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Abstract. Recently, studies looking at the small scale interactions taking
place in complex networks have started to unveil the wealth of interactions
that occur between groups of nodes. Such findings make the claim for a new
systematic methodology to quantify, at node level, how dynamics are influenced
(or differentiated) by the structure of the underlying system. Here we define a
new measure that, based on the dynamical characteristics obtained for a large set
of initial conditions, compares the dynamical behavior of the nodes present in the
system. Through this measure, we find that the geographic and Barabasi—Albert
models have a high capacity for generating networks that exhibit groups of nodes
with distinct dynamics compared to the rest of the network. The application of
our methodology is illustrated with respect to two real systems. In the first we use
the neuronal network of the nematode Caenorhabditis elegans to show that the
interneurons of the ventral cord of the nematode present a very large dynamical
differentiation when compared to the rest of the network. The second application
concerns the SIS epidemic model on an airport network, where we quantify how
different the distribution of infection times of high and low degree nodes can be,
when compared to the expected value for the network.

Online supplementary data available from stacks.iop.org/NJP/15/013048/
mmedia

! Author to whom any correspondence should be addressed.

@@@@ Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-

s ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

New Journal of Physics 15 (2013) 013048
1367-2630/13/013048+15$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


mailto:ldfcosta@gmail.com
http://www.njp.org/
http://stacks.iop.org/NJP/15/013048/mmedia
http://stacks.iop.org/NJP/15/013048/mmedia
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0
Gracielle
Realce


2 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Methodology 3
2.1. Measuring the differentiation . . . . . . . ... .. L L oo 3
2.2, DiStance measure . . . . . . . . . v e e e e e e e e e e e e e e e 5
3. Studied systems 7
3.1. Networkmodels. . . . .. .. ... ... ... . . e 7
3.2. Dynamicsused . . . . . . . ... 7
4. Results 8
4.1. Integrate-and-fire on random network models . . . . . . ... ... ... ... 8
4.2. Integrate-and-fire on the network of the Caenorhabditis elegans . . . . . . . . 10
4.3. Epidemics on the airportnetwork . . . . . . .. ... ... ..o L. 12
5. Conclusions 13
Acknowledgments 14
References 14

1. Introduction

Given that complex systems are almost invariantly composed of a large number of interacting
elements, they can be efficiently represented and studied in terms of complex networks [1-3]. In
this representation, their structural and dynamical properties can be extracted and investigated.
Typically, the structure of such networks is quantified in terms of several measures [4], reflecting
different properties of the respective topology (e.g. node degree, shortest paths, centralities) and
geometry (e.g. arc length distances, angles, spatial density).

A great deal of the investigations into the structure and function in complex systems
have focused on trying to predict the dynamics from specific structural features [5—7]. Such
an ability would provide the means for effectively controlling real-world systems [8]. Despite
the growing number of studies devoted to this problem, knowledge about the relationship
between the structural and dynamical properties remains incipient due to three main reasons: (a)
dynamics are often summarized in terms of global statistics, which overlooks their intricacies;
(b) the investigation often focuses on linear relationships such as correlations between the
structural and dynamical features; and (c) several effects, such as the initial conditions,
network topology, stochasticity or dynamical differences from node to node are not selectively
fixed or controlled. Still, there are some notable examples of local analysis previously done
on complex networks. Gémez-Gardefies et al [9] studied how synchronization takes place
on heterogeneous random systems, in comparison to their homogeneous counterparts. They
found that the systems differ by the way smaller synchronized groups are formed while
increasing the coupling strength of the Kuramoto oscillators. Kitsak ef al [10] used the k-
shell index to find nodes having a high potential to spread a disease in a network. Their
fundamental result was that it is possible to predict the number of infected nodes of the
entire system by knowing only the k-shell of the initial infected node. Still on the subject
of epidemics, there are other works concerning local analysis [11, 12] as well as the use of
temporal networks to show the importance of initial conditions [13]. Another good example
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of local structural analysis that can be translated to dynamical behavior is the study of
motifs [14, 15].

In this paper we propose a novel methodology to quantify how much the dynamics at
each node differentiates from the dynamics at the other nodes as a consequence of specific
aspects (e.g. local anisotropies) of the network structure. This is accomplished by simulating
the investigated dynamics for a large number of initial conditions and checking how much a
given property of the dynamics at a node (e.g. entropy of the time series at that node) deviates
from the overall dynamics. The level at which a node i ‘feels’ the structure differently from
the other nodes is quantified in terms of a parameter «;. In this way, the proposed methodology
addresses the three shortcomings mentioned above by: (i) being local, i.e. it is applied for each
individual node; (ii) by not imposing any specific kind of relationship between the dynamical
and structural features; and (iii) isolating each (above mentioned) condition that can affect the
dynamics.

