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Abstract 

In this paper, a new three-parameter unit probability distribution is proposed. The new model is a 
generalization of Burr III distribution, and it is more flexible than some existing well-known distribution 
due to its different shapes of the hazard function and probability density functions. The mathematical 
properties of this distribution are presented, including moments, reliability measures, mean residual life, 
and characterizations, and we also propose a modified chi-squared goodness-of-fit test based on Nikulin–
Rao–Robson statistic Y² in the presence of complete and censored data. The parameters related to the 
proposed distribution are estimated using well-known estimation methods. A numerical simulations study 
is conducted for reinforcement of the results. In the end, we considered two real datasets to illustrate the 
applicability of the proposed model.  

Keywords: Burr III distribution, moments, estimation, characterization, goodness-of-fit test. 

 

1. Introduction 

The use of unit distributions plays a crucial role in modeling proportions that are usually observed 
in industry, medical applications and risk analysis to list a few. The two-parameter distribution that is 
extensively used for modeling bounded data is the Beta distribution (Gupta & Nadarajah 2004). In this 
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context, several probability distributions have been proposed for handling bounded data sets in different 
fields. Notable among them are Johnson SB distribution (Johnson 1949), Unit-Logistic distribution 
proposed Menezes et al. 2018, Topp-Leone distribution (Topp and Leone 1955), Kumaraswamy 
distribution (Kumaraswamy 1980), Unit-Gompertz distribution (Mazucheli et al. 2019), Unit-Birnbaum-
Saunders distribution (Mazucheli et al., 2018), Unit-Weibull distribution by (Mazucheli et al. 2018) and 
Unit-inverse Gaussian distribution by (Ghitany et al. 2019).  

The modified Bur III (MBIII) distribution was proposed by Ali et al. (2015) to model the lifetime 
data. The authors derived the properties of the new model and discussed its application. Bhatti et al. 
(2018) characterized MBIII distribution based on two truncated moments, elasticity function, and 
reversed hazard function. Important generalization for the Bur III can be seen in Usman and Haq (2019) 
and Chakraborty et al. (2020). On the other hand, some generalizations of MBIII distribution have been 
attempted by researchers. For example, Ali and Ahmad (2015) introduced transmuted modified Burr III 
distribution. Haq et al. (2019) introduced generalized odd Burr III-G family of distributions, and Mukhtar 
et al. (2019) introduced McDonald modified Burr-III distribution. 

Let X be a non-negative random variable that follows a MBIII distribution, thenthe probability 
density function (pdf) and cumulative distribution function (cdf) are given  

 𝑓(𝑥) = 𝛼𝛽𝑥−𝛽−1�1 + 𝛾𝑥−𝛽�
−𝛼

𝛾−1,       𝑥 > 0  (1) 

 𝐹(𝑥) = �1 + 𝛾𝑥−𝛽�
−𝛼

𝛾,   (2) 

where𝛼, 𝛽, 𝛾 > 0 are shape parameters.  

In this paper, we introduce a new unit probability distribution with three parametersbased on a 
unit transformation of the MBIII distribution. The new distribution named Unit-Modified Burr III 
(UMBIII) distribution is very flexible and can be used to describe different datasets where the range is 
included between 0 and 1. Further, we also derive the mathematical properties of the UMBIII and 
inferential procedures to estimate the parameters under different estimation methods. Two real datasets 
are used to illustrate the suitability of the proposed model over other well-known models. The originality 
of this study comes from the fact that this is the first unit modification based on the Modified Burr-III 
distribution. In this sense, our three-parameter version is very flexible when compared with the standard 
unit distributions. Additionally, the new mathematical properties and inference for the parameters of the 
proposed model have not been presented previously. A simulation study is conducted which selects the 
maximum product spacing (MPS) estimators as the best estimation procedure among the proposed 
methods. Finally, we proposed a modified Chi-square goodness of fit test to verify the quality of fit for 
the empirical data.  

