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Heat stress is a major factor affecting animal productivity in tropical countries, with effects on physiolog-
ical, hormonal, and behavioral responses. This study aimed to assess the differences in these responses
between heat-tolerant and less heat-tolerant hair sheep during heat stress. Twenty-four Santa Ines sheep
were selected from a group of 80 sheep, with 12 identified as heat-tolerant and 12 as less heat-tolerant
based on thermotolerance assessment. The animals were exposed to heat stress in a climatic chamber at
an average temperature of 36 �C (1000–1600 h) for 8 days and maintained at 28 �C (1600–1000 h). The
rectal temperature, respiration rate, sweat rate, ocular surface temperature, body surface temperature,
tympanic temperature, triiodothyronine level, and insulin level were measured. Skin samples were col-
lected on the last day of the cycle for histological analysis. The results showed that the less heat-tolerant
sheep had higher rectal and body surface temperatures (P < 0.05). Although no differences in skin mor-
phology were observed between the groups, less heat-tolerant sheep continued to sweat for a longer per-
iod after the end of the thermal challenge to lose heat (P < 0.05). Less heat-tolerant animals also
presented higher rectal temperatures during cooler hours and required more time to dissipate the excess
heat. These findings suggest that there are individual differences in the thermoregulatory responses
within the same breed under the same environmental conditions, and that breeding programs could
be employed to produce more heat-tolerant, but still productive animals in tropical conditions.
� 2024 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Implications

Heat stress affects animal productivity, mainly with the advent of
climate change, which causes an increase in temperature in different
regions of the world. It is important to identify strategies to improve
animal productivity in high-temperature environments. Findings of
the present study reinforce the existence of individual differences
concerning heat tolerance capacity within the same breed, which
in turn, open possibility for selecting more heat- resilient sheep. In
addition, breeding programs could be employed to produce more
ditions, to improve herd productivity under heat- stress conditions.
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Management
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Heat stress in production animals
Type of data
 Table, Figure.
How data were
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Climatic chamber, data logger (HOBO�

U12-013), digital clinical thermometer
(TH150, G-Tech, ±0.2 �C), ear
thermometer (TCI100, Incoterm, ±0.2 �C),
infrared camera (875-2i, Testo, Germany)
Data format
 Raw data in XLSX format.
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Parameters for
data collection
Data of animals were collected inside the
climate chamber kept in the climate
chamber with an average temperature of
36 �C (1000–1600 h) and temperature of
28 �C (1600–1000 h). Physiological,
behavioral variables and blood samples
were taken at temperatures considered
stressful (36 �C), and thermoneutral
conditions (28 �C) and the skin was
collected at a temperature of 36�.
Description of
data collection
Santa Ines sheep were kept for 10 days in
the climate chamber. On days 9 and 10,
physiological variables and blood
samples were collected every 3 h. For 3
consecutive days, behavioral
observations were carried out and
drinking water and eating events were
recorded. On the last day inside the
climatic chamber, a biopsy was
performed to collect a skin fragment.
Data source
location
Institution: Faculdade de Zootecnia e
Engenharia de Alimentos/ Universidade
de São Paulo
City/Town/Region: Pirassununga/São Paulo
Country: Brazil
Latitude and longitude (and GPS
coordinates, if possible) for collected
samples/data: -21.953374304979665-4
7.45195066168257
Data accessibility
 Repository name: Harvard Dataverse
https://dataverse.harvard.edu/
Data identification number: https://doi.
org/10.7910/DVN/2OD2MO
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Introduction

The Santa Ines breed is a hair sheep developed in Brazil that
exhibits adaptive characteristics, such as the absence of wool and
2

short, silky hair (Ribeiro and González-García, 2016). Additionally,
hair sheep exhibit primary follicles that produce thick hairs, which
provide mechanical protection, while wool sheep have more
numerous secondary follicles that produce fine fibers, offering
thermal protection (Ansari-Renani et al., 2011). Santa Ines is a
breed raised in tropical environments, and studies on its tolerance
can contribute to the development of sheep farming in countries
with tropical climates, where heat stress is a major factor influenc-
ing animal productivity, reproduction, health, immunity, and sur-
vival (Mandal et al., 2021).

