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RESUMO

Problemas de nesting, também conhecidos como problemas de corte e empacotamento
de pecas irregulares, é um problema de otimizacdo amplamente estudado na literatura. A maior
parte das publicacdes os resolve por meio de heuristicas, seguidas de métodos exatos e hibridos
(combinacdo de heurisitcas com métodos exatos). No entanto, a maioria desses estudos ndo con-
sideram a rotagdo continua/livre das pecas, o que é uma caracteristica importante presente em
aplica¢des do mundo real. Este documento ¢ uma proposta de andlise de trabalhos que lidam com
os problemas de nesting com rotagdes livres, com foco nas principais estratégias e algoritmos uti-
lizados para resolver o problema. O objetivo é organizar as contribuicdes presentes até o0 momento
e indicar suas vantagens, desvantagens e tendéncias.

PALAVRAS CHAVE. Problemas de nesting. Rotacoes livres. Otimizacao.
Tépicos: Otimizacado Combinatoria; Programacao Matematica.

ABSTRACT

The nesting problem, also known as the irregular cutting and packing problem, is a
widely studied optimization problem in the literature. Most of the papers consider heuristic ap-
proaches, followed by exact, and hybrid methods (combination of exact and heuristic methods).
However, the majority of these studies do not work with the continuous/free rotation of the pieces,
even though it is an important characteristic present in real-world applications. We propose an anal-
ysis of the articles that deal with the nesting problem with continuous rotation, identifying their
main features and algorithms adopted. The goal is to summarize the contributions performed so far,
indicating their strengths, weaknesses, and future tendencies.

KEYWORDS. Nesting problems. Continuous rotations. Optimization.

Paper topics: Combinatorial Optimization; Mathematical Programming.
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1. Introduction

The nesting problem, also known as irregular cutting and packing problem, appears in
industrial contexts, from textile companies through its two-dimensional version, to 3D printing or
container ship loading problem. The problem consists of packing/allocating all the pieces into some
container, aiming to find the best layout that minimizes the waste of material or space.

Besides its NP-Hardness [Chazelle et al., 1989; Fasano, 2007], there are two main chal-
lenges when working with nesting problems in general: finding the best way to represent the pieces
and verifying if they overlap. For this reason, Bennell and Oliveira [2008] show compilations of
geometry techniques and insightful algorithm designs.

According to Wischer et al. [2007], there are many variations of the problem, and one
example is the irregular strip packing problem (ISPP). In the ISPP, the container (a strip or a board)
has a fixed height and a variable length. The objective is to place all the pieces on the board, min-
imizing the used length. Figure 1 shows an example of a feasible solution of the two-dimensional
irregular strip packing problem.

Figure 1: A cutting pattern of an irregular strip packing problem.
Source: Bennell and Oliveira [2008].

Leao et al. [2020] present a review of mathematical models and show some gaps in the
literature of nesting problem models, like three-dimensional nesting, matheuristics, irregular con-
tainers, clusterization of the pieces, and continuous rotations of the pieces. Concerning this last
issue, we note that even though it is a crucial characteristic present in real contexts, few papers
study the advantages to allow pieces to rotate freely.

The purposes of this paper are the following: i) summarize the most important publica-
tions on the literature of nesting problems with continuous rotations; ii) briefly discuss and point out
their advantages and disadvantages; and iii) identify new trends to deal with continuous rotations.

The remainder of this paper is organized as follows. Section 2 summarizes the main
techniques for piece representation and their way to avoid overlapping between the pieces. Section 3
analyzes and summarizes two-dimensional nesting problems with continuous rotations. This section
is divided into heuristic and exact algorithms to solve the problem. Section 4 analyzes the few
works related to three-dimensional nesting problems with continuous rotations. Conclusions and
future work proposals are stated in Section 5. Table 1, at the end, summarizes the works studied on
this paper.