The study is organized as follows. We derived the proposed distribution and its description in 
Section 2. Mathematical properties, such as quantile function, moments, mgf, reliability measures, mean 
residual life, and characterizations related to truncated moments and failure rate function, are presented in 
Section 3. The distributional parameters are estimated by the method of maximum likelihood for censored 
and complete data in Section 4.  An extensive simulation study is carried out considering different 
estimation methods in Section 5. Section 6 is devoted to introducing a modified Chi-square goodness-of-
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fit test for the new model assuming complete and censored data.The proposed methodology is illustrated 
in two realapplications which are presented in Section 7 and the final comments are given in Section 8. 

2. Unit Modified Burr-III distribution 

Suppose that Y follows a MBIII distribution, by the transformation 𝑋 = 𝑌 (1 + 𝑌)⁄ we obtain a new unit 
modified Burr-III distribution. In this case, the cdf can be defined as: 

𝐹(𝑥) = �1 + 𝛾 �
𝑥

1 − 𝑥
�

−𝛽
�

−𝛼
𝛾

 ,      0 < 𝑥 < 1,                                                  (3) 

where 𝛼, 𝛽, 𝛾 > 0  and its corresponding pdf is given by 

𝑓(𝑥) = 𝛼𝛽𝑥−2 �
1 − 𝑥

𝑥
�

𝛽−1
�1 + 𝛾 �

1 − 𝑥
𝑥

�
𝛽

�
−𝛼

𝛾−1

.                                      (4) 

Using binomial expansion pdf can be written as  

𝑓(𝑥) = 𝛼𝛽 �(−1)𝑖(𝛾)𝑖
∞

𝑖=0

�
𝛼
𝛾

+ 𝑖

𝑖
� 𝑥−2 �

1 − 𝑥
𝑥

�
𝛽(𝑖+1)−1

.                                         (5) 

The behaviour of the shapes of the UMBIII distribution has different forms. Firstly, near 𝑥 = 0  the curve 
decreases from infinity, or starts from a particular point on the vertical axis, or it starts increasing near to 
the origin. We obtain the solution of the following limit: 

lim
𝑥→0

  𝑓(𝑥) = lim
𝑥→0

 𝛼𝛽𝑥−2 �
1 − 𝑥

𝑥
�

𝛽−1
�1 + 𝛾 �

1 − 𝑥
𝑥

�
𝛽

�
−𝛼

𝛾−1

. 

The limiting behavior of the pdf is achieved by considering the L’Hopital rule. 

 lim
𝑥→0

 𝑓(𝑥) = lim
𝑥→0

  
�1−𝑥

𝑥 �
−(𝛽−1)

𝛼 �𝑥𝛽+1(𝛽−1)(1−𝑥)−𝛽+(1−𝑥)1−𝛽𝑥𝛽(𝛽+1)��1+𝛾�1−𝑥
𝑥 �

𝛽
�

𝛼
𝛾+2

𝛾�1+𝛼
𝛾��1−𝑥

𝑥2 +1
𝑥�

,    

lim
𝑥→0

    𝑓(𝑥) = � 0             β ≥1, 𝛼 ≥ 𝛾
∞          𝛽 < 1, 𝛼 ≤ 𝛾 .

� 

There is one more possibility that the density curve starts at a specific value on the vertical axis and reach 
the x-axis at zero or goes upwards when approaches to infinity for 𝛽 > 1, 𝛼 < 𝛾. 

Figure 1 presents the shapes of the pdf of UMBIII distribution for different parameter values. 
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Figure 1: Pdf curves of UMBIII distribution for some parameter values.  

From Figure 1, we observe that the pdf has many different shapes such as bathtub shape, left-skewed 
(negative skewness) as well as right-skewed (positive skewness). Hence, the proposed model is very 
flexible to fit unit data. 