The impact of heat stress is easily noticeable because it causes
changes in physiological parameters, such as the accumulation of
heat, which results in an increase in rectal temperature, respiration
rate, sweating rate, and surface temperature (Pulido-Rodríguez
et al., 2021). The oscillation of these physiological variables is influ-
enced by the suprachiasmatic nucleus of the hypothalamus, the
main function of which is to regulate oscillations in the internal
medium to modulate the setpoint (Marai et al., 2007). These phys-
iological adjustments are essential to prevent hyperthermia and
maintain the internal body temperature within the limits for sur-
vival, especially in tropical regions.

Changes in behavioral responses are reflected in increased
water consumption and reduced food consumption (Shilja et al.,
2016) and changes in the hormonal profile, which may be respon-
sible for reducing the release of triiodothyronine (T3), a hormone
linked to metabolism, to reduce endogenous heat production and
avoid an increase in rectal temperature (Gonzalez-Rivas et al.,
2020). Finally, there is an increase in insulin production (O’Brien
et al., 2010) caused by the action of heat stress on the pituitary-
adrenal axis.

The effects of heat stress on physiological, hormonal, and
behavioral responses are well-documented, particularly the sub-
stantial differences in heat tolerance capacity related to breed,
coat, age, and physiological status (Batista et al., 2014; McManus
et al., 2016). However, individuals have different heat tolerances,
reflecting different thermoregulatory responses during heat stress
situations, even if they belong to the same group, breed, and envi-
ronment (Luna-Nevárez et al., 2021). Thus, exploring the differ-
ences between more- and less-tolerant individuals regarding
thermoregulation, it will be important to know which mechanisms
work on thermotolerant ability on a long-term basis.

Therefore, it is important to understand the effects of heat
stress on the thermoregulatory responses of sheep with different
heat tolerance levels, especially under tropical conditions, to
improve herd productivity under heat- stress conditions. The aim
of this study was to identify differences in physiological, endocrine,
histological, and behavioral responses of Santa Ines sheep classified
according to the level of heat tolerance exposed to heat stress in a
climatic chamber.
Material and methods

All experimental procedures were approved by the Institutional
Animal Ethics Committee of the Faculty of Animal Science and
Food Engineering of the University of São Paulo (CEUA/FZEA/USP
protocol no. 7498130919).
Meteorological variables

During the experimental period, the air temperature (Tair, �C)
inside the climatic chamber varied from 28 �C to 36 �C and the rel-
ative humidity (RH, %) varied from 55 to 70% (RH considered ideal).
Meteorological variables were monitored using a data logger
(HOBO� U12-013) programmed to take readings every 15 min.
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Location and animals

An initial group of 80 black-coated, non-pregnant Santa Ines
female sheep with a homogeneous body condition score (BCS 3,
measured on a scale of 1–5) and aged between 4 and 5 years were
used to assess thermotolerance and 24 animals were selected for
the study. The Santa Ines ewes came from five different herds
located in two different regions of Brazil (Southeast and Northeast).

Initially, the animals were kept together in the Biometeorology,
Ethology, and Animal Welfare Research Vivarium, School of Animal
Sciences and Food Engineering at the Fernando Costa Campus in
paddocks with free access to artificial shade under an asbestos-
cement roof painted white on the upper side (1 m2/animal) with
an Aruana pasture (Panicum maximum cv. Aruana), supplemented
with corn silage.

During the study, the sheep were placed in a climatic chamber
at the Department of Animal Reproduction of the same university.
It has an area of 56 m2 and is fully enclosed by brick walls, cement
floor, and slab. The chamber was equipped with an external tem-
perature and humidity controller, internal thermostats, and
exhaust fan. Mineral salt and corn silage were provided daily.
The animals were fed once daily (0730 h) with ad libitum access
to water and feed troughs.

Experimental design and thermotolerance assessment

Before the beginning of the experimental phase, the rectal tem-
perature of the animals was measured in a thermoneutral environ-
ment (average air temperature, 24.7 ± 1.66 �C). Under these
conditions, heat-tolerant and less heat-tolerant sheep had mean
rectal temperature of 38.4 ± 0.51 and 38.6 ± 0.46 �C, respectively.

