Closed Invariant Subspaces of a Birnbaum-Orlicz Space*

IRACEMA M. BUND

We begin by summarizing the theory of Birnbaum-Orlicz spaces L,(X) of
functions defined on an arbitrary measure space (X, .#, . In Section 3 we
show that if G is a locally compact group and A is a nontrivial generalized
Young's function, the space L ,(G) is a left Banach L,-module and a right
Banach (L, n L} )-module.

Finally, in Section 4 we characterize the closed invariant subspaces of L,(G).
where G is a compact group and A satisfies the A,-condition for u > uy = 0.

Our notation is as in [2], [3] and [4]. Detailed proofs of all the statements
can be found in [1]. Readers who are interested particularly in the material
of Sections 1 and 2 are referred to [5] and [6].

§1. Generalized Young’s Functions.

(1.1) DEFINITION. A function A on [0, »o[ into [0, » ] will be called a gene-
ralized Young's function if

(1) A(0) = 0;

(11) 4‘,—“1 1s nondecreasing for u > 0;

(iif) 4 is left continuous on 0, [

The zero function and the function which is equal to zero at zero, and equal
to « on ]0, [ are generalized Young’s functions. They will be called trivial
functions.

Throughout the remaining of this work the letter 4 will denote a nontrivial
generalized Young's function. We also fix a and b as follows: a = supiu = A(u) =
=0}, b = inf{u: Au) = x©}.
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(1.2) The following properties of A are easily verified:

(i) A4 is nondecreasing on [0, [ and for a < b, A4 is strictly increasing on

[a, b[;

(i) A(ou) < oA(u) for 0 < x <1 and 0 < u < .

(1.3) DeEFINITION.  Let p be a nontrivial nondecreasing function on [0, w[

into [0, »0]. The function B defined by the equality B(u) = j p(t)dt for 0 <
0
< u< 0 is called a Young’s function.

(1.4) THEOREM. For B as in (1.3) ew have:

(i) Blou + (1—o)v) < aB(u) + (1—a)B(v) for all u and v in [0, o[ and any o
in [0, 1];

(i) B is a generalized Young's function.

(1.5) THEOREM. Let B be a function on [0, o[ into [0, 2 ] and let ¢ = inf {u : B(u)
= %j. Suppose that: B(0) =0, ¢ > 0 and B is convex on [0, ¢[ . Then B is
a Young’s function.

(1.6) DerINITION.  The function A, defined by the equality

(i) Ay(u) = j @ dt for 0 < u< o will be called the regularization of A.
0

(1.7) The following properties of A4, are clear:

(i) Ay, is a Young’s function;
(i) Ag(u) < A(u) < Ay(2u) for 0 < u. .

(1.8) DEFINITION. The Young's complement of A is the function A defined on
[0, o[ by the relation

(i) Alv) = sup [uv — A(u)).

0<su<w

(1.9) A short computation and an application of (1.5) tell us that A is a nontrivial
Young’s function. It follows immediately from (1.8.i) that

(i1) uv < A(u) + A(v)

for all u and v in [0, oof.
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(1.10) THEOREM. The function A~' defined on [0, [ by the equality
A~ Y(v) = sup{u : A(u) < v}

is nondecreasing and right continuous. In addition it has the following pro-
perties:

i))0< A7 ') < © for 0 < v< wW;
(i) A(A"'(v) < v for0 < v < 0, the equality holding if A is continuous at
A" Yv);
“(iii) v < A" Y(A(v)) for 0 < v< b, the equality holding for a <v< b;
(iv) v < A7) (A) " '(v) for 0 < v < .

(1.11) DeFNiTION. The function A is said to satisfy the A,-condition for u =
> u, > 0 if A(uy) < 0 and there is a positive number ¢ such that AQQu) <
<

cA(u) for uy < u < .

§2. Birnbaum-Orlicz Spaces

(2.1) DEFINITION. Let (X, .#, p) be an arbitrary measure space montrivial in
the sense that u(X) > 0. The set L (X, .#, p) of all complex-valued, .#-mea-

surable functions defined p-a.e. on X such that | A(x |/1)dpu < oo for some
b

positive number o is called a Birnbaum-Orlicz space. Where no confusion
seems possible, we will write L,(X) for L (X, ./, p).

