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ABSTRACT Since the introduction of Dynamic Bayesian Networks (DBNs), their efficiency and effec-
tiveness have increased through the development of three significant aspects: (i) modeling, (ii) learning
and (iii) inference. However, no reviews of the literature have been found that chronicle their importance and
development over time. The aim of this study is to provide a systematic review of the literature that details
the evolution and advancement of DBNs, focusing in the period 1997-2019 that emphasize the aspects of
modeling, learning and inference. While the literature presents temporal event networks, knowledge encap-
sulation, relational and time varying representations as the four predominant DBN modeling approaches,
this work groups them as essential techniques within DBNs and help practitioners by associating each to
various challenge that arise in pattern discovery and prediction in dynamic processes. Regarding learning,
the predominant methods mainly focus on scoring with greedy search. Finally, our study suggests that the
main methods used in DBN inference extend or adapt those used in static BNs, and are oriented to either
optimize processing time or error rate.

INDEX TERMS Dynamic Bayesian networks, dynamic probabilistic graphical models, literature review,
systematic literature review.

I. INTRODUCTION
Probabilistic Graphical Models (PGMs) use a graphical rep-
resentation to compactly express probability distributions
while at the same time explicitly represent large joint distribu-
tions, for transparent evaluation by specialists [1]. According
to [2], PGMs can be classified into: (i) directed/undirected,
(ii) static/dynamic, and (iii) probabilistic/decisional. The
first group represents symmetric (undirected) or asymmet-
ric (directed) dependency relationships. The second group
represents a set of variables at a specific point in time (static)
or across a period of time (dynamic). The third group
uses random variables (probabilistic) or decision and utility
variables (decisional). Among the different dynamic repre-
sentative PGMs we have (1) Markov Chains, (2) Hidden
Markov Models, (3) Markov Decision Processes (MDPs),
(4) Partially Observable MDPs and (5) Dynamic Bayesian
Networks (DBNs). Markov Chains [2] are (i) directed
and (ii) probabilistic models that present discrete numbers
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of states and transitions that are stochastic. Hidden Markov
Models are also (i) directed and (ii) probabilistic and are com-
prised of a double stochastic process where one set is under-
lying and unobservable and only revealed through a sequence
of observations from the second set of processes [3]. Markov
Decision Processes (MDPs) are (i) directed and (ii) decisional
sequential decision models that evolve over time and are con-
trolled by an agent [4]. Partially Markov Decision Processes
are (i) directed and (ii) decisional but differ from MDPs as
they are designed to address hidden or partial information
concerning the state of the system [2]. Finally, Dynamic
Bayesian Networks (DBNs) are extensions of Bayesian net-
works to model dynamic processes and consist of a series
of time intervals that present the states of all variables at a
given time and thus represent the evolution of a process over
time [1]. As such, DBNs can be seen as a generalization of
Markov Chains and Hidden Markov Models because they
represent a space of states in a factorized way instead of as
a single discrete random variable [5], and can be classified as
(i) directed and (ii) probabilistic. Also, DBNs can represent
a linear dynamical system such as Kalman filters, where the
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variables are all continuous and all of the dependencies are
linear Gaussian [1].

DBNs are important as they capture and analyze informa-
tion over time and fulfill two important functions in machine
learning: classification and pattern discovery. Other classifi-
cation algorithms, such as neural networks act as black boxes
and make it difficult for a specialist to interpret the resulting
model according to the domain of the problem, DBNs on the
other hand are advantageous as they transparently encoded
probability distributions over complex domains [1]. Some
examples of applications that require the use ofDBNs in order
to capture their dynamic behavior are the pattern detection
of human brain behavior [6], speech recognition [7], [8],
medical diagnosis [7], [9], identification of regulatory gene
networks [8], [10], target tracking [8], visual activities [11],
[12], crime risk analysis [9], [12], sensor validation [9], client
analysis [9], and video object tracking [12].

