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We consider a class of Markov processes with resettings, where at random times, the
Markov processes are restarted from a predetermined point or a region. These pro-
cesses are frequently applied in physics, chemistry, biology, economics, and in population
dynamics. In this paper, we establish the local large deviation principle (LLDP) for the
Wiener processes with random resettings, where the resettings occur at the arrival time
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of a Poisson process. Here, at each resetting time, a new resetting point is selected at
random, according to a conditional distribution.

Keywords: Wiener process with resetting; diffusive processes with resetting; local large
deviation principle.

AMS Subject Classification: 60F10, 60F15, 60J65

1. Introduction

Random processes with resettings have recently found their applications in various
fields outside of mathematics. We will list some but not all applications of these
processes: they are used in random search algorithms [9, 10, 14, 18], in popula-
tion dynamics [4, 8, 15, 20, 22], and in biological and chemical models [1, 26, 27].
The majority of these applications used the Wiener processes with resettings. A
Wiener process with resettings is defined as a solution to the following stochastic
equation:

ξ(t) = w(t) −
∫ t

0

ξ(s−)dν(s), (1.1)

where w(t) denotes a Wiener process and ν(t) is a Poisson process with rate λ. The
processes w(t) and ν(t) are assumed to be independent. Equation (1.1) corresponds
to the case when at each Poisson arrival time, the Wiener process restarts at the
origin.

In most of the works where the processes of type (1.1) are considered, the
authors concentrate on the analysis of the corresponding stationary distributions
or additive and integral functionals. See [13] and references therein. To the best of
our knowledge, the paper of Meylahn et al. [21] stands out as the only work where
the large deviation principle (LDP) was established for integral functionals of the
diffusion processes with resettings.

The main objective of this paper is to establish a local large deviation principle
(LLDP) for the trajectories of this type of processes. We believe that prior to this
work there were no such results proved for the Wiener processes with resettings.
Moreover, we prove the LLDP for the case where the resetting point is selected at
random.

In what follows, we assume that all random elements considered here are in
the probability space (Ω,F = B ∪ (

⋃
t≥0 Ft),P). Here, B is Borel σ-algebra on

R, Ft is the filtration induced by the trajectories of
(
w(t), ν(t)

)
, where w(t) is the

Wiener process, ν(t) denotes the Poisson process with rate λ, and the processes w(t)
and ν(t) are assumed to be independent. We will examine the following stochastic
equation:

ξ(t) = w(t) −
∫ t

0

ζ(ν(s−), ξ(s−))dν(s), (1.2)
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where a collection of independent B-measurable random variables ζ(n, x), n ∈
Z

+ := {0} ∪ N, x ∈ R, independent from (w(t), ν(t)).
Note that the Wiener processes with resetting satisfying (1.1) are a special case

of the processes evolving according to Eq. (1.2) with ζ(n, x) = x.
In the modern literature on the LDP, various conditions on random processes

are considered in order to obtain a rough exponential asymptotics for probabilities
of rare events (see [7, 11]). In the studies where LDP have been proved for the
solutions of stochastic differential equations containing an integral with respect to
a Poisson process measure, a bound on the function ζ(n, x) is usually required, and
is frequently given in the form of the Lipschitz condition (see [19, 23, 25, 16, 5, 6]).
In our case ζ(n, x) is the random function of x, which as we know, does not satisfy
the Lipschitz condition, and also is unbounded.

We are interested in establishing the LLDP for positive and negative excursions
of a process

ξT (t) :=
ξ(T t)
T

, t ∈ [0, 1],

where T is an unbounded increasing parameter. This paper extends the ideas of
our previous LLDP result for the random walk with catastrophes [17].

The trajectories of the process ξT (·) almost surely belong to the set D[0, 1] of
cádlág functions (i.e. right continuous and with a left limit). For f, g ∈ D[0, 1]
let

ρ(f, g) = sup
t∈[0,1]

|f(t) − g(t)|.

We recall the definition of LLDP.