The survival function related to the new model as well as the hazard function are given by 

 
𝑆(𝑥) = 1 − �1 + 𝛾 �

𝑥
1 − 𝑥

�
−𝛽

�
−𝛼

𝛾
, (6) 

 

ℎ(𝑥) =
𝛼𝛽𝑥−2 �1−𝑥

𝑥
�

𝛽−1
�1 + 𝛾 �1−𝑥

𝑥
�

𝛽
�

−𝛼
𝛾−1

1 − �1 + 𝛾 � 𝑥
1−𝑥

�
−𝛽

�
−𝛼

𝛾
. (7) 

 

Figure 2 presents the different shapes for the hazard function of UMBIII distribution under different 
parameter values. 
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Figure 2: Hrf curves of UMBIII distribution for some parameter values.  

3. Mathematical Properties  

The quantile function of UMBIII distribution can be obtained by inverting Equation (3) which has the 
form 

 𝑥 =
1

1 + �− 1−𝑝−𝛾
𝛼

𝛾
�

1
𝛽

 . 
(8) 

Suppose that the random variable X follows an UMBIII distributed, then its rth moment around zero is 
given by 

 
𝜇𝑟

′ = 𝛼𝛽 �(−1)𝑖(𝛾)𝑖
∞

𝑖=0

�
𝛼
𝛾

+ 𝑖

𝑖
� 𝐵[𝑟 − 𝛽(𝑖 + 1), 𝛽(𝑖 + 1)] (9) 

where 𝐵(⋅,⋅) is the beta function. 

Another important function is the moment generating function of UMBIII distribution which can be 
obtained as  

 
𝑀𝑋(𝑡) = 𝛼𝛽 �

(−1)𝑟𝑡𝑟

𝑟!

∞

𝑟=0

�(−1)𝑖(𝛾)𝑖
∞

𝑖=0

�
𝛼
𝛾

+ 𝑖

𝑖
� 𝐵[𝑟 − 𝛽(𝑖 + 1), 𝛽(𝑖 + 1)]. (10) 

The mean residual life (MRL) function is the second most important function used to represent lifetime 
distributions. It determines the remaining life of a component or unit of a system that has survived up to a 
particular point in time. That is, it measures the life expectancy of a component or unit that has survived 
up to time 𝑥. Therefore, we obtain the 𝑟th moment of the residual life of  𝑋 via the general formula 

𝑀𝑟 = 𝐸((𝑋 − 𝑡)𝑟|𝑋 > 𝑡) =
1

1 − 𝐹(𝑡) � (𝑥 − 𝑡)𝑟𝑓(𝑥)𝑑𝑥
∞

𝑡
,           𝑟 = 1,2, …. 
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Using binomial series and Eq. (5)  

𝑀𝑟 =
1

1 − 𝐹(𝑡) 𝛼𝛽 �(−1)𝑖(𝛾)𝑖
∞

𝑖=0

�
𝛼
𝛾

+ 𝑖

𝑖
� �(−1)𝑛 �

𝑟
𝑛

� 𝑡𝑟−𝑛
𝑟

𝑛=0

� 𝑥𝑛−𝛽(𝑖+1)−1(1 − 𝑥)𝛽(𝑖+1)−1𝑑𝑥
1

𝑡
,   

the rth moment of the residual life of the UMBIII distribution as 

 
𝑀𝑟 =

1
1 − 𝐹(𝑡) 𝛼𝛽 �(−1)𝑖(𝛾)𝑖

∞

𝑖=0

�
𝛼
𝛾

+ 𝑖

𝑖
� �(−1)𝑛 �

𝑟
𝑛

� 𝑡𝑟−𝑛
𝑟

𝑛=0

𝐵[𝑛 − 𝛽(𝑖 + 1), 𝛽(𝑖 + 1)] . (11) 

The mean residual life (MRL) function is expressed by 𝑀1 = 𝐸�(𝑋 − 𝑡)�𝑋 > 𝑡 � and it can be obtained 
by setting 𝑟 = 1 in (11).  

In the cases where a new stochastic function is going to be introduced, it is important to check the 
necessary conditions of a specific underlying model. The study of characterizations can fulfill this 
requirement. Many characterization techniques have been presented by Glänzel (1987, 1990), Glänzel & 
Hamedani (2001) and Hamedani (1993, 2002). The characterizations of UMBIII distribution considering 
the ratio of two truncated moments are discussed. In order to present the characterization of distribution, 
we considered the theorem presented in Glänzel (1987). 