2. Problem geometry and how to avoid overlap

Geometry techniques are the most critical part of nesting problems as we deal with convex
and nonconvex pieces. Avoiding pieces overlap is a mainly geometrical process and is directly
associated with how pieces are represented. Here we will address six geometrical methods for
representing a piece and their features to avoid overlapping. They are the raster method, circle
covering, separating hyperplanes, direct trigonometry, no-fit polygon, and phi-functions.
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The most straightforward technique is the raster method, which discretizes pieces in pixels
(in a matrix arrangement), then, for overlap checking, we need to verify if two pixels are located at
the same point. A three-dimensional piece can be represented in the same way using voxels (a pixel
in three-dimensions). An obstacle with this method is that memory complexity grows as the number
of pixels increases. Another disadvantage of the raster method is when we want to represent curves:
the more accurate the curve, the more pixels are demanded, and therefore, the need for memory
space increases.

Another technique to represent a piece and avoid overlapping is by using circles to repre-
sent a piece. In the technique, each piece is composed of a set of circles. If two circles of different
sets are overlapping, then two pieces are overlapping (Figure 2). This solving method can be ex-
tended to the three-dimensional case by using spheres instead of circles. The circles need to cover
the entire area of the piece to obtain the optimality of a solution. For this purpose, the work of
Rocha et al. [2014] is useful. In that paper, the authors find the best circle covering (complete circle
covering) of a piece by using the minimal number of circles. This results in a trade-off between the
quality of the piece representation, and the number of circles (the complexity is proportional to the
number of circles).

circle a, does not overlap circle b,

Shape A Shane A circle a, does not overlap circle b,
ape ~ Circle a, does not overlap circle b,
does not overlap ~ i ‘
Shape B circle a, does not overlap circle b,
circle a, does not overlap circle by
Shape B circle a, does not overlap circle b,

Figure 2: Approximating the nonoverlap constraint using inscribed circles
Source: Jones [2013].

Another intuitive way to represent a piece is by using a polygon. A polygon is defined
by a set of vertices and a set of edges defined by those vertices. Like the raster method, polygonal
representation does not preserve the geometry of the piece because of its deficiency to represent
curves. A curved edge can be refined by adding more vertices to smooth the curvature. Like the
raster method, this increases the number of vertices, and therefore, the computational complexity
also increases. The most common representation of polyhedra is a mesh. A mesh is a set of vertices
in R3, and a set o faces defined with these vertices. Four approaches to avoid overlap that uses
the polygon representation are direct trigonometry, separating hyperplanes, no-fit polygon, and phi-
function.

Direct trigonometry works by verifying the intersection between the edges of the pieces.
If two polygons overlap, then their enclosing rectangles must overlap (Figures 3a, 3b and 3c) and if
two edges intersect, then the enclosing rectangles of the edges must intersect (Figures 3d and 3e).
Additional tests are used to verify cases that cannot be covered by the edge intersection tests, e.g.,
when a piece is inside another piece (Figure 3f).

Kallrath [2008] presented the concept of separating hyperplanes. The idea beyond this
concept is, if a line separates two convex polygons, then all points of each polygon are located on
opposite sides of the line (Figure 4). If one polygon is nonconvex, it can be partitioned into convex
polygons. Separating hyperplanes are very common in modeling nonoverlapping constraints and
can be extended to three-dimensions.

One of the most popular methods used to solve the two-dimensional nesting problem is the
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Figure 3: Direct trigonometry.
Source: Bennell and Oliveira [2008] (adapted).

No-Fit Polygon (NFP). The essence of the NFP is a polygon derived from the combination of two
other polygons, where its interior represents the points in which the two polygons combined would
be overlapping. Figure 5 shows a triangle (P;) and a hexagon (/) with its respective reference
points. The triangle “slides” around the hexagon and the path formed by the triangle reference
points represent the NFP of P; by P; (NFP(F;, Pj)). The NFPs can be precomputed and used as
an entry for solving methods, but an NFP for each pair of polygons should be computed. The
advantage of using NFP is computational efficiency for verify intersection.