(2.2) A short computation shows that a Birnbaum-Orlicz space obtained from
a Young's function is a complex linear space. Also, taking account of (1.7.i1).
we easily find that L, (X) = L,(X). We conclude that every Birnbaum-

-Orlicz space is a complex linear space.

(2.3) THEOREM. Consider the function p, defined on L,(X) by the equality

o) = inf{k €10, of : L} A< L|f|> du < 1}-
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For fin L,(X) the following hold:

(i) 0 < puff) < o
(i) p4(f) = O implies that f(x) = 0 p-a.e. on X:
(iii) p4(Bf) =|B|pa(f) for any complex number B:

(iv) if puf) > 0, then L A<;}U~)!f|> dp < 1;

(v) if A is a Young's function, p, is a norm;
(i) if 0 < WE) < o0 then &€ LX) and
1

pACE) = —_T“-
~3f X
. (/t(E)>

(2.4) It follows from (2.3.v) and (2.2) that Pa, 18 @a norm on L,(X). We denote:
(1) HfHA =P {f):

(2.5) THEOREM. The space L 4(X) with the norm de fined in (2.4.) is a Banach
space.

(2.6) THEOREM. [Holder’s inequality]. If fe L ,(X)and g € L+(X), the product
fg belongs to L,(X) and we have

(i) f 19| du < 2p(f)pa(9).
X

(2.7) REMARKS. (i) If M(u) = v* for 0 < u < o and 1 < a <o, Ly (X) is
the classical L,(X) space. A simple computation shows that P () = I11l,

and ||f]ly, = a~% [|f]l

(i) For M (u) = o &}, ,(u) we have Ly (X) = L,(X) and py () =
= /1, = A

(2.8) THEOREM. Let A and B be nontrivial generalized Young's functions and
suppose that there exists a positive number m such that A(u) < B(mu) for 0 <
<u < 0. Then LX) < LX) and we have
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(i) pa(f) < mpy(f) for all fe LyX).

In particular the following inequalities hold for all fe L,(X):

(i) [1/]]4 < paf) < 2| fla

(2.9) THEOREM. If (X)) < %, L(X) is contained in L,(X) and for all fe LX)

we have
4

ol B
1 (#(X))

(i) 11 < I/

A

(2.10) DeFINITION. Let N, denote the function defined on the class of all
complex-valued, .#-measurable functions on X by the equality

(i) N,(f) = sup {J |fg) du = g € Li(X), palg) < 1}.
X

(2.11) THEOREM. The function N, is a seminorm on L,(X). The following
inequalities hold for all f in L, (X):

(1)) NAf) < 2p4(f);
(i) N, (f) < N < 2N ().

(2.12) THEOREM. Let A be a nontrivial generalized Young's function. Suppose
that [ is a complex-valued measurable function vanishing outside of a o-finite
set and that N 4(f) < oo. Then fe€ LX) and we have

W) 11 f1la = Nalf)

(2.13) THEOREM. Suppose that w(X) is finite. Let (f,) be a sequence in L ,(X)
converging uniformly to a function f € L (X). Then we have lim p,(f, — f) = 0.

(2.14) LEMMA. Let X be a locally compact Hausdorff space. Let y be a measure
obtained from a nonnegative linear functional on C ;o(X) as in §9 of [4]. and let
M be the o-algebra of all p-measurable subsets of X. Then each function [ in
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LX) can be written as f, + f,, where f, = f&, for some a-compact set F, and
| f2(x) | < ap,(f) p-a.e. on X. In particular, if a =0, then f vanishes H-a.e.
outside of a o-compact set.

(2.15) THEOREM. Suppose that A satisfies the A,-condition for u > uy > 0.
Let (X, M, p) be as in (2.14) and let W(X) be finite. Then C(X) is H . HA,,-dcn.s‘v in
L (X).