Proposition 3.1: Assume thatX:Ω → (0,1) and is distributed following the pdf (4) and   

 
𝑞1(𝑥) = �1 + �

1 − 𝑥
𝑥

�
𝛽

𝛾�
1+𝛼

𝛾

 
(12) 

 
              𝑞2(𝑥) = 𝑞1(𝑥)   𝛼 �

1
𝑥

− 1�
𝛽

,     x > 0. 

Then, the rv X follows UMBIII if and only if the function η presented in the Theorem of Glänzel 
(1987)has the form  

 
𝜂(𝑥) =

1
2

�
1
𝑥

− 1�
𝛽

𝛼.  (13) 

Proof: Let 0 <   𝑥 < 1, we have that 

�1 − 𝐹(𝑥)�𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = � (1 − 𝑥)−1+𝛽𝑥−1−𝛽𝛼𝛽
1

𝑥
𝑑𝑥 =  𝛼 �

1
𝑥

− 1�
𝛽

. 

Similarly, 

�1 − 𝐹(𝑥)�𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] =
1
2

�
1
𝑥

− 1�
2𝛽

𝛼2.              

Now 

𝜂(𝑥) =
𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥]
𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] =

1
2

�
1
𝑥

− 1�
𝛽

𝛼  

and 𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = 𝑞1(𝑥) �𝜂(𝑥) − 𝛼 �1
𝑥

− 1�
𝛽

� 
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= −
1
2

𝛼 �
1
𝑥

− 1�
𝛽

�1 + �
1 − 𝑥

𝑥
�

𝛽
𝛾�

1+𝛼
𝛾

< 0 

𝑠 ́ (𝑥) =
𝜂́(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =
𝛽

�1
𝑥

− 1� 𝑥2
 

and hence 

 
𝑠(𝑥) = −  ln �𝛼 �

1
𝑥

− 1�
𝛽

�. (14) 

 

Now by Proposition (3.1), X has a density (4). 

Corollary 3.1: Assume that X: Ω → (0,1)is a continuous rv and let 𝑞1(𝑥) be the same as the one 
presented in Proposition (3.1). Then we have that the pdf of X is of the form (4) if and only if there exist 
functions 𝑞2(𝑥) and η presented in the Theorem of Glänzel (1987) satisfying the following differential 
equation 

𝜂́(𝑥)𝑞1(𝑥)
𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =

−
�1

𝑥−1�
𝛽−1

𝛼𝛽

𝑥2

�1
𝑥

− 1�
𝛽

𝛼
.                                                          (15) 

The solution of the differential equation above given by  

𝜂(𝑥) = ��
1
𝑥

− 1�
𝛽

𝛼�
−1

�� 𝑥−2 ��
1
𝑥

− 1�
𝛽−1

𝛼𝛽� [𝑞2(𝑥){𝑞1(𝑥)}−1]𝑑𝑥 + 𝐷
𝑥

0
�, 

where D is a constant. The family of functions satisfying the differential equation (15) is presented in 
Proposition (3.1) with 𝐷 = 0. It is worth mentioning that there are other triplets (𝑞1, 𝑞2, 𝜂) that can 
satisfies the condition of the Theorem of Glänzel (1987) 

Here, we also present the characterizations of UMBIII distribution in term of its the hazard function. An 
important fact is that the hazard function satisfies the differential equation 

𝑓́(𝑥)
𝑓(𝑥)

=
ℎ́(𝑥)
ℎ(𝑥)

− ℎ(𝑥). 

