

Closed Invariant Subspaces of a Birnbaum-Orlicz Space*

IRACEMA M. BUND

We begin by summarizing the theory of Birnbaum-Orlicz spaces $L_A(X)$ of functions defined on an arbitrary measure space (X, \mathcal{M}, μ) . In Section 3 we show that if G is a locally compact group and A is a nontrivial generalized Young's function, the space $L_A(G)$ is a left Banach L_1 -module and a right Banach $(L_1 \cap L_1^*)$ -module.

Finally, in Section 4 we characterize the closed invariant subspaces of $L_A(G)$, where G is a compact group and A satisfies the Δ_2 -condition for $u \geq u_0 \geq 0$.

Our notation is as in [2], [3] and [4]. Detailed proofs of all the statements can be found in [1]. Readers who are interested particularly in the material of Sections 1 and 2 are referred to [5] and [6].

§1. Generalized Young's Functions.

(1.1) DEFINITION. A function A on $[0, \infty[$ into $[0, \infty]$ will be called a *generalized Young's function* if

- (i) $A(0) = 0$;
- (ii) $\frac{A(u)}{u}$ is nondecreasing for $u > 0$;
- (iii) A is left continuous on $]0, \infty[$.

The zero function and the function which is equal to zero at zero, and equal to ∞ on $]0, \infty[$ are generalized Young's functions. They will be called trivial functions.

Throughout the remaining of this work the letter A will denote a nontrivial generalized Young's function. We also fix a and b as follows: $a = \sup\{u : A(u) = 0\}$, $b = \inf\{u : A(u) = \infty\}$.

*Research supported by the "Fundação de Amparo à Pesquisa do Estado de São Paulo".

(1.2) The following properties of A are easily verified:

- (i) A is nondecreasing on $[0, \infty[$ and for $a < b$, A is strictly increasing on $[a, b[$;
- (ii) $A(\alpha u) \leq \alpha A(u)$ for $0 \leq \alpha \leq 1$ and $0 \leq u < \infty$.

(1.3) DEFINITION. Let p be a nontrivial nondecreasing function on $[0, \infty[$ into $[0, \infty]$. The function B defined by the equality $B(u) = \int_0^u p(t)dt$ for $0 \leq u < \infty$ is called a *Young's function*.

(1.4) THEOREM. For B as in (1.3) we have:

- (i) $B(\alpha u + (1-\alpha)v) \leq \alpha B(u) + (1-\alpha)B(v)$ for all u and v in $[0, \infty[$ and any α in $[0, 1]$;
- (ii) B is a generalized Young's function.

(1.5) THEOREM. Let B be a function on $[0, \infty[$ into $[0, \infty]$ and let $c = \inf\{u : B(u) = \infty\}$. Suppose that: $B(0) = 0$, $c > 0$ and B is convex on $[0, c[$. Then B is a Young's function.

(1.6) DEFINITION. The function A_0 defined by the equality

- (i) $A_0(u) = \int_0^u \frac{A(t)}{t} dt$ for $0 \leq u < \infty$ will be called the *regularization* of A .

(1.7) The following properties of A_0 are clear:

- (i) A_0 is a Young's function;
- (ii) $A_0(u) \leq A(u) \leq A_0(2u)$ for $0 \leq u < \infty$.

(1.8) DEFINITION. The *Young's complement* of A is the function \bar{A} defined on $[0, \infty[$ by the relation

$$(i) \quad \bar{A}(v) = \sup_{0 \leq u < \infty} [uv - A(u)].$$

(1.9) A short computation and an application of (1.5) tell us that \bar{A} is a nontrivial Young's function. It follows immediately from (1.8.i) that

$$(ii) \quad uv \leq A(u) + \bar{A}(v)$$

for all u and v in $[0, \infty[$.

(1.10) THEOREM. *The function A^{-1} defined on $[0, \infty[$ by the equality*

$$A^{-1}(v) = \sup\{u : A(u) \leq v\}$$

is nondecreasing and right continuous. In addition it has the following properties:

- (i) $0 < A^{-1}(v) < \infty$ for $0 < v < \infty$;
- (ii) $A(A^{-1}(v)) \leq v$ for $0 < v < \infty$, the equality holding if A is continuous at $A^{-1}(v)$;
- (iii) $v \leq A^{-1}(A(v))$ for $0 \leq v < b$, the equality holding for $a \leq v < b$;
- (iv) $v \leq A^{-1}(v)(\bar{A})^{-1}(v)$ for $0 \leq v < \infty$.

