected within the RWA framework, including the simple quantum
emission–absorption, the latter is the regular outcome in the quantum
angular theory. Energy is conserved since the Casimir and spin–orbit
operators commute with each other. In fact, Eq. (8) tell us antirotating
operators produce vanishing contributions to energy. Their role is to
ensure all states with same 𝑞 are also accounted to the action of rotating
operators.

The operator 𝑄𝑧 defined in Eq. (15) is 𝑈 (1) invariant while the
operators 𝑄± in Eqs. (16) and (17) introduce correlations among the
distinct ensembles due to the shared cutoff parameter, 𝑙. These defini-
tions, however, are not unique: if photons with energy ℏ𝜔1 and ℏ𝜔2 are
uncorrelated, then there exists a set of operators 𝑄̃𝑧 = 𝑄𝑧 + ℏ(𝑙2 − 𝑙1)
and 𝑄̃+ = ℏ(𝑙1 + 1 − 𝑎†1𝑎1)

1∕2𝑎†1 + ℏ𝑎2(𝑙2 + 1 − 𝑎†2𝑎2)
1∕2 + 𝐽+

1 + 𝐽−
2 , which

also satisfies the same algebraic relations. Indeed, the 𝑄̃ operators
reproduce the local conservation of angular momenta for two non-
interacting ensembles, both matter and radiation field, each trapped
in their respective optical cavity. Since each one possesses local 𝑞
conservation, they also do not interfere.

Conclusion

We have shown the role played by conservation laws in diatomic
cavity models. The 𝑈 (1) symmetry, despite its simplicity, imposes
severe restrictions to correlation functions. At same time, it enforces
the antirotating operators must produce vanishing contributions to
energy to preserve the electromagnetic charge in the theory. The
constraints are also used to produce a functional energy equation for
the density matrix. This fact is reinforced when conservation of total
angular momentum is imposed. In such case, the matter–radiation
interaction is expressed as the spin–orbit interaction and uncovers the
implicit interaction between two apparently non-interacting gas clouds.
The interference between them occurs only due to the antirotating
contributions. Of course, the requirement of conservation of angular
momentum is not always feasible: cavities are subjected to losses, either
by transmitting light, thermal photonic generation and, ultimately, co-
herence. Coherent radiation losses implemented via Lindblad operators
would be required to satisfy the first kind gauge invariance, leading to
a dissipative version of Eq. (8). At same time, it would add a torque-like
feature to the equations of motion, thus enabling transitions between
states with differing 𝑞.
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