Proposition 3.2: Let X be a r. v. with pdf (4) then the hrf satisfies the differential equation 

ℎ́(𝑥) − (𝛽 + 1)𝑥−1ℎ(𝑥) =
(1 − 𝑥)𝛽−2𝑥−(𝛽+2)𝛼𝛽 �1 + �−1 + 1

𝑥
�

𝛽
𝛾�

−�𝛼
𝛾+2�

�1 + � 𝑥
1−𝑥

�
−𝛽

𝛾�
𝛼 𝛾⁄

�−1 + �1 + � 𝑥
1−𝑥

�
−𝛽

𝛾�
𝛼 𝛾⁄

�
2  × 
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�−𝑥(𝛽 − 1) �1 + �
1
𝑥

− 1�
𝛽

𝛾� ��1 + �
𝑥

1 − 𝑥
�

−𝛽
𝛾�

𝛼 𝛾⁄

− 1�

+ 𝛽 �− �
1
𝑥

− 1�
𝛽

(𝛼 + 𝛾) +
𝛼 �1 + �1

𝑥
− 1�

𝛽
𝛾�

� 𝑥
1−𝑥

�
𝛽

+ 𝛾
+ �

1
𝑥

− 1�
𝛽

(𝛼

+ 𝛾) �1 + �
𝑥

1 − 𝑥
�

−𝛽
𝛾�

𝛼 𝛾⁄

��                                                                   (16) 

assuming the boundary conditions ℎ(0) ≥ 0. 

Proof: Assuming that X has the hazard function (7) then 

ℎ́(𝑥) =
1

��� 𝑥
1−𝑥

�
𝛽

+ 𝛾� ��1 + � 𝑥
1−𝑥

�
−𝛽

𝛾�
𝛼 𝛾⁄

− 1�
2

�

× �(1 − 𝑥)𝛽−2𝑥−(𝛽+2)𝛼𝛽 �1 + �
1
𝑥

− 1�
𝛽

𝛾�
−2−𝛼

𝛾

�1 + �
𝑥

1 − 𝑥
�

−𝛽
𝛾�

𝛼 𝛾⁄

�𝛾

− ��
𝑥

1 − 𝑥
�

𝛽
� �1 + �

1
𝑥

− 1�
𝛽

𝛾� ��1 + �
𝑥

1 − 𝑥
�

−𝛽
𝛾�

𝛼 𝛾⁄

− 1�

+ 2𝑥 ��
𝑥

1 − 𝑥
�

𝛽
+ 𝛾� �1 + �

1
𝑥

− 1�
𝛽

𝛾� ��
𝑥

1 − 𝑥
�

−𝛽
𝛾 − 1�

𝛼 𝛾⁄

+ 𝛽 ��
𝑥

1 − 𝑥
�

𝛽
+ 𝛼 − �

1
𝑥

− 1�
𝛽

�
𝑥

1 − 𝑥
�

𝛽
𝛼 + 𝛾

+ ��
1
𝑥

− 1�
𝛽

𝛼 − 1� ��
𝑥

1 − 𝑥
�

𝛽
+ 𝛾� �1 + �

𝑥
1 − 𝑥

�
−𝛽

𝛾�
𝛼 𝛾⁄

��� 

and by substitution the above result in  ℎ́(𝑥) − (𝛽 + 1)𝑥−1ℎ(𝑥)  and the result follows.  

Conversely, if Eq.(16) holds then 

𝑑
𝑑𝑥 �𝑥𝛽+1ℎ(𝑥)�  =

𝑑
𝑑𝑥

⎣
⎢
⎢
⎢
⎡
(1 − 𝑥)𝛽−1𝛼𝛽 �1 + �

1
𝑥

− 1�
𝛽

𝛾�
−𝛼+𝛾

𝛾

×

⎝

⎜
⎛

1 +
1

−1 + �1 + � 𝑥
1−𝑥

�
−𝛽

𝛾�
𝛼 𝛾⁄

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
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ℎ(𝑥) =
(1 − 𝑥)−1+𝛽𝑥−1−𝛽𝛼𝛽(1 + (1−𝑥

𝑥
)𝛽𝛾)−1−𝛼

𝛾

1 − (1 + ( 𝑥
1−𝑥

)−𝛽𝛾)−𝛼
𝛾

+ 𝐶 

which implies 𝐶 = 0. 