DBNs have three important aspects [2]: (1) modeling,
(2) learning, and (3) inference. Regards tomodeling, concepts
from other domains have been merged with DBNs in order
to present a better representation of the data and its behav-
ior. To achieve this, studies have proposed Temporal Event
Networks (TEN) [13] or relational ones [14]. Modeling, in
general, has gone in the direction of specialization instead
of generalization, resulting in useful models for specific
contexts. Automatic learning has emerged as a response
to the automation of the representation of DBNs, inspired
particularly by static BNs. Search and parameter estimation
algorithms typically found in BNs are also used in DBNs.
As stated previously, the main challenge in highly dense
network DBNs is to construct them efficiently [15]. One of
the prevailing professional applications of DBN construction
has been in the biomedical area [16], [17]. Inference allows
the DBN to develop a diagnosis or prediction while maintain-
ing efficient execution time and memory usage [18]. Auto-
matic learning allows the DBN to build networks capable
of representing relationships from data. Modeling allows the
DBN to analyze dynamic behavior on a granular time scale.
According to [1], there are two problems that arise when
using DBN inference, as opposed to BN inference. One is
that the BNs generated from the DBNs can have an arbitrarily
big and complex structure. The second problem is that the
temporal reasoning is often different from the reasoning
required of a static model. This is especially common in net-
works with dense connectivity that pose problems for exact
and approximate inference algorithms and thus require an
algorithmic analysis. Variants of exact inference algorithms
based on the variable elimination were proposed long before
the development of probabilistic graphical models [1].

Despite the importance of DBNs and the diversity of
studies and aspects developed, a Scopus or Web of Sci-
ence (WoS) level literature review could not be found in the
literature. While a Google Scholar search identifies two tech-
nical reports between 2001 and 2006 [19], [20], new solutions
have been described to address the diversity of challenges
associated with inference, automatic learning and modeling.

To address this gap, this paper aims to answer the following
question: What advances have been made with respect to
modeling, automatic learning and inference in DBNs?

In the reminder of this paper, we carry out a literature
review on DBNs with the following structure. In Section II,
we present the background and theoretical basis of DBNs.
In Section III, we present the methodology of the literature
review. In Section IV, we analyze the different DBNs and
present their approaches in detail. In Section V, we discuss
the findings and important characteristics of the DBN studies.
Finally, in Section VI, we detail the conclusions of the work.

II. BACKGROUND
Definition of DBNs are described in detail in [1], [5]. X t =
{X t1, . . . ,X

t
I }, denotes a set of random variables representing

the state process at a given time t . A DBN is a pair (G, θ),
where G is the structure and θ is the set of parameters of
a DBN. The DBN models a dynamic process, specifying a
probability distribution for X0, . . . ,XT with P(X0, . . . ,XT |
G, θ). G is a directed acyclic graph (DAG), whose nodes are
the variables X0, . . . ,XT , whose edges follow a dynamic
sequence defined as X t → X t+1, where t ∈ {0, . . . ,T − 1},
and cannot have edges of a future time pointing to a past time
of type X t ← X t+1. θ is a set of parameters that contains a
conditional probability distribution P(X ti | Pa(X

t
i ),G, θ) for

each X ti given the set of parents Pa(X ti ) obtained from the G
structure.

Modeling is based on (G, θ) representation, a basic prop-
erty of anymodel, having (1) the entities that constitute it, and
(2) the relationships between these entities. All probabilistic
network models are represented as graphs to define their
structure and with local functions to describe their parame-
ters. The difference between one model and another is the
type of graph and the local functions used. The G structure
is designated as a model and the θ distribution is designated
as the parameters. In most cases, it is assumed that a DBN
presents the same model at every time t . In that sense, this
model is dynamic as its parameters vary over time and their
distribution is estimated each time a new observation occurs.

Learning consists of building models in one of two man-
ners: (1) by hand with the support of specialists, and (2) auto-
matically from data. The current trend is to use automatic
learning techniques. In many cases, estimates of G, θ use
automatic learning techniques, also known as Bayesian learn-
ing. This technique consists of calculating the probability of
each hypothesis from the data. If D is a data set and hi is the
ith hypothesis, it is possible to estimate the probability of each
hypothesis that maximizes P(hi | D), using the maximum a
posteriori (MAP) estimate.

Inference consists of answering the probabilistic query
according to the model and a set of evidence. The infer-
ence is a basic task to compute the posterior probability
distribution for a sert of query nodes, given values for some
evidence nodes which is called belief updating or proba-
bilistic inference [21]. The representation G, θ responds to
queries through the intractable process of inference, and can
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be defined as the calculation of the probability distribution a
posteriori of a set of query variables given a set of observed
events. Let a query variableQ and a set of n evidence variables
denoted by E = {E1, . . . ,En}, represent observable events
E = e, where e is the evidence. To respond to the query,
the conditional distribution P(Q | e) is used.

DBNs intend to reveal patterns and temporal relationships
by capturing the complexity and variable nature of a problem.
DBNs model these dynamic processes, naturally establishing
a compact structure capable of capturing the semantics of
the temporal relationships between measured events within
a dynamic system.

