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Aprendizado de características texturais complexas com redes
neurais randomizadas em grafos

ZIELINSKI, Kallil Miguel Caparroz; BRUNO, Odemir Martinez; RIBAS, Lucas Correia

kallil@usp.br

A análise de textura em tarefas de visão computacional é considerado como uma abordagem fundamental
em métodos de classificação, pois além de ser possível a visualização de propriedades texturais em vários
objetos da natureza, essas propriedades nos permitem distingui-los. Dentre várias diferentes abordagens
para extração de texturas em uma imagem, como métodos estatísticos, espectrais ou estruturais, há
também métodos que analisam a complexidade da imagem e usufruem de técnicas de aprendizado para
obter características que possam distinguir diferentes classes de texturas.Entretanto, estes métodos de
análise de textura necessitam de uma boa relação entre complexidade computacional e desempenho.
Portanto, neste trabalho, é proposto uma simples, porém eficiente, abordagem que combina Redes
Neurais Randomizadas (RNN - Randomized Neural Networks) com Redes Complexas (CN - Complex
Networks) como forma de extração de características de texturas. Uma RNN é uma rede neural que
possui um algoritmo de aprendizado extremamente rápido, baseado em conceitos de álgebra linear,
enquanto CNs são reconhecidas por um bom desempenho em estudos anteriores envolvendo análise de
texturas. Neste trabalho, modelamos a imagem como uma rede direcionada, e em sequência, obtemos
características estruturais dessa rede, como grau e força, que serve como entrada para a RNN, que é
treinada para extrair características das imagens. Por fim, essas características são utilizadas por um
classificador. Para o processo de modelagem da imagem, utilizamos o procedimento proposto por Ribas
et al. (1), em que cada imagem é modelada como uma rede ponderada e direcionada. Cada pixel da
imagem representa um vértice da rede, e as arestas representam as conexões entre os pixels. Ao final
da modelagem, são extraídas as medidas de grau de saída, força de entrada e força de saída de cada
pixel. Após modelada a imagem e extração das características topológicas da CN, essas características
são utilizadas como entrada para a RNN, que irá treinar seus pesos de forma que cada textura tenha
um vetor de características diferente. Por fim, os vetores de características produzidos pela RNN são
inseridos em um classificador. Para a avaliação dos métodos, utilizamos bases de dados conhecidas pela
literatura 1. Outex: Possui 1360 imagens de textura, divididas em 68 classes, totalizando 20 imagens
por classe; 2. USPTex (2): Composto por 2292 imagens, divididas em 191 classes, com 12 imagens por
classe; 3. 1200Tex (3): 1200 imagens de folhas, divididas em 60 classes. Após a aplicação dos métodos
nas bases de dados mencionadas, foi comparada a acurácia do método com resultados de outros métodos
da literatura. Para nosso método foram utilizados dois vetores de características que performaram melhor
nas bases de dados mencionadas. Resultados indicaram um significativo aumento de desempenho em
ambos os vetores utilizados, em comparação com os outros métodos da literatura. Além dos ótimos
resultados de acurácia obtidos, é importante enfatizar que nosso método proposto também possui uma
ótima complexidade computacional devido ao uso do algoritmo de aprendizado rápido da RNN. Portanto,
este trabalho enfatiza que a combinação entre redes complexas e redes neurais randomizadas são uma
combinação promissora em tarefas de análise de texturas.
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