4 Estimation 

In this section, we estimate the unknown parameters using seven different estimation methods such asthe 
maximum likelihood estimation, ordinary least square (OLS), weighted least square (WLS), percentile 
(PE), maximum product spacing (MPS), Cramer-von-Mises (CVM) and Anderson Darling (AD). These 
estimation methods have been considered by many authors for other distributions (Louzada et al., 2020; 
Ramos et al. 2019). A brief description of these methods is given below.  

4.1 Maximum likelihood  

Let 𝑥1, 𝑥2, … 𝑥𝑛 be random samples distributed according to the UMBIII distribution, the likelihood 
function is obtained from 

𝐿 = � 𝑓(𝑥𝑖, 𝛼, 𝛽, 𝛾)
𝑛

𝑖=1

. 

   Using the pdf (4), we have 

𝐿 = � 𝛼𝛽𝑥𝑖
−2 �

1 − 𝑥𝑖

𝑥𝑖
�

𝛽−1
�1 + 𝛾 �

1 − 𝑥𝑖

𝑥𝑖
�

𝛽
�

−𝛼
𝛾−1𝑛

𝑖=1

. 

By taking the natural logarithm, the log-likelihood function is obtained as; 

log 𝐿 = 𝑛log(𝛼𝛽) − 2 � log (𝑥𝑖)
𝑛

𝑖=1

+ (𝛽 − 1) � log �
1 − 𝑥𝑖

𝑥𝑖
� − �

𝛼
𝛾

+ 1�
𝑛

𝑖=1

� log �1 + 𝛾 �
1 − 𝑥𝑖

𝑥𝑖
�

𝛽
�

𝑛

𝑖=1

. 

For our model, we considered that 𝑢𝑖 = 1−𝑥𝑖
𝑥𝑖

. Hence, the maximum likelihood estimators 𝛼� , 𝛾� and 𝛽̂ of 

the unknown parameters α, 𝛾, and 𝛽 are derived from the nonlinear following score equations: 

𝜕𝐿
𝜕𝛼

=
n
𝛼

−
1
𝛾

� ln �1 + 𝛾𝑢𝑖
𝛽� ,

𝑛

𝑖=1

 

𝜕𝐿
𝜕𝛽

=
n
𝛽

+ � ln(𝑢𝑖)
𝑛

𝑖=1

− 𝛾 �
𝛼
𝛾

+ 1� �
𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽

𝑛

𝑖=1

, 

𝜕𝐿
𝜕𝛾

=
𝛼
𝛾2 � ln �1 + 𝛾𝑢𝑖

𝛽�
𝑛

𝑖=1

− �
𝛼
𝛾

+ 1� �
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽

𝑛

𝑖=1

. 
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Although the second and the third linear equations do not have closed-form expression, we can obtain the 
estimate from 𝛼 by considering: 

𝛼 =
n

1
𝛾

∑ ln �1 + 𝛾𝑢𝑖
𝛽�𝑛

𝑖=1

. 

4.2 Ordinary Least Square Estimators  

Other common estimation methods are the least-square and weighted least square estimators. Let 
𝑋(1) < 𝑋(2), … , 𝑋(𝑛) be the order statistics related to a random sample obtained from the UMBIII 
distribution, then the OLSEs of α, β and γ, denoted by𝛼�𝑂𝐿𝑆𝐸, 𝛽̂𝑂𝐿𝑆𝐸 and 𝛾�𝑂𝐿𝑆𝐸are obtained by minimizing  

𝑆(𝛼, 𝛽, 𝛾) = � �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1�

2

,
𝑛

𝑖=1

 

in terms of its parameters, i.e.,  they can be obtained by solving 

  

� �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔1�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0, 

� �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔2�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0, 

� �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔3�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0, 

where 

 

𝜔1�𝑥(𝑖)�𝛼, 𝛽, 𝛾� =
�1 + � 1

𝑥(𝑖)
− 1�

𝛽
𝛾�

−𝛼
𝛾

log �1 + 𝛾 �1
𝑥

− 1�
𝛽

�

𝛾
, 

(17) 