The ®-function (from now on, referred as phi-function) is a technique that appeared at
the beginning of the 2000s, and today is the dominant technique in exact algorithms for solving
irregular packing problems. The first apparition of phi-functions in the literature was in Stoyan
et al. [2002], to describe the interaction between two simple two-dimensional objects (phi-objects).
Phi-functions represent this interaction by a combination (union, intersection, and complement)
of primary shapes (like lines, curves, circles). This representation allows us to describe simple
pieces with accuracy (Figure 6). Stoyan et al. [2004] constructed phi-functions but for complex
two-dimensional objects. Convex decomposition is also possible with phi-functions. Although phi-
functions describe the pieces by a union, intersection, and complement between primary shapes,
it is hard to represent complex pieces. The concept of phi-functions for two-dimensional objects
can be extended naturally to the three-dimensional case based on the definition of primary three-

dimensional objects.
] X
- ‘0,

(o4
Reference point  NFP(P;, P/-;m_-:-;--.::x ““““““““ CrtUKU(RNCS)
Figure 4: Separating . Figure 6: An example of a
. Figure 5: NFP(P;, P;j). Lo
line of two polygons. composed phi-object.

Source: Umetani et al. [2006]. Source: Chernov et al. [2010]

With phi-functions, it is also possible to measure how much two pieces overlap. Let 45

be the phi-function for the phi-objects A and B. Then: i) ®*8 < 0 if A overlaps B; ii) 48 = 0 if
A touches B! and; iii) ®48 > 0 if A does not overlap B.
Phi-functions are present in the majority of exact algorithms, as nonlinear programming

'The NFP is the same case when the value of a phi-function is zero.
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models, to solve nesting problems. The features of phi-functions allow designing models that admit
continuous rotations, and for this reason, many works proposed to solve the problem using them.

3. Two-dimensional nesting with continuous rotations

Works that study nesting problems (in two or three dimensions) with continuous rotation
are rare in the literature, but there are a variety of papers that allow several specific angles (45°, 90°,
180°). This last case will not be addressed in this survey because it does not consider continuous
rotations. The following works presented here address continuous rotations.

3.1. Heuristic methods

Liao et al. [2016] proposed an algorithm to pack irregular pieces into a rectangular con-
tainer by using physical simulation (Rubber Band Packing Algorithm - RBPA). A rubber band wraps
the pieces, and the tension of the rubber band keeps the pieces close to each other (Figure 7) until
the minimum length of the rubber band or the convex hull formed by the rubber band is equal to the
container, or there is no possible movement due to the rubber band tension. This simulation permits
the pieces to translate and rotate freely. A decomposition algorithm was applied to the nonconvex
pieces. The algorithm obtained a satisfactory solution in a acceptable amount of time.

The paper from Abeysooriya et al. [2018] studies the two-dimensional irregular packing
problem with multiple homogeneous bins (2DIBPP), using iterated jostle heuristics. The NFP con-
trols the occurrence of overlapping between pieces. For that purpose, the algorithms calculate the
NFP for each orientation of the piece during its execution. Two pieces calculate the NFP: the first
one is the union of all the pieces already placed, and the other one is the next piece to be placed.
The rotation problem was solved by setting a set of predefined angles, e.g., 0°, 90°, 180°, 270°.
This phase is the finite rotation approach. For the continuous rotation phase, instead of calculat-
ing all the angles, which is impossible, the authors developed a mechanism: when two pieces are
touching each other, this touchpoint defines two new angles of rotation, and the pieces can rotate
clockwise in one angle or counterclockwise in the other (Figure 8). The authors show that the pro-
posed algorithms can be applied to different variants of the problem and generate significantly better
results.

Figure 7: Example of rubber band
physical movement.

Source: Liao et al. [2016]. . . .
Figure 8: Two angles obtained by a touchpoint.

Source: Abeysooriya et al. [2018] (adapted).