(1.11) DEFINITION. The function A is said to satisfy the Δ_2 -condition for $u \geq u_0 \geq 0$ if $A(u_0) < \infty$ and there is a positive number c such that $A(2u) \leq cA(u)$ for $u_0 \leq u < \infty$.

§2. Birnbaum-Orlicz Spaces

(2.1) DEFINITION. Let (X, \mathcal{M}, μ) be an arbitrary measure space nontrivial in the sense that $\mu(X) > 0$. The set $L_A(X, \mathcal{M}, \mu)$ of all complex-valued, \mathcal{M} -measurable functions defined μ -a.e. on X such that $\int_X A(\alpha |f|) d\mu < \infty$ for some positive number α is called a *Birnbaum-Orlicz space*. Where no confusion seems possible, we will write $L_A(X)$ for $L_A(X, \mathcal{M}, \mu)$.

(2.2) A short computation shows that a Birnbaum-Orlicz space obtained from a Young's function is a complex linear space. Also, taking account of (1.7.ii), we easily find that $L_{A_0}(X) = L_A(X)$. We conclude that every Birnbaum-Orlicz space is a complex linear space.

(2.3) THEOREM. *Consider the function p_A defined on $L_A(X)$ by the equality*

$$p_A(f) = \inf \left\{ k \in]0, \infty[: \int_X A\left(\frac{1}{k}|f|\right) d\mu \leq 1 \right\}.$$

For f in $L_A(X)$ the following hold:

- (i) $0 \leq p_A(f) < \infty$;
- (ii) $p_A(f) = 0$ implies that $f(x) = 0$ μ -a.e. on X ;
- (iii) $p_A(\beta f) = |\beta| p_A(f)$ for any complex number β ;

(iv) if $p_A(f) > 0$, then $\int_X A\left(\frac{1}{p_A(f)}|f|\right) d\mu \leq 1$;

(v) if A is a Young's function, p_A is a norm;

(vi) if $0 < \mu(E) < \infty$ then $\xi_E \in L_A(X)$ and

$$p_A(\xi_E) = \frac{1}{A^{-1}\left(\frac{1}{\mu(E)}\right)}.$$

(2.4) It follows from (2.3.v) and (2.2) that p_{A_0} is a norm on $L_A(X)$. We denote:

(i) $\|f\|_A = p_{A_0}(f)$.

(2.5) **THEOREM.** *The space $L_A(X)$ with the norm defined in (2.4.i) is a Banach space.*

(2.6) **THEOREM.** [Hölder's inequality]. *If $f \in L_A(X)$ and $g \in L_{\bar{A}}(X)$, the product fg belongs to $L_1(X)$ and we have*

$$(i) \quad \int_X |fg| d\mu \leq 2p_A(f)p_{\bar{A}}(g).$$

(2.7) **REMARKS.** (i) If $M_\alpha(u) = u^\alpha$ for $0 \leq u < \infty$ and $1 \leq \alpha < \infty$, $L_{M_\alpha}(X)$ is the classical $L_\alpha(X)$ space. A simple computation shows that $p_{M_\alpha}(f) = \|f\|_\alpha$ and $\|f\|_{M_\alpha} = \alpha^{-\frac{1}{\alpha}} \|f\|_\alpha$.

(ii) For $M_\infty(u) = \infty$ $\xi_{11, \infty}(u)$ we have $L_{M_\infty}(X) = L_\infty(X)$ and $p_{M_\infty}(f) = \|f\|_{M_\infty} = \|f\|_\infty$.

(2.8) **THEOREM.** *Let A and B be nontrivial generalized Young's functions and suppose that there exists a positive number m such that $A(u) \leq B(mu)$ for $0 \leq u < \infty$. Then $L_B(X) \subset L_A(X)$ and we have*

(i) $p_A(f) \leq mp_B(f)$ for all $f \in L_B(X)$.

In particular the following inequalities hold for all $f \in L_A(X)$:

$$(ii) \quad ||f||_A \leq p_A(f) \leq 2 ||f||_A.$$

(2.9) THEOREM. If $\mu(X) < \infty$, $L_A(X)$ is contained in $L_1(X)$ and for all $f \in L_A(X)$ we have

$$(i) \quad ||f||_1 \leq \frac{4}{(\bar{A})^{-1}\left(\frac{1}{\mu(X)}\right)} ||f||_A.$$

(2.10) DEFINITION. Let N_A denote the function defined on the class of all complex-valued, \mathcal{M} -measurable functions on X by the equality

$$(i) \quad N_A(f) = \sup \left\{ \int_X |fg| d\mu : g \in L_{\bar{A}}(X), p_{\bar{A}}(g) \leq 1 \right\}.$$