Several important findings have been obtained using this methodology. Our results show
that the nodes feel rather distinctly the structure in most of the considered situations. While
the Erd6s—Rényi (ER) model [16] does not show any dynamical differentiation, Waxman’s [17]
geographic model presents fluctuations that naturally create different dynamical groups through
the density of connections. The Barabdsi—Albert (BA) [18] model shows a rather distinct
behavior for the highly connected nodes of the network, which end up having a very distinct
dynamics related to the rest of the network, being even more extreme than the topological
differences. When considering a real network of the nematode Caenorhabditis elegans, we find
that there exists a group of neurons where the local topology influences the spike rate of the
signals rather distinctly. Finally, the study concerning epidemic dynamics shows that the first
infection time of a node can have different levels of variability depending on the degree of the
node.

2. Methodology

2.1. Measuring the differentiation

In order to apply our methodology we begin with a network having N nodes, which will be fixed
through the entire process, and execute M times a dynamics on it. Each execution starts with a
randomly sorted initial condition. It is important to note that depending on the dynamics being
studied we can have a specific set of initial conditions that take the system to a particular state,
so this state will rarely be accessed by sampling. This is not a problem in our method because
we are analyzing the dynamics for the set of initial conditions imposed, that is, we are studying
the signals that are in fact observed.

In possession of the dynamic signals for the M realizations, we need a mechanism to
represent them in order to compare their behavior. In our case we use dynamical measures that
try to extract the most relevant information about the signals. Let F' be one of such measures,
after the many realizations we get a set of observed values f;,, where i is the node index and
r the realization. These values can vary through four distinct mechanisms: (a) initial condition,
(b) network topology, (c) particular dynamics and (d) stochasticity. Our objective here is to
study only the relation between the initial condition and the topology, so we use dynamics
having identical equations for every node and consider stochastic variations to be small. With
these restrictions the only variations we can observe on the values of F are: (a) fluctuations
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Figure 1. Example of topological differentiation for two nodes. Projecting the
signal characteristics for a single realization of the dynamics (a) is not sufficient
to discern the topological influence. We need to consider many distinct initial
conditions in order to infer if the topology differentiates (b) or not (c) the
dynamics of the nodes.

on the dynamical values of a given node, which given the fact that the topology is static, can
only be caused by the variation of the initial condition. (b) Differences on the mean values
of F for distinct nodes, that because of the properties assumed can only be caused by the
topological differences of the nodes. The term topological difference needs to be used with care,
because unless in very specific cases where the network is perfectly symmetric (e.g. a lattice
with toroidal boundary), the topology of two given nodes is rarely identical, that is, we can
always find a structural characterization that will have distinct values for them. Nevertheless,
since the networks we use are not regular, every significant dynamical difference we observe
must be caused by the topology. It is also important to note that the reverse is not true, if the
dynamics of two nodes appear to be the same, their topologies are still distinct, what happened is
that both nodes felt the topology in the same manner. An example of this last case is the diffusion
dynamics on graphs [19], in which the equilibrium behavior depends only on the degree of the
nodes, that is, although the nodes possess distinct general topology, the localized characteristic
of the dynamics allows only the degree to differentiate the nodes. The two cases we may come
across are shown in figure 1.

In order to quantify the difference of the values obtained for each node, we use a statistical
test that will be defined on the next section. Through this statistic we can identify if the
difference of the means of the dynamical values obtained are in fact significant, that is, we
are quantifying the difference between the dynamics of the nodes normalized by the intrinsic
fluctuations caused by the initial condition. The distance between every pair of nodes is then
represented by the matrix &, where each line i and column j represents the distance obtained
between the nodes i and j, that is

=
—dy

5 =di(i, J), M
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Figure 2. Example application of the methodology. (a) We execute 12 runs of the
dynamics with different initial conditions and (b) project the obtained signals on
the measure space, which in this case is two dimensional. (c) The matrix &;; is
obtained using equation (6), and (d) its mean is taken in order to obtain the o of
each node.

where d),(i, j) is the distance defined by equation (6). Finally, we can define our mean dynamical
differentiation measure, «, as the mean values of each line of this matrix

1 N
= El 2
o N_lj; j 6)

The standard procedure now would be to calculate the statistical significance of the
observed values of «, but since we are concerned with the comparison between the distances
and not their absolute values, this does not need to be performed. To carry out the comparison,
we construct a histogram of the obtained values of «. Having in mind that « is relative
to some dynamical characteristic, we can have distinct histograms relative to the desired
characterization.