Beyond the existence of heuristic and exact solutions, it is worth emphasizing that there
are matheuristics too. A matheuristic, often called model-based heuristic, is interoperation between
metaheuristics and mathematical programming algorithms. The only available is Martinez-Sykora
et al. [2017] that deals with the Two-Dimensional Irregular Bin Packing Problem (2DIBPP). This
paper describes a constructive algorithm that explicitly considers the two aspects of the optimization
problem; the assignment of pieces to bins and the arrangement of assigned pieces in the bin. The
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authors proposed several integer programming models to determine the association between pieces
and bins, and then a MIP model for placing the pieces into the bins. The computational results show
that the algorithm obtains high-quality results in a variety of instances, including artificial instances
and real-world industrial data.

3.2. Hybrid methods

Pankratov et al. [2019] deal with packing ellipses into a convex polygonal container with
a given shape. The objective is to find the minimum scaling coefficient for the polygon, still con-
taining the set of ellipses. Phi-functions were used for modeling the containment constraints and
quasi-phi-functions to describe the nonoverlapping constraints. For solving the problem, a local
search strategy composed of four stages was proposed. A nonlinear programming model was built
to find the local maxima and local minima of the feasible parameters obtained in the later stages.
The article provides instances for benchmark, and the computational results demonstrate the effi-
ciency of the approach.

Plankovskyy et al. [2020] considered a problem of cutting irregular pieces from a rectan-
gular (metal) sheet. The nonlinear programming model proposed for the problem supports a lot of
technical requirements to geometrical constraints (such as minimal allowable distances, prohibited
areas, range of the possible object rotations, changing shapes of pieces by adding auxiliary circular
zones). The pieces are represented by phi-objects bounded by line segments and circular arcs. The
solution to the problem is a combination of heuristics and local search optimization. The proposed
algorithm works sufficiently fast for complex instances and uses a multistart strategy. The first part
is to generate feasible starting points by using rectangular approximations for the pieces. Then, the
algorithm performs a local search procedure, and a system of inequalities is applied to each piece,
providing an arrangement for the object. The third step chooses the best of local minima obtained
at the second step, and use it for the set of feasible starting points as a solution to the problem.

3.3. Exact algorithms

Kallrath [2008] has introduced an exact nesting algorithm for packing circles, rectangles,
and convex polygons in rectangular containers. The author presented the idea of separating hy-
perplanes to model the nonoverlapping constraints. His method reaches the optimality for a small
number of polygons, but it struggles for a large number. It is also hard to solve instances with
non-rectangular polygons.

Chernov et al. [2010] have been studying the cutting and packing problem for decades and
proposed a mathematical model used to solve some three-dimensional nesting with the usage of the
phi-functions. The article presents the construction of phi-functions for two and three-dimensional
pieces. They presented for two circles, two spheres, two rectangles, two boxes, two cylinders, and
two convex and nonconvex polygons (and polyhedra). Then phi-functions are presented for a rect-
angle and a circle, a convex polygon and a circle, a “pill” and a circle, two circulars segments, and
for more general objects. Phi-functions with specific rotational angles were presented as well. The
article shows noticeable results and how the use of phi-functions and mathematical programming
can improve the performance of cutting and packing algorithms.

The problem solved by Birgin and Lobato [2010] is the opposite: through an mixed integer
nonlinear programming model (MINLP), instead of allocating irregular pieces inside a rectangular
container, they assign identical rectangles within an arbitrary convex shape, not necessarily using
orthogonal rotation, as seen in Figure 9. Regarding that, the pieces are rectangles, the model only
needs a rotation angle between 0° and 90°, and an extra 90° to change the orientation. To solve the
formulation, the authors presented a combination of a branch and bound and active-set strategies for
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bound-constrained minimization of smooth functions and showed that the solution method applied
to the problem was reliable.