Eighty Santa Ines female sheep randomly distributed in sets of
20 animals at a time (4 sets) were subjected to heat stress in a cli-
matic chamber for 10 days with 2 days of adaptation to the new
environment and 8 days of heat treatment (stressor factor). During
the heat treatment, a temperature of 36 �C was maintained from
1000 to 1600 h, whereas a maintenance temperature of 28 �C
was maintained from 1600 to 1000 h. The relative humidity was
set to 60 ± 2%. The outdoor environment, in which the animals
were kept before entering the climatic chamber, was similar during
the entire experiment in summer, with an average air temperature
of 23 ± 5 �C and relative humidity of 60 ± 12%. Rectal temperature
data were collected every 3 h from 1300 h on day 0900–1000 h on
day 10 (Pantoja et al., 2024a, b).

Rectal temperature, as an indicator of the heat stress response,
was analyzed using the restricted maximum likelihood method in
a mixed model. The model included the fixed effects of the evalu-
ation cycle as a block (four cycles with 20 animals each, corrected
to the same base), the time effect within the evaluation cycle (two
cycles, 1000–1900 h when animals gained heat and 2200–0700 h
when animals lost heat), and the animal as a random effect. The
best unbiased linear prediction (BLUP, no genetic relationship
matrix) estimates were obtained for each ewe, and the individual
heat stress response was quantified. The effect of the second eval-
uation cycle was used to determine the capability of each individ-
ual to lose heat after a heat-stress period and was used to rank
ewes from the most heat-tolerant to the least heat-tolerant
(Pantoja et al., 2024b).

After ranking heat tolerance, we selected twenty-four ewes; 12
were considered the most heat-tolerant and 12 were considered
the least heat-tolerant. The animals were kept in a climatic cham-
ber at 36 �C, starting at 1000 h until 1600 h, and maintained at
28 �C from 1600 to 1000 h for 10 days (2 days of adaptation and
8 days of heat treatment). Physiological variables, surface temper-
atures, and blood samples were obtained every 3 h, for a total of
eight measurements per animal. On the morning of the other
3

day, a histological skin biopsy was performed inside the climatic
chamber.

Physiological variables

The respiration rate (breaths.min�1) wasmeasured by observing
the thoracic-abdominalmovements of the sheep for onemin. Rectal
temperature (�C) was measured using a digital clinical thermome-
ter (TH150, G-Tech, ±0.2 �C). Sweat rate (g/m�2h�1) was determined
using filter paper discs impregnated with cobalt chloride placed on
the skin of the animal, the time for the color change of the cobalt
chloride from blue to pink, and the sweat rate was calculated using
the following equation: Sweat rate = (22 � 3600)/(2.06 � t)
(Schleger and Turner, 1965). The tympanic temperature (�C) was
measured using an ear thermometer (TCI100, Incoterm, ±0.2 �C)
placed in the ear canal.

The surface temperature of the ocular region (�C) was measured
by IR thermography using a manually focused IR camera (875-2i,
Testo, Germany) with a thermal sensitivity (NETD; Noise Equiva-
lent Temperature Difference) of <50 mK. The camera was main-
tained at the level of the ocular region at approximately 0.5 m.
The emissivity used was 0.98. Analysis of the ocular region was
performed following previous studies, in which circular tracing
was performed over the orbital region, including the eyeball and
approximately 1 cm of the ocular cavity. Body surface temperature
(�C) was measured using an IR thermometer (G-Tech Premium,
Incoterm, ±0.2 �C).

Triiodothyronine and insulin measurement

Blood samples were collected after the assessment of all phys-
iological variables. Restraint was carried out by positioning oneself
to the side of the animal, holding its flank with one hand, and
securing the jaw with the other hand to maintain containment
until the blood collection was completed. Blood samples were col-
lected from two sheep at a time by experienced people who were
already familiar with the sheep prior to the experiment.