III. RESEARCH METHODOLOGY
Similar to [22], in order to query the literature for reviews on
DBNs, we used the following keyword search strings in both
the Scopus and WoS citation databases:
(‘‘dynamic bayesian network’’) AND (‘‘review’’ OR

‘‘research synthesis’’ OR ‘‘research integration’’ OR ‘‘sys-
tematic overview’’ OR ‘‘systematic research synthesis’’ OR
‘‘integrative research’’). No results were found. We per-
formed a second search in Google Scholar with the
query: (‘‘dynamic bayesian network’’ AND (‘‘survey’’ OR
‘‘review’’)) . which retrieved two articles from the years
2001 and 2006.

In this literature review, the standard systematic review
methods for software engineering area were considered [23],
[24]. The final method was divided into three phases: (1)
planning, (2) development, and (3) results. In the planning
phase, the importance of reviewing the literature is discussed,
the research questions are formulated, and the study pro-
tocol is presented. In the development phase, the primary
studies are evaluated for potential inclusion and filtered for
data extraction. In the results phase we present statistics and
findings and answer the research questions posed in the first
phase. The planning and development phases are described in
this current section III, while the results phase consisting of
statistics and answers to the research questions, are found in
the following sections.

A. PLANING OF THE REVIEW
This study is designed to answer three specific research ques-
tions concerning the progress of DBNs (Table 1).

TABLE 1. Research questions about the review of DBNs.

The search process is carried out by designing a search
string that queries a citation database (Table 2). For the
design of this search string, it is important to use synonyms

TABLE 2. Search strings used to consult DBN articles in scopus and web
of science (WoS) citation databases.

associated with DBN terms that best represent the research
questions. This review covers the relevant research from
1997 to 2019, using the Scopus and Web of Science citation
databases. The selection criteria are shown in Table 3.

TABLE 3. DBN selection criteria.

B. DEVELOPMENT OF THE REVIEW
Once the research questions and selection criteria were
defined, the article search process was implemented.

IV. ANALYSIS
In this section, answers are given to the research questions
posed in Section III-A.

A. RQ1: WHAT ADVANCES HAVE BEEN MADE WITH
RESPECTO TO DBN MODELING?
Four types of DBN modeling were identified in the literature
(Table 4): (1) Temporal Event Networks (TEN), (2) DBNs
and Knowledge Encapsulation, (3) relational DBNs, and (4)
time-varying DBNs.

TEN simplifies the DBNs into small dynamic processes.
In traditional DBNs, a node represents the value of a variable
at a certain time, while in TEN, a node represents when an
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TABLE 4. DBN modeling types.

event or change of state of a variable occurs, and thus it is
simpler and more efficient than DBNs [2].

TNBN, TBNDTE and DTPEN are three subtypes of NET
[13], [25] and are more efficient than DBNs for small prob-
lems. However, DTPEN has a disadvantage of having a single
time granularity [26]. The studies involving these subtypes of
TENs are shown in Table 5.

Two types of DBN representations were identified as a
way to encapsulate knowledge (Table 6): Dynamic Influence
Network and DBN (DIN-DBN), and Ordinary Differential
Equations in DBNs (ODE-DBN). While Dynamic Influence
Network (DIN) presents a compact modeling procedure that
permits efficient managing of temporal restrictions [41],
it does not assimilate updated information easily, a chal-
lenge which has produced new methods that would alter-
nate between it and DBN inference in a single process
[28]. This has also been achieved with differential equations
(ODE-DBN) [29].

TABLE 5. Modeling of DBNs by type of event.

TABLE 6. Knowledge encapsulation modeling of DBNs.

TABLE 7. Relational DBM modeling.

FIGURE 1. Distribution of publications by year from January 1997 to
December 2019.

The modeling of relational DBNs has non-directed edges
unlike traditional DBNs, which are applied to scenarios
where relationships are bi-directional, such as friendship rela-
tionships in a social network. An inventory of relational DBN
modeling is shown in Table 7.

One of the issues addressed in recent years concerns the
intractable challenge of implementing algorithmic methods
that allowDBN structures and parameters to evolve over time,
since it involves making complicated update, change inter-
val, and network structure design decisions, among others
(Table 8).

Figure 4 illustrates the emergence of the DBN modeling
types over time.