Fasano [2012] presented solutions for solving the packing of three-dimensional fetris-like
items (a cluster of mutually orthogonal boxes) and the packing of convex and nonconvex polygons
with continuous rotations inside a polygonal shaped container. The author presented a mixed integer
programming model (MIP) to solve the first problem. The heuristic consists of modules, each one
performing one job to solve the problem. The author presented an MINLP model to solve the
second problem and demonstrated how difficult it is to deal with overlapping in situations like
this. MINLP models work more efficiently if the initial solutions are favorable. Therefore, the
decomposition of the polygon in a fetris-like piece, used in the first problem, was suggested (Figure
10) to solve the second problem. This decomposition allows working with the piece at every rotation
by decomposing the piece again quickly. A solution to deal with a piece with holes was presented
further.

In Jones [2013] the nesting problem is solved by using the inner circle covering technique.
The nonoverlapping constraints of the algorithm that allow the pieces to rotate freely were relaxed.
The author formulated the problem as a quadratic programming problem and solved it by using
many nonlinear global solvers. However, the exactness of the method relies on the number of
circles used. Better approximations use more circles.

(i,mp)
(i,m3)

(i,m2)
Figure 9: Packing identical rectangles within a 0 Wy

convex region, orthogonally and freely.

Source: Birgin and Lobato [2010]. Figure 10: Tetris-like decomposition.

Source: Fasano [2012]

Bennell et al. [2014] considers convex polygonal containers of different sizes and two ir-
regular objects bounded by circular arcs and/or line segments, that can be continuously translated
and rotated. The objective is to allocate these two polygons in a container in a way that the container
reaches its smallest possible area (or perimeter or homothetic coefficient). Additional constraints
like the minimum allowable distance between objects and between the container frontier may be
imposed. The paper presents a generic nonlinear mathematical programming model, whose ob-
jective function is polynomial, and the solution strategy is based on the concept of phi-functions.
Computational experiments with nonlinear optimization solvers demonstrate the effectiveness of
the methodology.

Stoyan et al. [2016] developed an exact solution for the irregular packing problem. They
proposed an NLP model for packing pieces into rectangular or circular containers. In the model,
the pieces were delimited by arcs or line segments. The model admits prohibited area and minimal
distance allowed constraints. A fast algorithm was proposed to generate feasible points and then,
feasible subregions. The main algorithm reduces the problem to subproblems and considerably
reduces the number of inequalities in those subproblems. The article provided instances that were
used in benchmarks of many other publications.

Cherri et al. [2018] implemented a mixed integer programming model to solve the irreg-
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ular strip packing problem with continuous rotations. It can handle convex and nonconvex polygon
intersection by using direct trigonometry. In the model, the pieces are allocated on the board using
a reference point (x;,y;), and its location is given by the translation and rotation 6; of the piece
7. The computational effort to calculate the rotation increases due to the usage of sine and cosine
functions that are nonconvex. The model was solved in three different global optimization solvers,
and the results were competitive with the ones in the state-of-the-art literature.

Peralta et al. [2018] developed a nonlinear programming model using separating lines to
control overlapping between two-dimensional pieces. The idea is based on the separating planes
by Kallrath [2008], but this work has some improvements: it uses fewer variables than such study,
and it is applied to general polygons, not only circles and convex polygons. The proposed model
uses a heuristic with predefined rotations to build an initial solution. Afterwards, an interior point
algorithm is used to improve the solutions. The results found for the model were compared with
other works in the literature, which consider the continuous rotation of the pieces [Stoyan et al.,
2016; Liao et al., 2016]. The authors obtained better solutions in some instances (better than in
Liao et al. [2016]) and a significant improvement in the model resolution time.

4. Three-dimensional nesting with continuous rotations

There is a plethora of three-dimensional problems within the class of nesting problems.
The most common is the container loading problem. It consists of packing small rectangular boxes
orthogonally into a larger rectangular box called container. There are many variations of container
loading problems, each one admitting different constraints, e.g., weight limits, weight distribution,
loading priority, and orientation constraints. For further reading about container loading problems,
we suggest Kurpel et al. [2020] and Bortfeldt and Wischer [2013]. Here we will discuss only one
work of container loading problems since it is not the main subject of this paper.