(2.11) THEOREM. The function N_A is a seminorm on $L_A(X)$. The following inequalities hold for all f in $L_A(X)$:

- (i) $N_A(f) \leq 2p_A(f);$
- (ii) $N_{A_0}(f) \leq N_A(f) \leq 2N_{A_0}(f).$

(2.12) THEOREM. Let A be a nontrivial generalized Young's function. Suppose that f is a complex-valued measurable function vanishing outside of a σ -finite set and that $N_A(f) < \infty$. Then $f \in L_A(X)$ and we have

$$(i) \quad ||f||_A \leq N_A(f).$$

(2.13) THEOREM. Suppose that $\mu(X)$ is finite. Let (f_n) be a sequence in $L_A(X)$ converging uniformly to a function $f \in L_A(X)$. Then we have $\lim_{n \rightarrow \infty} p_A(f_n - f) = 0$.

(2.14) LEMMA. Let X be a locally compact Hausdorff space. Let μ be a measure obtained from a nonnegative linear functional on $\mathbf{C}_{00}(X)$ as in §9 of [4], and let \mathcal{M} be the σ -algebra of all μ -measurable subsets of X . Then each function f in

$L_A(X)$ can be written as $f_1 + f_2$, where $f_1 = f \chi_F$ for some σ -compact set F , and $|f_2(x)| \leq ap_A(f)$ μ -a.e. on X . In particular, if $a = 0$, then f vanishes μ -a.e. outside of a σ -compact set.

(2.15) THEOREM. Suppose that A satisfies the Δ_2 -condition for $u \geq u_0 \geq 0$. Let (X, \mathcal{M}, μ) be as in (2.14) and let $\mu(X)$ be finite. Then $C(X)$ is $\|\cdot\|_A$ -dense in $L_A(X)$.

§3. Birnbaum-Orlicz Spaces of Functions on Groups

Let G be a locally compact Hausdorff group and let λ be a left Haar measure on G . We will write $\int_G f d\lambda$ as $\int_G f(x) dx$.

(3.1) THEOREM. A complex-valued measurable function f belongs to $L_1(G) \cap L_1^*(G)$ if and only if $\max\{1, \frac{1}{\Delta}\} f \in L_1(G)$. The equalities

$$(i) \quad \|f\| = \|f\|_1 + \left\| \frac{1}{\Delta} f \right\|_1,$$

and

$$(ii) \quad \|||f||| = \left\| \max \left\{ 1, \frac{1}{\Delta} \right\} f \right\|_1$$

define equivalent norms on the linear space $L_1(G) \cap L_1^*(G)$. Precisely, we have

$$(iii) \quad \|||f||| \leq \|f\| \leq 2 \|||f||| \text{ for all } f \in L_1(G) \cap L_1^*(G).$$

With either of these two norms, $L_1(G) \cap L_1^*(G)$ is a Banach space.

(3.2) THEOREM. Let f be a function in $L_A(G)$ and let s be an arbitrary element of G . Then the functions $_s f$ and f_s belong to $L_A(G)$ and we have:

- (i) $p_A(_s f) = p_A(f)$;
- (ii) $p_A(f_s) \leq \max \{1, \Delta(s^{-1})\} p_A(f)$.

The following result is part of (20.7) in the Russian edition of Hewitt and Ross "Abstract Harmonic Analysis", to be published.

(3.3) LEMMA. *Let f be a λ -measurable function on G . The following functions are $\lambda \times \lambda$ -measurable on $G \times G$:*

$$\begin{array}{lcl} (x, y) \longrightarrow f(xy^{-1}), & (x, y) \longrightarrow f(y^{-1}x), & (x, y) \longrightarrow f(x), \\ (x, y) \longrightarrow f(x^{-1}), & (x, y) \longrightarrow f(y), & (x, y) \longrightarrow f(y^{-1}). \end{array}$$

(3.4) THEOREM. *Let f be a function in $L_A(G)$ vanishing outside of a σ -compact set F and let g be a function in $L_1(G)$. The integral*

$$(i) \quad g*f(x) = \int_G f(y^{-1}x)g(y) dy$$

*exists and is finite for almost all x in G . The function $g*f$ is in $L_A(G)$ and we have*

$$(ii) \quad \|g*f\|_A \leq 4 \|f\|_A \|g\|_1.$$

If $g \in L_1(G) \cap L_1^(G)$, the integral*

$$(iii) \quad f*g(x) = \int_G \Delta(y^{-1})f(xy^{-1})g(y) dy$$

*exists and is finite for λ -almost all x in G . The function $f*g$ is in $L_A(G)$ and we have*

$$(iv) \quad \|f*g\|_A \leq 4 \|f\|_A \|g\|,$$

where $\|\cdot\|$ is as in (3.1.i).