Blood samples were collected into 10 mL vacuum tubes without
anticoagulant by puncture of the external jugular vein. Samples
were centrifuged at 3000 rpm for 20 min, and the serum was
immediately frozen at �20 �C until determination of T3 and insulin
levels. These hormones were measured by enzyme immunoassay
using commercial kits, according to the manufacturer’s instruc-
tions (Monobind, Lake Forest, CA, USA). Both kits were validated
using parallel curves between standard concentrations and serially
diluted serum samples. The intra- and inter-assay CV were 3.8 and
6.3%, respectively, for T3 and 4.5 and 6.2%, respectively, for insulin.

Skin morphology

A biopsy was performed on the right side of the animal, in the
middle dorsal region. Before biopsy collection, the area was
shaved, disinfected, and anesthetized using 1mL of local anesthetic
without a vasoconstrictor (2% lidocaine hydrochloride). Then,
micro-fragments of skin tissue were excised using an 8 mm diam-
eter punch. Specimens were immediately fixed in 10% buffered for-
malin for 48 h and stored in 70% alcohol until histological analysis
using the same methods as those used in previous studies
(Strefezzi et al., 2003; Pulido-Rodríguez, 2019).

Each fragment was cut into 4 lm thick sections and stained
with hematoxylin and eosin for histopathological evaluation. Sec-
tions were examined under an optical microscope (Leica DM500)
at 40 � magnification in an image with an area of 0.08 mm2.
Images were acquired for each section. Images were analyzed
using the ImageJ software version 1.52a (National Institutes of
Health, USA).
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The parameters described below were determined for each sec-
tion: For epidermal and dermal thicknesses (lm), 30 measure-
ments per slide were performed at different sections of the
epidermis and dermis. Sweat gland density (number of sweat
glands per linear micrometer) was determined by counting sweat
glands using a multipoint tool and dividing the number by the
length of the epidermal surface. The glandular area (lm2) was
measured using a freehand selection tool that allowed tracing of
the area of each sweat gland. Sweat gland depth (lm) was the
average of four measurements from the upper and lower distant
edges of the sweat glands in relation to the epidermis. The arith-
metic mean of the parameters was used for statistical analysis,
except for the sweat gland density.
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Fig. 1. Mean and SE values of air temperature (Tair) and relative humidity (RH)
during thermal challenge (1000–1600 h) and without thermal challenge (1600–
1000 h) imposed on heat tolerant (HT) and less heat tolerant (LHT) Santa sheep
inside the climatic chamber.

Table 1
Skin morphological characteristics of heat tolerant and less heat tolerant Santa Ines sheep

Variable Heat tolerant sheep

Sweat gland density (glands lm�1) 0.01
Glandular area (lm2) 11 453.16
Sweat glands depth from epidermis (lm) 1 015.81
Epidermal thickness (lm) 45.90
Dermal thickness (lm) 2 193.83

1 n = 12 per treatment.

Table 2
Timing of feed intake of heat tolerant and less heat tolerant Santa Ines sheep during therm

Temperature (�C) Hour Heat tolerant sheep (mins)

28.5 0800 32.92a

28.5 0900 11.62b

34.0 1000 25.14a

35.8 1100 21.71ab

36.0 1200 16.20b

36.0 1300 34.00a

36.1 1400 22.14ab

36.1 1500 13.60b

34.4 1600 24.17a

32.6 1700 22.73ab

1 n = 12 per treatment.
a,b Different lowercase letters indicate a significant difference in each column (P < 0.05

4

Behavior

Animal behavior of the twenty-four ewes, 12 heat-tolerant
ewes, and 12 less heat-tolerant ewes was observed for three con-
secutive days inside the climate chamber (days 5, 6, and 7). Feed-
ing time (min), observed from the ingestion of silage with the
mouth in the feeder, and water drinking events, observed by drink-
ing water from the trough, were analyzed continuously and indi-
vidually using the animal focal sampling technique. The animals
were numbered with non-toxic spray paint, white in color, on both
sides of the body, to facilitate animal identification.