B. RQ2: WHAT ADVANCES HAVE BEEN MADE WITH
RESPECT TO DBN LEARNING?
The literature presents many different approaches that
describe effective learning methods (Table 9), all of them
can be organized into four groups of strategies for efficient
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TABLE 8. DBN modeling with a time varying structure.

FIGURE 2. Distribution of selected publications by year from
January 1997 to December 2019.

building of DBNs (Table 10). The first strategy is scoring or
greedy search, functions that use metrics to measure the qual-
ity of each structure in the structure search space. The second
is constraints, a strategy that applies statistical techniques
to restrict the use of edges within the graphical structure.
Sampling is the third group, which allows for the generation
of possible structures from a distribution. The final strategy
is a posteriori probability, which generates structures after
having validated their usefulness (see Table 11).

Concerning the construction of their structures, the reviewed
studies present two important factors that affect learning and
ultimately the DBN’s proper performance. One is the quantity
of random variables a factor that reduces performance as its
quantity increases. Another key factor in DBN learning per-
formance is the relationship between variables that must be

FIGURE 3. Distribution of publications by quartiles from January 1997 to
December 2019.

filtered by causality methods. Therefore, managing hundreds
of variables when building the structures of the networks
requires very efficient algorithms. However, a large quantity
of variables also requires a valid connection through edges by
means of causality measures. If machine learning is used, this
becomes even more complex, considering the search space of
directed acyclic graphs.

Studies suggested that these learning methods are best
evaluated usingmetrics that consider their structure, the struc-
ture generation time, the inference results using the learned
structure, and the time intervals (Table 10). The evaluations
considering structure look to determine the one that best
represents the problem, derived from the data, and are mainly
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TABLE 9. DBN learning methods.

used to build regulatory networks in the biomedical field. The
evaluations considering the structure generation time intend
tomeasure how long it takes themethod to build a DBN struc-
ture. The evaluations that consider the inference using the
produced structure are based on its performance of tasks, such
as classification and others. Finally, the evaluations regarding
time intervals intend to measure the ability of the method
to select the adequate time intervals and their corresponding
time-slices for the generation of a DBN.

Regarding the types of datasets utilized, 15 works use syn-
thetic datasets while 13 utilized real datasets, with biomedical
predominating the studies with real datasets (Table 12).

C. RQ3: WHAT ADVANCES HAVE BEEN MADE WITH
RESPECT TO DBN INFERENCE?
Six studies were found relating to the inference aspect of
DBNs and collectively identify three types of inferences

TABLE 10. Evaluation criteria used in DBN learning methods.

(Table 13). One type, exact inference, intends to estimate
a query in terms of the conditional probability P(Y | X),
where Y is the random variable to be estimated and X is the
evidence and is considered a NP-hard problem that requires
development in exponential time in the worst case [1]. In [54],
a structural interface algorithm is presented that accelerates
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FIGURE 4. Emergence of DBN modeling procedures over time.

TABLE 11. Learning strategies for DBNs.

inference by exploiting the repeated and local structures as
well as the conditional independences, thus improving their
scalability for large and complex networks.

Approximate inference intends to find a successful solu-
tion in the shortest time possible. Its approach uses the
DBN factors to estimate the joint distribution and, in many
cases, use additional information to support the inference
[55]. Carrying out inference on the different time-slices is
a challenge, and requires important design considerations,
such as whether to include supporting information and which
DBN segment should be applied to perform the inference.
Hybrid inferences are those that combine the characteristics
of both exact and approximate inference, enabling them to
develop selective updates about the belief factors from the
network, and thus producing exact inference under certain
assumptions, and approximate inference under others [56].

For optimum performance, inference methods look for
efficiency in at least one of the following metrics: processing

TABLE 12. Classification of the DBNs learning methods based on the
types of datasets used, synthetic or real, and specific
application/problem domain.

TABLE 13. Advances in DBN inference.

time, error rate (minimum certainty limit), coherence, and
scalability. Coherence refers to the consistency of results
from the logical use of data in the specific domain addressed,
while scalability refers to the suitability of these methods for
large networks, with processing time and error rate being the
two metrics most commonly used (Table 13).

V. DISCUSSION
The result of this systematic review is a catalog of factors
that influence the building of DBNs. Researchers can use the
different metrics, strategies and criteria presented herein to
understand and determine the optimal approaches for their
specific application. The relevance of this information is
validated as 90% of the reviewed studies were from the first
and second quartiles (Q1, Q2) journals and thus fortify the
findings presented in this review. Each research question is
discussed below.