Definition 1.1. A family of random processes ξT (·) satisfies the LLDP on the set
G ⊂ D[0, 1] with a rate function I = I(f) : D[0, 1] → [0,∞] and the normalizing
function ψ(T ) such that limT→∞ ψ(T ) = ∞ if for any function f ∈ G, we have

lim
ε→0

lim sup
T→∞

1
ψ(T )

lnP(ξT (·) ∈ Uε(f))

= lim
ε→0

lim inf
T→∞

1
ψ(T )

lnP(ξT (·) ∈ Uε(f)) = −I(f), (1.3)

where Uε(f) := {g ∈ D[0, 1] : ρ(f, g) < ε}.
See [2, 3] for more details on the concept of LLDP.
We let pζ(n,x)(y) be the density of the random variable ζ(n, x). Furthermore,

we assume that ζ(n, x) satisfies the following conditions:

A0: if x = 0, then P(ζ(n, x) = 0) = 1 for all n ∈ Z+;
A+: if x > 0, then

∫ x

0
pζ(n,x)(y)dy = 1 for all n ∈ Z+;

A−: if x < 0, then
∫ 0

x pζ(n,x)(y)dy = 1 for all n ∈ Z
+;
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B+: if x > 0, then there exists Δ ≥ 1 such that 1
Δ|x| ≤ pζ(n,x)(y) ≤ Δ

|x| holds true
for all n ∈ Z+, and for almost all y ∈ [0, x];

B−: if x < 0, then there exists Δ ≥ 1 such that 1
Δ|x| ≤ pζ(n,x)(y) ≤ Δ

|x| holds true
for all n ∈ Z+, and for almost all y ∈ [x, 0].

Note that all of the above conditions hold in the case when ζ(n, x) is uniformly
distributed in the interval between 0 and x whenever x 	= 0, and ζ(n, 0) = 0. In
this example, Δ = 1.

We use the following notations: C0[0, 1] is the set of continuous functions on the
interval [0, 1], originating from zero; VC0[0, 1] is the subset of functions in C0[0, 1]
with finite variation; VC

M
0 [0, 1] is the subset of all non-decreasing functions in

VC0[0, 1]; AC
M
0 [0, 1] is the subset of absolutely continuous functions in VC

M
0 [0, 1];

AC
+
0 [0, 1] (AC

−
0 [0, 1]) is the subset of absolutely continuous functions in C0[0, 1],

taking positive (negative) values for t ∈ (0, 1]; Vb
a(f) is the total variation of a

function f over the interval [a, b]; B is complement of the set B; 1B(·) is the
indicator function of the set B; 
a� is the integer part of a number a.

Further, in Sec. 2, we formulate our main results; in Sec. 3, we prove the LLDP;
some auxiliary results are proved in Sec. 4.

2. Main Results

Note that if the conditions A0, A+, A− hold, then for any T > 0 Eq. (1.2) has a
solution on the interval [0, T ], and it is unique. It is also easy to prove the following
result about an asymptotic upper bound for the maximum value of the process.

Theorem 2.1. Let the conditions A0, A+, A− hold and let the increasing function
ϕ(T ) satisfies

lim
T→∞

ϕ(T )√
ln(lnT )

= ∞.

Then for any ε > 0

P

(
lim

T→∞
sup

t∈[0,1]

∣∣∣∣ ξ(T t)√
Tϕ(T )

∣∣∣∣ > ε

)
= 0.

The proof of Theorem 2.1 is quite trivial, and we omit it.
To formulate our main result, we recall that any absolutely continuous function

starting from zero can be uniquely represented as a difference of functions f+ ∈
AC

M
0 [0, 1] and f− ∈ AC

M
0 [0, 1] such that

V1
0(f) = V1

0(f
+) + V1

0(f
−).

The functions f+ and f− are called, respectively, positive and negative variations
of the function f , see for example [24, Chap. 1, §4].

Theorem 2.2. (LLDP) Let the conditions A0, A+, A−, B+ hold, then the family
of the random processes ξT (·) satisfies LLDP on the set AC

+
0 [0, 1] with normalized
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function ψ(T ) = T and the rate function

I(f) = λ+
1
2

∫ 1

0

(ḟ+(t))2dt.

Theorem 2.3. (LLDP) Let the conditions A0, A+, A−, B− hold, then the family
of the random processes ξT (·) satisfies LLDP on the set AC

−
0 [0, 1] with normalized

function ψ(T ) = T and the rate function

I(f) = λ+
1
2

∫ 1

0

(ḟ−(t))2dt.

Theorems 2.2 and 2.3 implies the following form of the rate function on the set
AC0[0, 1].