Each focal animal was observed from 0800 to 1800 h by six
trained observers, three in the morning and three in the afternoon.
They were positioned inside the climate chamber approximately
1.5 m away from the animals and positioned away from their
vision behind a wall. Santa Ines sheep were accustomed to human
presence, and to avoid observer interference in the behavior, sheep
involved in the study were already familiar with the observers
before the start of the experiment.
Statistical analysis

For the model, response traits as a function of the covariates and
a specific distribution under the GLMM with a better link function
were used. A better link function ensures well-fitted values, and a
specific distribution is typically used for each trait. Fixed factor of
the tolerance group (categorical with two levels: heat tolerant and
less heat tolerant) and daytime (continuous). The interaction term
was the tolerance group � daytime (similar to a cubic regression).
To incorporate dependency among observations of the same
animal, we used nested as an animal random intercept.

For feed intake behavior, the model included the random
effect of sheep as well as the fixed effects of heat tolerance
(0800–1700 h) and the interaction between these effects. Means
were compared by Tukey-Kramer test, and the significance was
set at 5%. All results are reported as the mean ± SE of the mean.
SAS for Windows 9.4 software (2016) was used for statistical
analyses.
during a thermal challenge in a climatic chamber.

Less heat tolerant sheep Pooled SEM1 P-value

0.01 0.00 0.462
10 680.0 1 015.10 0.596
1 101.0 81.16 0.467
42.44 5.59 0.666
2 279.0 75.46 0.432

al challenge in a climatic chamber.

Less heat tolerant sheep (mins) Pooled SEM1 P-value

38.58a 3.271 1.000
15.00b 4.145 1.000
17.27b 3.722 1.000
22.00ab 3.902 1.000
23.09ab 3.500 0.998
16.33b 3.902 0.198
26.50ab 4.152 1.000
26.37ab 3.930 0.678
27.64ab 3.345 1.000
13.33b 3.345 0.904

); P-values differ between heat-tolerant and heat-less tolerant sheep.
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Results

From 0100 to 0700 h, Tair was 29 ± 1.33 �C and reached values
of 35.7 ± 0.64 �C from 1100 to 1600 h, when the temperature of the
Table 3
Regression table of physiological and hormonal variables of sheep classified as heat-tolera

Heat tolerant sheep

Respiration rate (breaths min�1) y = 3.55–0.0537*h + 0.01312*h2 � 0.0005*h3

Tympanic temperature (�C) y = 35.9072–0.2512*h + 0.05542*h2 �0.00209*h
Sweat rate (g/m�2h�1) y = 6.0771–0.1342*h + 0.01884*h2 �0.00048*h3

Rectal Temperature (�C) y = 38.7885–0.1729*h + 0.01884*h2 � 0.00052*h
Body surface temperature (�C) y = 36.6581–0.2624*h + 0.04577*h2 �0.00163*h
Ocular temperature (�C) y = 38.8251–0.286* h + 0.03971*h2 �0.00123*h3

T3 (ng/mL) y = 1.1234 + 0.01316*h-0.00166*h2 + 0.000048*
Insulin (lIU/mL) y = 16.6880–0.3079*h + 0.02965*h2-0.00113*h3

Abbreviations: T3 = triiodothyronine.

Fig. 2. Predicted (pred) and observed (D and Χ) a respiration frequency, b rectal temper
tolerant (LHT) Santa Ines sheep throughout the day.

5

climatic chamber was reduced (Fig. 1). The RH values were higher
when the Tair was lower.

Skin morphology did not differ between the groups (P > 0.05)
(Table 1), with similar measurements for sweat gland density,
nt and less heat-tolerant sheep.

P-value Less heat tolerant sheep P-value

<0.001 y = 3.65–0.1171*h + 02115*h2 � 0.00075*h3 <0.001
3 0.001 y = 35.6121–0.2287*h + 0.06028*h2 �0.0023*h3 0.001

0.003 y = 5.8125–0.01884*h + 0.001986*h2 �0.00002*h3 0.879
3 <0.001 y = 39.0478–0.1454*h + 0.16733*h2 � 0.00048*h3 <0.001
3 0.001 y = 36.7710––0.2658*h + 0.05363*h2-0.00197*h3 0.001

0.001 y = 39.0891–0.2957*h + 0.0441*h2 �0.00144*h3 0.001
h3 0.453 y = 1.1709–0.029*h + 0.001794*h2-0.00004*h3 0.555

0.746 y = 29.1356–3*h + 0.3384*h2-0.01013*h3 0.009

ature, c tympanic temperature, and d sweat rate of heat tolerant (HT) and less heat
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glandular area, sweat gland depth from the epidermis, epidermal
thickness, and dermal thickness.