 
𝜔2�𝑥(𝑖)�𝛼, 𝛽, 𝛾� = 𝛼 �

1
𝑥

− 1�
𝛽

�1 + �
1
𝑥

− 1�
𝛽

𝛾�
−𝛼

𝛾−1

log �
1
𝑥

− 1�, (18) 

𝜔3�𝑥(𝑖)�𝛼, 𝛽, 𝛾� = �1 + �
1
𝑥

− 1�
𝛽

𝛾�
−𝛼

𝛾

�
𝛼 �1

𝑥
− 1�

𝛽

𝛾 �1 + 𝛾 �−1 + 1
𝑥

�
𝛽

�
−

𝛼 log �1 + 𝛾 �−1 + 1
𝑥

�
𝛽

�

𝛾2 �. (19) 
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The WLSEs of to α, β and γ, i.e.𝛼�𝑂𝐿𝑆𝐸, 𝛽̂𝑂𝐿𝑆𝐸 and 𝛾�𝑂𝐿𝑆𝐸 can be obtained by minimizing in term of its 
parameters the following function: 

𝑊(𝛼, 𝛽, 𝛾) = �
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1) �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1�

2
𝑛

𝑖=1

. 

In the same way of the OLS the WLS estimators can be obtained by solving 

�
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1) �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔1�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0 

�
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1) �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔2�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0 

�
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1) �1 − �1 + 𝛾 �
𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
𝑖

𝑛 + 1� 𝜔3�𝑥(𝑖)�𝛼, 𝛽, 𝛾�
𝑛

𝑖=1

= 0. 

4.3 Percentile Estimators  

The percentile methodology was originally proposed by Kao (1959) to estimate the parameters of a 

probability distribution parameters that has the quantile function in a closed-form expression. Since the 

quantile function of the new distribution has closed-form, then the estimators of α, β and γ are derived by 

minimizing with respect to α, β and γ the following expression 

�

⎣
⎢
⎢
⎢
⎡
log �

𝑖
𝑛 + 1

� −

⎝

⎛1 + �−
1 − (𝑝̂𝑖)−𝛾

𝛼

𝛾
�

1
𝛽

⎠

⎞

−1

⎦
⎥
⎥
⎥
⎤

2
𝑛

𝑖=1

. 

4.4 Cramer-von Mises Minimum  

Based on Goodness of fit measures the Cramer-von Mises estimators (CVM) for the parameters α, β and γ 

can be obtained by minimizing the function  

 

𝐶𝑉(𝛼, 𝛽, 𝛾) =
1

12𝑛
+ � �1 − �1 + 𝛾 �

𝑥(𝑖)

1 − 𝑥(𝑖)
�

−𝛽

�
−𝛼

𝛾

−
2𝑖 − 1

2𝑛 �

2
𝑛

𝑖=1

 (20) 

with respect to α, β and γ. 
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4.5 Maximum Product Spacing  

The Maximum Product Spacing (MPS) method is a powerful estimation procedure used as an alternative 

of the MLE method to achieve estimates of  the parameters in continuous distributions (Cheng and Amin 

1983). The uniform spacings of a random sample obtained from the UMBIII distribution is given by 

𝐷𝑖(𝛼, 𝛽, 𝛾) = 𝐹�𝑥(𝑖)|𝛼, 𝛽, 𝛾� − 𝐹�𝑥(𝑖−1)|𝛼, 𝛽, 𝛾�,      𝑖 = 1,2, … , 𝑛 + 1, 

where𝐹�𝑥(0)|𝛼, 𝛽, 𝛾� = 0, 𝐹�𝑥(𝑛+1)|𝛼, 𝛽, 𝛾� = 1. From the definition above we have that  

∑ 𝐷𝑖(𝛼, 𝛽, 𝛾)𝑛+1
𝑖=1 = 1 

 The MPS estimator are achieved by maximizing w.r.t. the parameters the geometric mean (GM) of the 

spacings  

 
GM = ��𝐷𝑖(𝛼, 𝛽, 𝛾)�

1
𝑛+1

𝑛+1

𝑖=1

 (21) 

The MPS estimates of 𝛼, 𝛽 and 𝛾can be obtained by the directed maximization the logarithm of the GM. 