Remark 2.1. Let all the conditions A0, A+, A−, B+, B− hold, then the family
of the random processes ξT (·) satisfies LLDP on the set AC0[0, 1] with normalized
function ψ(T ) = T and the rate function

I(f) = λ+
1
2

∫ 1

0

(ḟ+(t)1{f(t)≥0}(t) + ḟ−(t)1{f(t)<0}(t))2dt,

where f(t) = 0 at finitely many points in [0, 1].

Moreover, the proof of the theorems provides the LLDP and the corresponding
rate function for the Wiener processes with resetting to the origin. Note that in this
case the variables ζ(n, x) are deterministic functions ζ(n, x) = x, and the conditions
B± do not hold.

Remark 2.2. LLDP for positive and negative excursions of Eq. (1.1) (case of the
deterministic resetting at zero) is a trivial task. In this case, the random process
ξT (·) will stay in the neighborhood of the function f ∈ AC

+
0 [0, 1] or f ∈ AC

−
0 [0, 1]

only if the normalized Wiener process will stay in this neighborhood, and the Pois-
son process will not have jumps on the interval [0, T ]. Thus, thanks the independence
of w(t) and ν(t) the rate function takes the form

I(f) = λ+
1
2

∫ 1

0

(ḟ(t))2dt.

Note that we cannot obtain the LDP for the family ξT (·) in the metric space
(D[0, 1], ρS), where ρS is Skorohod’s metric. Because one can show that the corre-
sponding family of measures is not exponentially tight (see [7, Remark (a), p. 8]).

3. Proof of Theorems 2.2 and 2.3

By (1.2) the process ξT (t) can be written as

ξT (t) =
w(T t)
T

− 1
T

∫ Tt

0

ζ(ν(s−), ξ(s−))dν(s) := wT (t) − ξ−T (t). (3.1)
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Let us first bound P(ξT (·) ∈ Uε(f)) from above. For any c > 0 and δ ∈ (0, 1), we
have

P(ξT (·) ∈ Uε(f)) ≤ P

(
sup

t∈[δ,1]

|ξT (t) − f(t)| < ε,Ac

)

+P

(
sup

t∈[δ,1]

|ξT (t) − f(t)| < ε,Ac

)

:= P1 + P2,

where Ac := {ω : ν(T ) − ν(δT ) ≤ cT }. We bound P1 from above. Denote

Bf := {g ∈ VC0[0, 1] : ġ+(t) ≥ ḟ+(t) for almost all t ∈ [0, 1]},
where g+ ∈ VC

M
0 [0, 1] is positive variation of the function g. For any r > 0 the

following inequality holds:

P1 = P

(
sup

t∈[δ,1]

|wT (t) − ξ−T (t) − f(t)| < ε,Ac

)

≤ P

(
sup

t∈[δ,1]

|wT (t) − ξ−T (t) − f(t)| < ε,Ac, wT ∈ Kε
r

)
+ P(wT ∈ Kε

r )

:= P11 + P12,

where

Kε
r :=

{
v ∈ C0[0, 1] : inf

g∈Kr

sup
t∈[0,1]

|g(t) − v(t)| ≤ ε

}
, Kr := {g : I1(g) ≤ r},

and the functional

I1(g) :=

⎧⎪⎨
⎪⎩

1
2

∫ 1

0

(ġ(t))2dt, if g ∈ AC0[0, 1],

∞, otherwise.

(3.2)

Now, we bound P11 from above. Since the random process ξ−T (t) does not
decrease on the interval [δ, 1], and since the set Kr is a compact, from Lemma 4.2
it follows that there exists γ(ε) > 0 such that γ(ε) → 0 when ε→ 0 and

P11 ≤ P(wT ∈ B
δ,γ(ε)
f ∩Kε

r , Ac) ≤ P(wT ∈ B
δ,γ(ε)
f , Ac),

where

B
δ,γ(ε)
f :=

{
v ∈ C0[0, 1] : inf

g∈Bf

sup
t∈[δ,1]

|g(t) − v(t)| ≤ γ(ε)

}
.
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Thanks of independence of the processes w(t) and ν(t) we obtain

P11 ≤ P(wT ∈ B
δ,γ(ε)
f , Ac) = P(wT ∈ B

δ,γ(ε)
f )P(Ac).