§3. Birnbaum-Orlicz Spaces of Functions on Groups

Let G be a locally compact Hausdorfl group and let A be a left Haar measure
on G. We will write del as ‘[f(x)d.\'.
G G

(3.1) THEOREM. A complex-valued measurable function | belongsto L,(G)r L¥(G)
if and only if max {1, }} fe L,(G). The equalities

. |

0 1711 = 1171+ s T
and
i A = 11 41, Ll

~ . ) . * 5
define equivalent norms on the linear space L,(G) n Li(G). Precisely. we have

Gil) [|[ S]] < |I£1] < 2 /|| f]]| for all fe Ly(G) A LY(G).
With either of these two norms, L,(G) N LT(G) is a Banach space.

(3.2) THEOREM. Let f be a function in L,(G) and let s be an arbitrary element
of G. Then the functions f and f, belong to L,G) and we have:

(1) palsS) = palf);
(i) p4(fy) < max {1, Als™ ")} pA(f).

The following result is part of (20.7) in the Russian edition of Hewitt and
Ross “Abstract Harmonic Analysis”, to be published.
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(3.3) LEMMA. Let f be a A-measurable function on G. The following functions
are A x A-measurable on G x G:

(x, y) — flxy™h), (x, y) — [~ '), (x, ¥} — fix),
(x, y) —— fx™"), (x, ) — f0), x, ) — ™).

(3.4) THEOREM. Let f be a function in L (G) vanishing outside of a o-compact
set F and let g be a function in L,(G). The integral

(i) grf(x) = Jf(y‘ 'x)g(y) dy
G

exists and is finite for almost all x in G. The function g*fis in L 4(G) and we have

(i) s 1le < 41171 g |l

If g € L\(G) n L%(G), the integral
(iii) Srg(x) = JA(y")f(Xy_l)g(y)dy
G

exists and is finite for A-almost all x in G. The function fxg is.in L,(G) and
we have

(iv) 1fg 1l < 411 S0l gl

where || -] is as in (3.1.i).
Theorem (3.4) serves as a lemma for the following general result.

(3.5) THEOREM. Suppose that fe L,(G) and g € L,(G). Then the integral
(@) g*f(x) = J‘f (v~ " x)g(y) dy
G

exists and is finite fo; A-almost all x in G. The function g+fis in L (G) and we
have

(i) Hgxf1la < KIS Mgl
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where k =4 if a =0 or if G is o-compact, and k = 6 otherwise.

If g € L(G) n L(G), the integral

(i1) frg(x) = J Ay~ f(xp™Hgly) dy

G

exists and is finite for A-almost all x in G. The function f*g is in L ,(G) and we
have

(iv) /g lle < k(1 f1la Mgl
where k is as above and ||-|| is as in (3.1.i).

The last two theorems have rather technical proofs, but using (3.5) it is simple
to establish the followings results.

(3.6) THEOREM. The space L,(G) n L}(G) is a Banach algebra.

(3.7) THEOREM. The Birnbaum-Orlicz space L ,(G) is a left Banach L,-module
and a right Banach (L, n L})-module.

§4. Closed Ideals in L (G) where is a Compact Group

Throughout this section we suppose that G is compact. The left Haar measure
A is chosen so that A(G) = 1.

(4.1) THEOREM. Suppose that f and g are in L,(G). Then the equality

gxf(x) = j fr~'x)g(y) dy

G

defines a function in L ,(G) and we have

: 16 .
* <SS — :
M Hoeflle < -=2=y 111 Nl gl
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(4.2) THEOREM. The space L ,(G) is a Banach algebra under a norm which is a
positive constant times || -

v,

(4.3) THEOREM. Suppose that A satisfies the A,-condition for u > u, = 0.
Then the space T (G) of trigonometric polynomials on G is || - || -dense in L 4(G).

At this point we can see that L ,(G) satisfies the hypothesis of (38.6.a) in [3].
Thus we obtain from (38.22.b) in [3] the following characterization.

(4.4) THEOREM. Let A be as in (4.3). Suppose that S is a closed linear subspace
of L,(G). Then S is a left (right) ideal in L,(G) if and only if S is closed under
the formation of left (right) translates.

(4.5) THEOREM. Let A be as in (4.3). Then the class of all closed two-sided ideals
in L ,(G) is exactly the family {(L,)P: P = Z}. Distinct subsets of £ engender
distinct ideals.
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