A. RQ1
it was identified that, in general, inference in DBNs involves
to estimate probabilities to answer queries from the repre-
sentation, transition and observation of the network. Unlike
static BNs, DBNs include the transition step, which allows
the sequential transfer of probabilities between different time
periods. The reviewed studies show a greater tendency to
apply approximate inference as opposed to hybrid inference,
possibly due to its low computational cost. Inference evalua-
tion metrics are diverse, and include consistency, scalability,
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time, and error rate, with the last two being the most com-
monly used. However, there is no consensus on which is the
most informativemetric to use and few studies apply them all.
Inference methods for DBNs are mainly adaptations of static
BNs.

B. RQ2
Regarding the learning process, studies were found on
the construction of the structure of the Bayesian network
G =< V ,E >. They also showed that a majority of the
technical studies on learning strategies used scoring and
greedy search methods, while a minority used constraints,
a posteriori probability, and sampling. In addition, these
strategies are oriented to (1) machine learning and (2) expe-
riential learning. Machine learning deals with problems such
as scarcity of data, unhelpful relationships between variables
that decrease performance, or very wide search spaces where
it is not possible to achieve the convergence of an optimal
model. These limitations suggest that further research on new
learning methods that improve the performance of DBNs
for both classification and pattern discovery is warranted.
However, there are strategies that have not been applied to
DBNs, nor even BNs. One is using GRASP instead of greedy
search. Also, the evaluation approach was oriented towards
optimizing the quality of the structure of the results, the con-
struction time, and the time intervals for the structure. For a
fixed number of instances, the quality of results declines as
the quantity of instances increases, while the quality of results
improves when the relationships are filtered by somemeasure
of causality in E . However, no studies were identified that
address both aspects at once.

C. RQ3
New approaches to DBN modeling have emerged, such as
temporal event networks, knowledge encapsulation, rela-
tional, and time-varying. In time event networks, the objective
is to simplify the construction of a DBN in order to evaluate
events in small dynamic processes. In knowledge encapsula-
tion, differential equations or dynamic influence networks are
used to represent data. In relational modeling, the objective
is to manage cyclicality in order to include it within the
modeling of the DBMs, taking advantage of the changing
processes in time without affecting the temporal reasoning.
In time-varying models, the objective is to consider the evo-
lution of the structure and parameters of the DBNs over time,
with a clear interest in seeking DBNs that contribute to the
monitoring of complex domains as time progresses. This is
an important topic and is likely to continue receiving greater
attention in the coming years due to its impact on monitoring
applications.

VI. CONCLUSION
This work aimed to provide a systematic review of the lit-
erature related to new approaches of inference, learning and
modeling of DBNs. Three research questions were proposed
regarding the advances in inference (RQ1), learning (RQ2)

and modeling (RQ3). The search was carried out in both
the Scopus and Web of Science citation databases, selecting
42 out of 777 identified studies, with 42.8% of those studies
addressing learning (RQ2) and 47.6% addressing modeling
(RQ3). It is important to point out that 90% of the selected
articles belong to journals from the first and second quartiles
(Q1, Q2), which ensures that this study presents reliable
results. With regard to modeling, it is important to empha-
size that DBN modeling approaches are evolving, with four
predominating: (1) temporal event networks, (2) knowledge
encapsulation, (3) relational, and (4) time-varying. However,
as no studies were identified that involve more than one
approach at a time, future research should consider this as
it could bring good results at low computational cost. Specif-
ically regarding modeling, this work seeks to contribute to
the practice by grouping these four modeling aspects as
essential components of DBNs and associating each to the
various challenges found in pattern discovery or prediction
in dynamic processes to further advance the effectiveness of
DBNs. With regard to learning, studies related to structure
learning and its evaluation were identified. Learning methods
are oriented to scoring with greedy search and the reviewed
studies show that the quality of results declines as the number
of variables increases while the quality of results improves as
the number of edges increase. Future research should seek to
understand the effect of these two aspects at the same time,
as well as apply more advanced search strategies, such as
GRASP. About inference, it involves the probability estima-
tion to answer queries from the representation, transition and
observation in the network. The identified methods are an
extension or adaptation those used in static BNs and usually
tend to consider the approximate approach over the exact
and hybrid ones, possibly due to their lower computational
cost. While time and error rate are the most commonly used
metrics to evaluate the methods, no studies were identified
that focused on optimizing both metrics at the same time.
A limitation of the study is that it analyzed only Scopus or
Web of Science studies, leaving aside conference articles and
other sources that could shed more light on the benefits of
Dynamic Bayesian Networks.
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