What we search for are particular behaviors of the histograms, for example, it is expected
that a single node with very distinct dynamics compared to the rest of the network will have a
very large « value. It is important to observe that although we presented the methodology for a
single measure, nothing prevents us from calculating the distances using simultaneously various
dynamical measures. In figure 2 we show an example application of the presented model.

2.2. Distance measure

In this section we present and motivate the statistical test that will be used throughout the paper.
Suppose that we have a set of points inserted in a m-dimensional space and these points form
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Figure 3. Example of Hotelling distances. The three figures present the same
Euclidean distance between the mean point of the two groups, but in cases (a)
and (b) the statistical distance is more significant than in (c). The respective
Hotelling distances are shown in each figure.

two distinct groups (see figure 3). An immediate way to quantify the separation between the
groups is by using the Euclidean distance between the center of mass of each group, given by

dr,s)= | Y ({x:) — (xa))?, 3)

where r and s are the indices of the groups and (x,;) represents the mean (or center of mass)
of the points in group r on the ith dimension. The disadvantage of the Euclidean distance is
that it does not take into account the dispersions of the groups from which the distance is being
measured. Following figure 3, if we have two random variables X, and X with the realized
values {x,} and {x}, marked respectively in blue and red in the figure, clearly the two cases
shown in figures 3(a) and (b) have a more significant distance between their mean than the case
in figure 3(c), although the Euclidean distance is the same. There are many ways to take into
account the dispersions of the groups, here we use the Hotelling statistic [20], which considers
the variance of each group in the direction defined by the line that passes between the two
means. The distance, &, between two groups is defined by

nyng -

h* = (%) = (X)) Z, (%) = (X0, “4)

n,+ng

where (X, ) is the average position of group r. The variable %, is the estimation of the equivalent
covariance matrix of each group, given by

n X, +ng2

Y, = (&)

ny+ng—2°
where ¥, and X; are the covariance matrix of the groups. In figure 3 we show the values of &
for each case.

The distance we considered is a hybrid version of both Euclidean and Hotelling metrics.
This is required in order to avoid singularities for a set of nodes with zero variance. Since we
are not interested in the absolute value of the distance, but in the comparison of values between
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groups, we can define a new hybrid distance, given by

dy(r,s) = La’(r, s), (6)
h+1
where d(r, s) is the usual Euclidean distance between the center of mass of groups r and s.
Finally, in cases where we have to calculate the distances through more than one variable,
it is necessary to normalize them so as to give a fair comparison. In order to do so we calculate
the standard score of each measure x, given by

x —{x)

f=t
std(x)

(7
where std(x) is the standard deviation of x. Since throughout this paper we always use the
standardized version of the values, we simplify the notation by calling x just by x.

3. Studied systems

In this section we briefly present the topologies and dynamics where our methodology was
applied.

3.1. Network models

In our study we use three network models to compare the methodology applied to three distinct
scenarios. The first is the traditional ER [16] model that connects every possible pair of nodes
with a probability p, originating a Poisson degree distribution representing a completely random
graph.

The second scenario is when every connection has a cost associated with it, usually
represented by a geographic network where the nodes have a spatial position. A commonly used
mechanism to model this behavior is due to Waxman [17], who randomly placed the nodes in a
[1,1] grid and, for every pair (i, j) of nodes, defined a probability of this pair being connected,
given by

PG, j)=pe 07/, (8)

where d(i, j) is the Euclidean distance between nodes i and j, B tunes the density of edges,
and d, sets the typical size of the connections. This generates a topology where a long range
shortcut rarely occurs. Because of this, one of the main characteristics of this model is that, for
the most commonly used values of 8 and dj, it does not exhibit the small world behavior.

Another class of networks, usually called power-law, is greatly represented by the BA [18]
model, where two principles, namely growth and referential attachment, are used to model the
usual power-law degree distribution (P, ~ k~3) that is observed in many real systems [21]. Due
to the power-law distribution, the degree of the nodes can show large fluctuations.