Besides this, three-dimensional nesting problems are characterized by packing irregular
three-dimensional objects in some container, not necessarily a rectangular container as usual (Figure
11).

Figure 11: Example of three-dimensional nesting with continuous rotations.
Source: Ma et al. [2018].

The three-dimensional nesting problem with continuous rotations, in contrast to the con-
tainer loading problems, is that the pieces can be complex and irregular, i.e., convex, nonconvex,
with or without curves, and even with holes. This version admits continuous rotations, any degree
of freedom in any direction. Works with these characteristics, equipped with three-dimensional
pieces, are rare in the literature. We will present some of these works below.
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Ma et al. [2018] propose the packing of intricate pieces inside containers that can also be
complex. The proposed algorithm creates separate spaces (cells) for each piece to be placed. The
piece must be placed entirely in the cell to avoid overlapping. The algorithm is a hybrid optimiza-
tion heuristic was used: combinatorial optimization to perform hole filling and swap or replace a
piece, and continuous optimization to compute the best position and orientation of each piece. The
continuous optimization, in this case, works as local optimization. It consists of shrinking a piece
and then adjusting its position and rotations until the piece returns to its original size while avoiding
overlapping. However, this continuous optimization leads quickly to local optimum, and combina-
torial optimization is used to overcome this issue. The algorithm was able to pack complex objects
in a variety of arbitrarily shaped containers.

Kallrath [2015] is a work that handles the packing of ellipsoids (three-dimensional el-
lipses) into a box, minimizing the box’s volume. The article presents NLP formulations based on
purely algebraic approaches to represent rotated and shifted ellipsoids. The usage of separating
hyperplanes manages the nonoverlapping.

Romanova et al. [2018] study the problem of packing convex and concave polyhedra
(nonconvex pieces) into a cuboid container. Besides the rotation constraints, minimal allowable
distances between the pieces are taken into account. They proposed an exact mathematical model
using quasi-phi-functions to describe nonoverlapping, and this results in a nonlinear programming
formulation with smooth functions. The solution uses a fast starting point algorithm and compaction
procedures that reduce the problem to a sequence of considerably smaller nonlinear programming
subproblems. New instances came with the article for benchmark, and the results show superior
performance compared to instances in the literature. In Romanova et al. [2019], the continuation
of the article, the authors used the same technique and considered the usage of different shaped
containers such as elliptical, cylinder, and spherical.

5. Final remarks

This survey shows the most notable works on nesting problems with continuous rotations.
Publications approaching two and three-dimensional nesting with continuous rotations were pre-
sented and briefly discussed. It is easy to perceive that there exists a lack of studies with continuous
rotations, even though it is a critical characteristic present in real contexts. One reason can be the
difficulty in modeling continuous variables, which brings non-linearity to the problem.

Despite the phi-functions’ difficulty in representing complex pieces, they are used in most
of the exact algorithms to solve problems with continuous rotations, even in three-dimensional nest-
ing. The constraints based on phi-functions are compelling when using mathematical expressions
to define them, in contrast with direct trigonometry seen in other works.

Matheuristics (model-based heuristics) are trending on optimization problems. As de-
scribed in Section 3, there is only one that deals with continuous rotations. As a suggestion, the
opportunity to create matheuristics based on phi-functions is an unexplored field. Another tech-
nique to avoid overlapping that could be used is the No-Fit Raster, used in Mundim et al. [2017].
No-Fit Raster represents the points where a polygon can be placed around another polygon keeping
a feasible solution. The technique can be useful if a grid of points represents the container. Although
the paper does not admit continuous rotations, there is a possibility of recalculating the no-fit raster,
as we saw on Abeysooriya et al. [2018], or use the precaulculated NFP for each rotation angle.

In Table 1, we present the works discussed here. The table contains information related to
the problem’s dimensions, the solving method (exact algorithms or heuristics), how the pieces are
represented, item and container shape, and some comments if needed.
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Table 1: Summary of the publications about nesting problems with continuous rotations.
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