Thus, for all r > 0

P1 ≤ P(wT ∈ B
δ,γ(ε)
f )P(Ac) + P12

= P(wT ∈ B
δ,γ(ε)
f )P(Ac) + P(wT ∈ Kε

r ). (3.3)

We bound P2 from above. Denote τk1 , . . . , τk�cT� the first 
cT � jumps of the
process ν(T t) which belong to the interval [δ, 1]. Denote

Gkl
:= {ω : ξ(τkl

−) ∈ [T (f(τkl
) − ε);T (f(τkl

) + ε)]}, 1 ≤ l ≤ 
cT �,
Hkl

:= {ω : ζ(kl − 1, ξ(τkl
−)) < 2Tε}, 1 ≤ l ≤ 
cT �.

If a trajectory of the process ξT (t) does not leave the set Uε(f), then ζ(kl −
1, ξ(τkl

−)) < 2Tε for τkl
∈ [δ, 1], 1 ≤ l ≤ 
cT �. Therefore, the following inequality

holds true:

P2 = P

(
sup

t∈[δ,1]

|ξT (t) − f(t)| < ε,Ac

)

≤
∞∑

r=�cT�
P

⎛
⎝�cT�⋂

l=1

Hkl
,

�cT�⋂
l=1

Gkl

∣∣∣∣∣ ν(T ) − ν(δT ) = r

⎞
⎠P(ν(T ) − ν(δT ) = r).

Denote mδ := mint∈[δ,1] f(t). The following inequality holds:

P

⎛
⎝�cT�⋂

l=1

Hkl
,

�cT�⋂
l=1

Gkl

∣∣∣∣∣ ν(T ) − ν(δT ) = r

⎞
⎠ ≤

(
2εΔ
mδ − ε

)�cT�
. (3.4)

We prove it separately in Sec. 4, see Sec. 4.1. Thus,

P2 ≤
∞∑

r=�cT�

(
2εΔ
mδ − ε

)�cT�
P(ν(T ) − ν(δT ) = r) ≤

(
2εΔ
mδ − ε

)�cT�
.

For the sufficiently small ε the inequality mδ >
√
ε holds, therefore

P2 ≤
(

2εΔ
mδ − ε

)�cT�
≤
(

2
√
εΔ

1 −√
ε

)�cT�
. (3.5)

From (3.5) it follows that for any c > 0:

lim
ε→0

lim sup
T→∞

1
T

lnP2 ≤ c lim
ε→0

ln
(

2
√
εΔ

1 −√
ε

)
= −∞. (3.6)
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It is known (see, for example, [12, Theorems 2.1 and 2.2]) that Weiner process
satisfies the LDP on the metric space (D[0, 1], ρ), where ρ is the uniform metric,
with the rate function (3.2). It implies that for any ε > 0

lim
r→∞ lim sup

T→∞

1
T

lnP(wT ∈ Kε
r ) = −∞. (3.7)

Thus, using (3.3), (3.6), (3.7) and the fact that the set Bδ,γ(ε)
f is the closed set for

any c ∈ (0, 1), δ ∈ (0, 1), we obtain

lim
ε→0

lim sup
T→∞

1
T

lnP(ξT (·) ∈ Uε(f))

≤ lim
ε→0

lim sup
T→∞

1
T

ln(P11 + P12 + P2)

≤ lim
ε→0

lim sup
T→∞

1
T

ln(3 max{P11,P12,P2})

≤ lim
ε→0

(−I1(Bδ,γ(ε)
f ) − λ(1 − δ) + λ(1 − δ)c− c ln c)

= −I1(Bδ
f ) − λ(1 − δ) + λ(1 − δ)c− c ln c,

where

Bδ
f :=

{
v ∈ C0[0, 1] : inf

g∈Bf

sup
t∈[δ,1]

|g(t) − v(t)| = 0

}
,

and in the last inequality we applied the following simple inequality:

P(ν(T ) − ν(δT ) ≤ cT ) ≤ exp{−λ(1 − δ)T + λ(1 − δ)cT − Tc ln c}. (3.8)

Taking the limits δ → 0 and c→ 0, we obtain

lim
ε→0

lim sup
T→∞

1
T

lnP(ξT (·) ∈ Uε(f)) ≤ −I1(Bf ) − λ = −I1(f+) − λ.

To complete the proof, we bound now P(ξT (·) ∈ Uε(f)) from below. We have

P3 := P

(
sup

t∈[0,1]

|wT (t) − ξ−T (t) − f(t)| < ε

)

≥ P(wT (·) ∈ U ε
2
(f+), ξ−T (·) ∈ U ε

2
(f+ − f)).