3.2. Dynamics used

3.2.1. Integrate-and-fire dynamics. Our first application of the method will be related to
the transmission of neuronal signals, modeled by the integrate-and-fire dynamics [22].
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This model treats the neuron as an integrator with a hard threshold limit, 7. The actions of
a given neuron i along the time is stored in the binary time series s;(¢), which indicates that the
neuron spikes at instant # whether s;(7) = 1. Using this time series, we define the spike rate of a
neuron as
1 Tsim
=g ; 5i(0), )
—Lest
where Ty, is the total simulation (or experiment) time and T is a long enough time, found
empirically through prior simulations, so that r; do not significantly change after T,y (we say
that the dynamics stabilized). This measure corresponds to the average number of spikes during
the considered interval, and it is widely used in neuroscience, since many neurons codify the
stimulus amplitude through the rate of spikes [23].

3.2.2. SIS model. In the SIS (susceptible—infected—susceptible) model each node can be in one
of two states: infected or susceptible. The spread of the disease between neighbors happens with
arate 3, interpreted as the probability per time step that the disease will spread from an infected
node to a susceptible one. Each node returns to the susceptible state with a rate y which, without
loss of generality, we define as being y = 1. There are many ways to simulate the start of this
disease on a network. Here we chose to randomly select with equal probability a single node
and turn it to the infected state. After iterating the dynamics for a sufficiently long time, we keep
the simulation data if the disease has spread to the entire network, otherwise we start another
simulation. The measure we use in this case is the first infection time, I, defined as the iteration
where the node got its first infection. The value of I; for a node will strongly depend on the
initial condition, so it will be a good case study for our method.

4. Results

4.1. Integrate-and-fire on random network models

We compare the differentiation relative to the spike rate feature, which we call «, for different
network topologies, namely ER [16], BA [18] and Waxman’s geographic model [17]. In
figure 4(a) we show the result obtained for the geographic model with N = 1000 and (k) = 10
and an integrate-and-fire dynamics with 7" = 8 taking place on the network. To obtain statistical
significance we use 100 different generated networks; each network is subjected to M = 1000
realizations of the dynamics with different initial conditions. We construct histograms of «,
obtained for each generated network and show in figure 4(a) the mean value and standard
deviation the set presents. We see that the frequency of nodes with small «, has a large variation,
which is caused by the intrinsic fluctuations in the dynamics of the many nodes with a similar
spike rate present on the network. It is feasible to think that this fluctuation would decay as
«, increases, but this is true only for intermediate «,, while at high values of «, we observe a
sudden increase of fluctuation. Additionally, the mean value stays at an almost constant value
for o, in the range [0.9, 1.5]. This is caused by the high potential of the geographic model to
display structural fluctuations, originating in regions with a higher density when compared to
the rest of the network. These regions significantly alter the spike rate of the nodes and highly
differentiated groups appear. In figure 4(b) we apply the same procedure to calculate ¢, in the
geographic model, only changing the dynamic threshold to 7 = 10. It is clear that the groups
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Figure 4. o values obtained for the integrate-and-fire dynamics on random
networks. We generated 100 networks for each case and obtained the histogram
of « for each network. The plots show the mean and standard deviation of these
histograms. The networks were generated using (a) and (b) for the geographic
model, (¢) and (d) for the ER model and (e) and (f) for the BA model. The
graphics on the left were obtained using 7 =8 and the ones on right with
T =10.

are no longer distinguishable. This is so because the threshold is now so large that even the
topological fluctuations cannot differentiate a significant number of nodes, when compared to
the ones with small «, .

We apply the same procedure used for the geographic model to the ER networks with
N = 1000 and (k) = 10. In figure 4(c) we show the information about the obtained histograms
for 7 = 8, which makes it clear that this model exhibits much smaller fluctuations. This is
caused by the much shorter geodesic distances that the model exhibits, when compared to the
geographic counterpart, which creates a more compact network. We also show in figure 4(d)
the case 7 = 10 for the ER model, where we see a decaying behavior expected for a random
Poissonian system.