Theorem (3.4) serves as a lemma for the following general result.

(3.5) THEOREM. *Suppose that $f \in L_A(G)$ and $g \in L_1(G)$. Then the integral*

$$(i) \quad g*f(x) = \int_G f(y^{-1}x)g(y) dy$$

*exists and is finite for λ -almost all x in G . The function $g*f$ is in $L_A(G)$ and we have*

$$(ii) \quad \|g*f\|_A \leq k \|f\|_A \|g\|_1,$$

where $k = 4$ if $a = 0$ or if G is σ -compact, and $k = 6$ otherwise.

If $g \in L_1(G) \cap L_1^*(G)$, the integral

$$(iii) \quad f*g(x) = \int_G \Delta(y^{-1})f(xy^{-1})g(y) dy$$

exists and is finite for λ -almost all x in G . The function $f*g$ is in $L_A(G)$ and we have

$$(iv) \quad \|f*g\|_A \leq k \|f\|_A \|g\|,$$

where k is as above and $\|\cdot\|$ is as in (3.1.i).

The last two theorems have rather technical proofs, but using (3.5) it is simple to establish the followings results.

(3.6) THEOREM. The space $L_1(G) \cap L_1^*(G)$ is a Banach algebra.

(3.7) THEOREM. The Birnbaum-Orlicz space $L_A(G)$ is a left Banach L_1 -module and a right Banach $(L_1 \cap L_1^*)$ -module.

§4. Closed Ideals in $L_A(G)$ where G is a Compact Group

Throughout this section we suppose that G is compact. The left Haar measure λ is chosen so that $\lambda(G) = 1$.

(4.1) THEOREM. Suppose that f and g are in $L_A(G)$. Then the equality

$$g*f(x) = \int_G f(y^{-1}x)g(y) dy$$

defines a function in $L_A(G)$ and we have

$$(i) \quad \|g*f\|_A \leq \frac{16}{(\bar{A})^{-1}(1)} \|f\|_A \|g\|_A$$

(4.2) THEOREM. *The space $L_A(G)$ is a Banach algebra under a norm which is a positive constant times $\|\cdot\|_A$.*

(4.3) THEOREM. *Suppose that A satisfies the Δ_2 -condition for $u \geq u_0 \geq 0$. Then the space $\mathfrak{T}(G)$ of trigonometric polynomials on G is $\|\cdot\|_A$ -dense in $L_A(G)$.*

At this point we can see that $L_A(G)$ satisfies the hypothesis of (38.6.a) in [3]. Thus we obtain from (38.22.b) in [3] the following characterization.

(4.4) THEOREM. *Let A be as in (4.3). Suppose that S is a closed linear subspace of $L_A(G)$. Then S is a left (right) ideal in $L_A(G)$ if and only if S is closed under the formation of left (right) translates.*

(4.5) THEOREM. *Let A be as in (4.3). Then the class of all closed two-sided ideals in $L_A(G)$ is exactly the family $\{(L_A)P: P \subset \Sigma\}$. Distinct subsets of Σ engender distinct ideals.*

References

- [1] IRACEMA M. BUND, *Fourier Analysis on Birnbaum-Orlicz spaces*, Doctoral dissertation, University of Washington, 1973.
- [2] E. HEWITT and K. A. ROSS, *Abstract Harmonic Analysis*, Vol. I, Heidelberg, Springer-Verlag, *Grundlehren der Math. Wiss.*, Band 115, 1963.
- [3] E. HEWITT and K. A. ROSS, *Abstract Harmonic Analysis*, Vol. II, Heidelberg, Springer-Verlag, *Grundlehren der Math. Wiss.*, Band 152, 1970.
- [4] E. HEWITT and K. R. STROMBERG, *Real and Abstract Analysis*, Heidelberg, Springer-Verlag, 1965.
- [5] M. A. KRASNOSEL'SKII and JA. B. RUTICKII, *Convex functions and Orlicz spaces*, Groningen (The Netherlands), transl. from Russian, 1961.
- [6] G. WEISS, *A note on Orlicz spaces*, *Portugaliae Math.*, 15 (1956), 35-47.

Instituto de Matemática e Estatística
Universidade de S. Paulo
S. Paulo — Brasil