Note that f+ − f ∈ AC
M
0 [0, 1]. If f+ − f ≡ 0, then

P(wT (·) ∈ U ε
2
(f+), ξ−T (·) ∈ U ε

2
(f+ − f)) ≥ P(wT (·) ∈ U ε

2
(f+), ν(T ) = 0).

Therefore, since w(t) and ν(t) are independent we obtain

P3 ≥ P(wT (·) ∈ U ε
2
(f+))e−λT . (3.9)
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Let f+ − f 	≡ 0. Define

n(ε) := min
{
n ∈ N :

M

n
≤ ε

8

}
,

where M := maxt∈[0,1](f+(t) − f(t)) = f+(1) − f(1).
Since f+−f is continuous and non-decreasing function, then there exists a finite

set of points 0 = t0 < t1 < · · · < tn(ε) = 1 such that the following equalities hold
true:

f+(t1) − f(t1) =
M

n(ε)
, f+(t2) − f(t2) =

2M
n(ε)

, . . . , f+(tn(ε)) − f(tn(ε)) = M.

Therefore, if the random process ν(T t) has no jumps on [0, t1] and has only one jump
in each of intervals [tk−1, tk], 2 ≤ k ≤ n(ε), and if random variables ζ(k−1, ξ(τk−))
takes values from the interval(

TM
n(ε)

− 2Tε3;
TM
n(ε)

− Tε3
)
,

then for sufficiently small ε the inequality

sup
t∈[0,1]

|ξ−(t) − (f+(t) − f(t))| < ε

2

holds. Hence, for ssufficiently small ε the inequality

P3 ≥ P(wT (·) ∈ Uε3(f+), ξ−T (·) ∈ U ε
2
(f+ − f))

≥ P

⎛
⎝wT (·) ∈ Uε3(f+),

n(ε)⋂
k=1

Ak,

n(ε)−1⋂
k=1

Bk

⎞
⎠, (3.10)

holds, where

A1 := {ω : ν(T t1) = 0}, Ak := {ω : ν(T tk) − ν(T tk−1) = 1}, 2 ≤ k ≤ n(ε),

Bk :=
{
ω : ζ(k − 1, ξ(τk−)) ∈

(
TM
n(ε)

− 2Tε3;
TM
n(ε)

− Tε3
)}

, 1 ≤ k ≤ n(ε) − 1.

From the inequality (3.10) it follows that

P3 ≥ P

⎛
⎝n(ε)−1⋂

k=1

Bk

∣∣∣∣∣wT (·) ∈ Uε3(f+),
n(ε)⋂
k=1

Ak

⎞
⎠P

⎛
⎝wT (·) ∈ Uε3(f+),

n(ε)⋂
k=1

Ak

⎞
⎠.

The following inequality we prove in Sec. 4:

P

⎛
⎝n(ε)−1⋂

k=1

Bk

∣∣∣∣∣wT (·) ∈ Uε3(f+),
n(ε)⋂
k=1

Ak

⎞
⎠ ≥

(
ε3

Δ(f+(1) + ε3)

)n(ε)−1

. (3.11)
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Thanks (3.11) it follows that

P3 ≥
(

ε3

Δ(f+(1) + ε3)

)n(ε)−1

P

⎛
⎝wT (·) ∈ Uε3(f+),

n(ε)⋂
k=1

Ak

⎞
⎠ .

Since wT (t) and ν(T t) are independent, then

P3 ≥
(

ε3

2(f+(1) + ε3)

)n(ε)−1

P(wT (·) ∈ Uε3(f+))P

⎛
⎝n(ε)⋂

k=1

Ak

⎞
⎠

=
(

ε3

2(f+(1) + ε3)

)n(ε)−1

P(wT (·) ∈ Uε3(f+))

× (λT )n(ε)−1e−λT

n(ε)∏
k=2

(tk − tk−1). (3.12)

Using inequalities (3.9), (3.12), we obtain

lim inf
T→∞

1
T

lnP(ξT (·) ∈ Uε(f)) ≥ −λ− I1(Uε3(f+)).

Since Weiner process satisfies LDP with rate function (3.2) we obtain

lim
ε→0

lim inf
T→∞

1
T

lnP(ξT (·) ∈ Uε(f)) ≥ lim
ε→0

(−λ− I1(Uε3(f+))) = −λ− I1(f+).