The third investigated model is the BA with N = 1000 and (k) = 6. Figures 4(e) and
(f) show the log-scale histogram for, respectively, 7 = 8 and 10. In both cases we observe a
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Figure 5. Histogram of the o values obtained for the integrate-and-fire signals
taking place on the C. elegans network. A total of 1000 realizations of the
dynamics were made with different initial conditions. The o was calculated using
the spike rate measure.

significantly high peak for large «,, which we found to be related to the network hubs (nodes
with a very high degree). This result was expected, given our observations of large fluctuations
on the geographic network, but this is not the main result for the BA model. The important
result is that although the power-law degree distribution of the model has a continuous decaying
behavior, the histogram of «, shows small values for intermediate «, and increases for large
a,. This behavior can be interpreted as follows: the dynamical differentiation of a hub is, as
expected, very large, but a node with an almost equal degree can end up with a much smaller
differentiation, having dynamics more similar to the low degree nodes. This result confirms the
important role that hubs have in complex systems, not only in the sense of being central, but
also in having a different purpose to the network dynamics.

4.2. Integrate-and-fire on the network of the Caenorhabditis elegans

Although many interesting properties arise when studying random network models, it is on
real networks that the dynamical differentiation analysis can show its real potential. To show
this we now apply the methodology to the C. elegans neuronal network. In this network, each
node represents a neuron and two nodes are connected if there exists some kind of directed
communication between them (e.g. synapses, gap junctions, etc). The data was compiled by
Chen et al [24, 25] and obtained from [26]. The network has 279 nodes and (k) = 22.4.

Although we motivate the method with a real network, it is important to note that our
dynamics do not take into account many signal particularities that arise for real neurons [27],
therefore we are looking for a coarse grained description of the neurons inside the network.
We will show that, even with this simplified description, it is still possible to observe some
interesting phenomena.

We begin by showing in figure 5 the histogram of « relative to the spike rate, «,. An
immediate result observed is that there is a group with high differentiation, indicated with a
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Figure 6. Degree distribution of the C. elegans network. Red bars indicate the
nodes present in table 1, i.e. the nodes indicated in figure 5 as having the highest
o values.

red circle, which is somewhat similar to that observed for the BA random model. With this
in mind, we plot in figure 6 the degree histogram of the network, indicating in red the nodes
inside the observed group. We see that the nodes with high differentiation possess a high degree
in the network, but there are some high degree nodes that do not show a distinct dynamics. It
is clear that the topology influence does not occur merely by the degree of the nodes. There
is a particular relation between these high differentiated nodes that make their dynamics very
peculiar when compared to the rest of the network. The nodes inside the red circle in figure 5
are known as the interneurons of the ventral cord of the C. elegans. They are well recognized
for possessing a high number of synapses [28], given that they make the bridge between sensory
and motor neurons without much restriction on the type of transmitted signals (some classes of
interneurons are known for receiving only a specific type of signal).

In table 1 we present the traditional names of these neurons and some information about
their spatial and topological distance. Position refers to the spacial localization of each neuron
relative to the axis that goes from the head (value 0) to the tail (value 1) of the nematode.
We see that the majority of the described neurons are on the head (more specifically, in the
nerve ring of the nematode [29, 30]), with the exception of PVCL and PVCR that are on the
tail. In the table, D1 is the mean topological distance between these neurons, that is, given
a node i we measure how many edges we need to travel in order to go to node j and we
take the mean of this distance for all j inside the differentiated group. D1 =1 means that
the neuron is a neighbor, or receives a direct signal, of all the other neurons shown in the
table. The feature D2 complements D1 as it shows the topological distance between the given
neuron and all other neurons, excluding those present in the table. We see that in all cases the
differentiated nodes are closer between themselves than with the rest of the network, an effect
partially provoked by their high degree. That is, besides having a high degree, these nodes are
well connected between themselves, originating a high capacity of communication inside the
group and rendering their dynamics very distinct in comparison to the rest of the network. In
order to illustrate these neurons, we show in figure 1 of the supplementary material (available
from stacks.iop.org/NJP/15/013048/mmedia) the position of each neuron inside the nematode.
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Table 1. Calculated topological values for the interneurons of the ventral cord of
C. elegans. See the text for explanation about D1 and D2.

Neuron AVAL AVAR AVBL AVBR AVDL AVDR AVEL AVER PVCL PVCR

Position 0.13 0.13 0.15 015 016 016 0.13 014 0.82 0.82
D1 1.00 1.00 100 144 133 122 133 122 1.00 1.00
D2 176  1.77 1.8l 1.80  1.97 1.87 190 209 2.04 2.03

4.3. Epidemics on the airport network

In order to show that our approach can be applied to a completely different system, we
also study the first infection time, It, of nodes going through an epidemics dynamic. The
network we used is the world-wide airport network, which describes the flying routes between
a large number of airports throughout the world. Each node is an airport (3302 in total) and
an edge indicates that there is a flight between two airports. The data was obtained from
www.openflights.org/data.html.