There was no difference in the duration of feed intake per hour
between heat-tolerant (20.69 ± 1.072 min) and less heat-tolerant
sheep (20.73 ± 1.035 min) (P > 0.05). However, the time of feed
intake of heat-tolerant and less heat-tolerant sheep varied
throughout the day (P < 0.05; Table 2). There was no significant dif-
ference in water intake during all observation days between the
groups, with a total of 18 min for heat tolerance and 23 min for
low heat tolerance (P = 0.429).

The cubic regression was significant for respiration rate and
tympanic temperature over time in both heat-tolerant
(P < 0.0001) and less heat-tolerant sheep (P < 0.05) (Table 3). An
increase in respiration rate and tympanic temperature was
observed, mainly between 1000–1600 h, when the thermal chal-
lenge was applied (Fig. 2ac). After this period, these physiological
variables decreased in both heat-tolerant and less heat-tolerant
animals but remained higher in less heat-tolerant animals
(Fig. 2ac). The cubic regression for the sweating rate of the less
heat-tolerant animals over time was not significant (P = 0.8789;
Table 3). Although the sweating rate of the less heat-tolerant ani-
mals did not vary throughout the day, an increase was observed
after the conclusion of heat treatment (Fig. 2d). The rectal temper-
6

ature of the less heat-tolerant animals was higher during the heat
challenge along the day (P < 0.0005; Fig. 2b).

Body surface temperature and ocular temperature showed sig-
nificant cubic regression over time for both heat-tolerant and less
heat-tolerant groups (P < 0.0001; Table 3). The body surface tem-
perature (Fig. 3a) and ocular temperature (Fig. 3b) varied through-
out the day, peaking between 1000–1600 h, when the
environmental temperature was the highest, with low tempera-
tures in heat-tolerant sheep.

Insulin concentration did not increase during the thermal chal-
lenge or throughout the day in heat-tolerant sheep (Fig. 4a); there-
fore, cubic regression was not significant (P < 0.7459; Table 3).
However, the insulin concentration in less heat-tolerant sheep var-
ied over time (P < 0.0094; Table 3). In contrast, the variation in T3
concentration over time was similar between heat-tolerant and
less heat-tolerant sheep, and showed no variation throughout the
day (Fig. 4b).

Author’s points of view

� This study demonstrated variation in the thermoregulatory
mechanisms of Santa Ines sheep during heat challenge.
Although evaporative and non-evaporative losses were similar



Fig. 3. Predicted (pred) and observed (D and Χ) a body surface temperatures r and b ocular surface temperatures of heat tolerant (HT) and less heat tolerant (LHT) Santa Ines
sheep throughout the day.
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on the day’s average, it was possible to classify the sheep into
heat-tolerant and less heat-tolerant groups. We observed that
animals of the same breed, considered well adapted to tropical
climates, under the same environmental conditions did not
show the same heat loss efficiency, as evidenced by regression.
When exposed to prolonged heat stress, less heat-tolerant Santa
Ines sheep stored more body heat and were more reliant on
evaporative cooling mechanisms through panting and sweating
than those grouped as more heat-tolerant.

� Even during hours of reduced air temperature, less heat-
tolerant animals did not reach the basal rectal temperature of
38.6 �C. In contrast, the heat-tolerant group was able to dissi-
pate heat more efficiently, showing rectal temperatures of
38.3 �C between 0300 and 1000 h. The basal rectal temperature
of the heat-tolerant animals was 38.4 �C. These findings demon-
strate the influence of environmental temperature according to
Terrien et al. (2011) and the need for thermoregulation as an
important strategy for maintaining internal body temperature
within the ideal range (De et al., 2017).