The proof of Theorem 2.3 is similar, where instead of the condition B+ we work
with the condition B−.

4. Auxiliary Results

The next technical lemma will be useful for the proof of Lemma 4.2. The proof of
Lemma 4.1 is quite trivial and will be omitted.

Lemma 4.1. Let the function f ∈ AC
+
0 [0, 1] is represented in the form

f(t) = g1(t) − g2(t), (4.1)

where g1 ∈ C0[0, 1] and g2 ∈ VC
M
0 [0, 1]. Then the function g1(t) has the finite

variation and for almost all t ∈ [0, 1] the inequality

ġ+
1 (t) ≥ ḟ+(t), (4.2)

holds true, where g+
1 (t) is the positive variation of the function g1(t).

Denote (C[0, 1], ρ) the space of continuous functions on the interval [0, 1] with
given uniform metric ρ. Let DM

0 [0, 1] be the set of cádlág functions (continuous
from the right and has a limit from the left) starting from the zero which are
non-decreasing on the interval [0, 1].
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Consider the family of functions uT (t), t ∈ [0, 1], T > 0 which can be represented
in the form uT (t) := ũT (t) − ûT (t), where ûT ∈ D

M
0 [0, 1], and ũT ∈ C0[0, 1] ∩

K(C[0,1],ρ), and K(C[0,1],ρ) ⊂ (C[0, 1], ρ) is some compact set.

Lemma 4.2. Let for a function f ∈ AC
+
0 [0, 1] the following holds true:

lim
T→∞

sup
t∈[0,1]

|uT (t) − f(t)| = 0. (4.3)

Then

lim
T→∞

inf
g∈Bf

sup
t∈[0,1]

|ũT (t) − g(t)| = 0.

Proof. Proof by contradiction. Suppose not. Then, there exists γ > 0 such that
for any M > 0 there exists T > M and

inf
g∈Bf

sup
t∈[0,1]

|ũT (t) − g(t)| ≥ γ. (4.4)

Since the family ũT is contained in some compact set, then, if the inequality (4.4)
holds, then there exists subsequence TM and continuous function g̃ such that

lim
M→∞

sup
t∈[0,1]

|ũTM (t) − g̃(t)| = 0, inf
g∈Bf

sup
t∈[0,1]

|g̃(t) − g(t)| ≥ γ.

Therefore, from (4.3) it follows that

lim
M→∞

sup
t∈[0,1]

|ûTM (t) − (g̃(t) − f(t))| = 0.

Wherein due to ûT ∈ DM
0 [0, 1] the function ĝ(t) := g̃(t) − f(t) should belong to

the set VC
M
0 [0, 1]. Thus, f(t) = g̃(t) − ĝ(t), where g̃ 	∈ Bf , ĝ ∈ VC

M
0 [0, 1], which

contradicts Lemma 4.1.

4.1. Proof of inequality (3.4)

Let Gk0 := Ω, Hk0 := Ω. We show that the inequality

Pl := P

(
Hkl

, Gkl
| ν(T ) − ν(δT ) = r,

l−1⋂
d=0

Gkd
,

l−1⋂
d=0

Hkd

)
≤ 2εΔ
mδ − ε

(4.5)

holds for 1 ≤ l ≤ 
cT �. We estimate from above Pl.
We note that, by definition, a family of random variables ζ(kl−1,mkl

), mkl
∈ R

not depends on w(t) and ν(t), ζ(kl−1 − 1,mkl−1), mkl−1 ∈ R, . . . , ζ(k1 − 1,mk1),
mk1 ∈ R, and hence on ξ(τk1−), . . . , ξ(τkl

−). Therefore, the next inequality

P

(
Hkl

, Gkl
| ν(T ) − ν(δT ) = r,

l−1⋂
d=0

Gkd
,

l−1⋂
d=0

Hkd

)

≤
∫ 2Tε

0

(∫ T (M1+ε)

T (mδ−ε)

pζ(kl,x)(y)dF̃ (x)

)
dy
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holds, where M1 := maxt∈[0,1] f(t),

F̃ (x) := P

(
ξ(τkl

−) < x | ν(T ) − ν(δT ) = r,

l⋂
d=0

Gkd
,

l−1⋂
d=0

Hkd

)
.