The value of I; for a node strongly depends on its relative position with respect to where
the epidemic has started, so for each initial condition the node will have many different /¢
values. Still, the local topology of the node can influence the mean time it takes for the infection
to arrive. Suppose we take two nodes with similar local topologies. It is expected that their
Iy will be slightly different, but how different are they really? If the topologies of these nodes
completely define their dynamics, i.e. Iy does not vary for the different initial conditions, then the
difference in their dynamics, caused by the topology, is significant. On the contrary, if their mean
values are close but the topology does not have a strong influence, then with different initial
conditions it is possible to reach many different dynamical states. This means that the nodes are
not significantly differentiated by their local topology. We reinforce that this is different from
simply comparing their mean values, as we are taking into account both the variation caused by
the initial condition and the network topology.

We performed 1000 simulations of the SIS epidemics dynamics and calculated the
respective o values; the result is shown in figure 7. The first noticeable feature is the small
number of nodes having a large value of «, these nodes are probably in regions of the network
where the epidemic is far from its average behavior. They could be isolated from the network and
so would have a very small chance of receiving the disease, or they could be hubs of the network:
it does not matter where the disease started, they always catch it immediately. We found that
the node types are actually mixed, with a little advantage to the hubs. In figure 8(a) we plot
a versus the degree of the nodes, where we see that a node having high degree is guaranteed
to have large o, while low degree nodes can have a range of o values. This means that high
degree nodes depend only on their immediate neighborhood, i.e. the local topology completely
defines their dynamics. On the other hand, as low degree nodes are strongly influenced by their
higher order neighborhood, the local topology is not sufficient to define the dynamics. In order
to show this more precisely, we plot in figure 8(b) the relationship of o with the closeness
centrality of the nodes [31]. This topological measure takes into account all network nodes on
its calculation, quantifying how central the node is. We see that the closeness defines much
better the dynamics of the less connected nodes, showing that they are differentiated by the
topology, but the difference is caused by the influence of the entire network.
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Figure 7. Histogram of « values related to the SIS epidemic model taking place
on the airport network. The first infection time of the nodes was taken as a
dynamical feature to calculate .
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Figure 8. Scatter plots between « and topological features of the nodes. The two
features used were (a) the degree and (b) the closeness centrality.

5. Conclusions

In a dynamical system underlain by a completely regular topology (e.g. a toroidal lattice), every
node behaves identically regarding its influence on the overall dynamics. It remains an important
question to quantify how local heterogeneities in the topology, which can be understood as
structural symmetry breaks, may influence the unfolding of the respective dynamics. Despite
continuing interest in this area, relatively incipient results have been obtained as a consequence
of the fact that several elements that can interfere with the overall dynamics—such as initial
conditions, stochasticity and parameter configurations—are not kept constant while inferring
individual effects. This paper has addressed this problem by proposing a framework for
quantifying to which extent the topology around each node contributes to differentiating the
dynamics. Moreover, the method is devised in such a way as to not require the consideration of
any specific topological or structural metric. Though the method can be applied with respect to
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any of the potentially interfering elements, in this work we restrict our attention to the effect of
the initial conditions.

We illustrated the potential of the reported methodology with respect to a range of different
topologies, namely the ER, BA and geographic random models, the neuronal connections of
the nematode (C. elegans) and the world-wide airport network. Several interesting findings are
reported, including the fact that the nodes in ER networks are not significantly differentiated
regarding their respective time series. The geographic model exhibits groups of nodes that are
highly differentiated in comparison to the majority of network nodes, a consequence of the high
statistical fluctuations present in the network construction. The result for the BA model showed
that the topological particularities of the hubs are amplified in the dynamics taking place on the
system.

Regarding the C. elegans network, we found that some nodes are highly differentiated by
their spiking rate. While all these nodes have been found to be well connected nodes, there are
well connected nodes that are not in this group, indicating the presence of additional topological
influences besides the node degree. We identified these highly active nodes as corresponding to
interneurons of the ventral cord of the nematode. For the epidemic dynamics we found that
nodes having a high degree are isolated from the network influence, in the sense that their
dynamics show little variation with different initial conditions. On the other hand, in order to
predict the dynamics of low degree nodes, we need information that it is not available on their
local neighborhood.

Several future developments are possible, including the consideration of other types of
dynamics, other models of networks, as well as investigating the effect of stochasticity and
varying the parameters or dynamics at each node.
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