� The lower rectal and body surface temperatures in heat-tolerant
animals explained the individual differences between the
groups, as the lower rectal temperature before the beginning
7

of the increase in air temperature could dissipate body heat
more efficiently, as observed by the lower body surface temper-
ature during the hottest hours, the same observed by Titto et al.
(2016a). Related to rectal temperature, we consider this finding
relevant because it reflects the deleterious effects of heat stress
on animals (Shilja et al., 2016) and their welfare (Caulfield et al.,
2014; Joy et al., 2022).

� The higher body surface temperatures observed in less heat-
tolerant sheep indicate their attempt to dissipate excess heat
via vasodilation, which increases blood flow from the body core
to the skin surface (Morrison and Nakamura, 2011; Mota-Rojas
et al., 2021), ultimately resulting in increased skin temperature
and more heat loss via radiation and convection (Gesualdi
Júnior et al., 2014) because of a difference in the temperature
gradient between the skin and the environment, according to
Macías-Cruz et al. (2016).

� Respiration rate is known to be the most important mechanism
for dissipating heat in sheep (Marai et al., 2007), and sweating
has been shown to be as important as painting, confirming
the arguments cited by Kahwage et al. (2018). In our study, it
was observed that less heat-tolerant animals continued to
sweat after the period of thermal challenge, probably to dissi-



Fig. 4. Predicted (pred) and observed (D and Χ) a triiodothyronine and b insulin levels in heat tolerant (HT) and less heat tolerant (LHT) Santa Ines sheep throughout the day.
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pate excess heat. The sweating rate remained high after 1600 h
(end of the thermal challenge) until nighttime, when the air
temperature was markedly lower, demonstrating that sweating
was important for the re-establishment of thermal balance in
the less heat-tolerant group, as similar findings were reported
by Titto (2016b).

� Cubic regression showed that ocular temperature was higher
throughout theday,mainly in lessheat-tolerant sheepat the time
of thermal challenge (1000–1600 h). Previous studies have
shown a positive correlation between this variable and tympanic
temperature (Boere et al., 2003) and rectal temperature (Schaefer
et al., 2007; Kahwage et al., 2017; Arfuso et al., 2022), making it a
noninvasive method for evaluating heat stress.

� Less heat-tolerant animals had higher insulin concentrations,
probably because they were more affected by stress. During
stress, the sympathetic nervous system releases catecholamines
that stimulate a-adrenergic receptors to increase insulin secre-
tion, as suggested by Alvarez et al. (1989). However, the T3 con-
centration was not influenced by the increase in air
temperature. Although it is expected that T3 levels would be
lower during periods of warmer temperatures to ensure a
reduction in heat production, according to the findings of
8

Pantoja et al. (2017), the eight-day challenge could have been
a limitation in our study, not long enough to present changes
in T3.

� As mentioned in other studies, a reduction in feed intake is
expected (Luna-Nevárez et al., 2020; Luna-Nevárez et al.,
2021). In contrast, the less heat-tolerant animals in the present
study showed no reduction in food intake, possibly because of
the thermal challenge inside the climate chamber, which dif-
fered from day to night, as the temperature was 10 �C lower
at night and was set at 36 �C for 6 h during the day. The absence
of solar radiation could be a limitation of our study, which is
less challenging compared to animals in the field under pasture
conditions (Marcone et al., 2021; Santos et al., 2021).

� We found some individual differences between Santa Ines
sheep, which could be an easy tool to classify and select more
thermotolerant sheep, demonstrating the usefulness of using
individual classifications based on rectal temperature to define
the phenotypic differences involved in tolerance to thermal
stress. Animals of the same breed and under the same condi-
tions can respond differently to stress, which can result in
greater productivity and ease of combating the deleterious
effects of heat stress.
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� For further investigations, both surface heat exchange and
sweating rate are important for understanding thermoregula-
tory responses in hair sheep. The use of surface heat exchange
(peripheral vasodilation) by less heat-tolerant sheep likely
occurred because these individuals required more time and
effort to dissipate excess heat, despite the use of sweating, as
discussed by Starling et al. (2002), which can be assumed to
be a good thermoregulation mechanism in hair sheep. A larger
sample size would be valuable for further studies to investigate
the extremes of high and low heat tolerance and to find differ-
ences in cellular responses and gene expression. The results of
this study can be used as reference values for Santa Ines sheep
subjected to heat stress.
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