Using the condition B+, we get for sufficiently small ε

Pl ≤
∫ 2Tε

0

(∫ T (M1+ε)

T (mδ−ε)

pζ(kl−1,x)(y)dF̃ (x)

)
dy

≤
∫ 2Tε

0

(∫ T (M1+ε)

T (mδ−ε)

Δ
|x|dF̃ (x)

)
dy

≤
∫ 2Tε

0

(∫ T (M1+ε)

T (mδ−ε)

Δ
T (mδ − ε)

dF̃ (x)

)
dy

≤ 2TεΔ
T (mδ − ε)

=
2εΔ
mδ − ε

.

Thus, the inequality (4.5) is proved. Using the inequality (4.5), we obtain

P

⎛
⎝�cT�⋂

l=1

Hkl
,

�cT�⋂
l=1

Gkl

∣∣∣∣∣ ν(T ) − ν(δT ) = r

⎞
⎠ =

�cT�∏
l=1

Pl ≤
(

2εΔ
mδ − ε

)�cT�
.

4.2. Proof of inequality (3.11)

We show that, for 1 ≤ k ≤ n(ε) − 1 the inequality

Pk := P

⎛
⎝Bk |wT (·) ∈ Uε3(f+),

n(ε)⋂
r=1

Ar, B1, . . . , Bk−1

⎞
⎠ ≥ ε3

Δ(f+(1) + ε3)
(4.6)

holds. If events {ω : wT (·) ∈ Uε3(f+)}, ⋂n(ε)
r=1 Ar, B1, . . . , Bk−1 have occurred, then

T (f+(1) + ε3) > T (f+(τk) + ε3) > ξ(τk−)

≥ T

(
wT (τk−) − (k − 1)

(
M

n(ε)
− ε3

))

> T

(
f+(τk) − ε3 − (k − 1)

(
M

n(ε)
− ε3

))

> T

(
f+(tk) − ε3 − (k − 1)

(
M

n(ε)
− ε3

))

> T

(
f+(tk) − f(tk) − ε3 − (k − 1)

(
M

n(ε)
− ε3

))

>
TM
n(ε)

− Tε3. (4.7)
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We note that, by definition, the family of random variables ζ(k − 1,mk), mk ∈ R

not depends on w(t) and ν(t), ζ(k − 2,mk−1), mk−1 ∈ R, . . . , ζ(0,m1), m1 ∈ R,
and hence on ξ(τk−), . . . , ξ(τ1−). Therefore, using inequality (4.7), we obtain

Pk = P

⎛
⎝Bk |wT (·) ∈ Uε3(f+),

n(ε)⋂
r=1

Ar, B1, . . . , Bk−1

⎞
⎠

= P

(
ζ(k − 1, ξ(τk−)) ∈

(
TM
n(ε)

− 2Tε3;
TM
n(ε)

− Tε3
) ∣∣∣∣∣wT (·) ∈ Uε3(f+),

n(ε)⋂
r=1

Ar,

k−1⋂
r=1

Br

⎞
⎠

=
∫ TM

n(ε)−Tε3

TM
n(ε)−2Tε3

(∫ T (f+(1)+ε3)

TM
n(ε)−Tε3

pζ(k−1,x)(y)dF (x)

)
dy,

where

F (x) := P

⎛
⎝ξ(τk−) < x |wT (·) ∈ Uε3(f+),

n(ε)⋂
r=1

Ar,

k−1⋂
r=1

Br

⎞
⎠.

Using the condition B+, we get for sufficiently large T

Pk ≥
∫ TM

n(ε)−Tε3

TM
n(ε)−2Tε3

(∫ T (f+(1)+ε3)

TM
n(ε)−Tε3

1
Δ|x|dF (x)

)
dy ≥

∫ TM
n(ε)−Tε3

TM
n(ε)−2Tε3

1
ΔT (f+(1) + ε3)

dy

=
Tε3

ΔT (f+(1) + ε3)
=

ε3

Δ(f+(1) + ε3)
.

Thus, the inequality (4.6) is proved. Using the inequality (4.6), we get

P

⎛
⎝n(ε)−1⋂

k=1

Bk

∣∣∣∣∣wT (·) ∈ Uε3(f+),
n(ε)⋂
k=1

Ak

⎞
⎠ =

n(ε)−1∏
k=1

Pk ≥
(

ε3

Δ(f+(1) + ε3)

)n(ε)−1

.
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