In this case, we have to consider numerical methods to obtain the solution of the equation above. 

4.6 Right tail Anderson Darling  

The Right Anderson and Darling estimators (ADEs) is another estimation method obtained from 

goodness of fit measures. The estimates for α, β and γ are obtained by minimizing the following function,  

 
RAD(𝛼, 𝛽, 𝛾) =

𝑛
2

+ 2 � 𝐹(𝑥𝑖:𝑛|𝛼, 𝛽, 𝛾)
𝑛

𝑖=1

−
1
𝑛

�(2𝑖 − 1) log 𝐹�(𝑥𝑛+1−𝑖:𝑛|𝛼, 𝛽, 𝛾)
𝑛

𝑖=1

. (22) 

with respect the parameters of interesting.  

5 Simulation Studies: 

For the support of this research, we conduct a comprehensive simulation study for both cases considering 
the different estimation methods. To compare the estimation methods we considered the mean relative 
estimate (MRE) and mean square error (MSE) that are computed by 

MRE�𝜃𝑗� =
1
𝑁

�
𝜃�𝑖,𝑗

𝜃𝑗

𝑛

𝑖=1

     and     MSE�𝜃𝑗� =
1
𝑁

��𝜃�𝑖,𝑗 − 𝜃𝑗�2,
𝑛

𝑖=1

 

where 𝜃 = (𝛼, 𝛽, 𝛾)  and 𝜃� = �𝛼�, 𝛽̂, 𝛾�� are estimates obtained from the samples Our simulation study was 

conducted using 𝑁 = 10,000 samples with sample sizes ofn=20, 30... 400. The following parametric 

values was considered: 

α =2, β =0.5 and γ=1.5 for Figure 3.  
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α =0.5, β =0.5 and γ=2 for Figure 4.  

α =0.5, β =1 and γ=0.5 for Figure 5.  

 

 

Figure 3: Graphs of MRE and MSE for parameters (α =2, β =0.5 and γ=1.5). 
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Figure 4:Graphs of MRE and MSE for parameters (α =0.5, β =0.5 and γ=2). 

 

The simulation study was conducted using the software R and the codes are available upon request. The 

legends from the different estimation methods are 1- MLE, 2 - LSE, 3 - WLSE, 4 - PER, 5 - MPS, 6 - 

CME, 7 – RDA. Under this scenario, we expect that the best estimation method will return the MRE 

closer to one with smaller MSE. The results are presented in Figures 3-5. 
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Figure 5:Graphs of MRE and MSE for parameters (α =0.5, β =1 and γ=0.5). 

 

As can be seen in Figure 3 – 5 we observe that the MREs are closer to one for the MPS, this method also 

returns the minimum MSE for most of the scenarios. On the other hand, the CME returned poor estimates 

when compared with other estimation methods. Hence, overall the MPS returned best estimates among 

the estimation methods. Another interesting fact is that the MPS has many interesting properties such as 

the estimator is invariant under one-to-one transformation, asymptotic efficiency, and, more importantly, 

the consistency of the MPS holds under more general conditions than for MLEs. 
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6 Goodness-of-fit test 

Some techniques that exist in literature are commonly used to verify if real data can be fitted by  
statistical models. Generally Chi-square statistics are the most used. 

6.1 Estimation under right-censored data 

The hypotheses test will be discussed under complete and censored data, however, the MPS is only 
defined for complete data, since the MLE is usually considered for right-censored data, Let us consider 
𝑋1, 𝑋2, . . . , 𝑋𝑛 a random right censored sample obtained from the Unit Modified Burr-III distribution with 
the parameter vector  𝜃 = (𝛼, 𝛽, 𝛾)𝑇 . The censoring time τ is fixed. So, the observation  𝑋𝑖 is equal to 
𝑋𝑖 = (𝑥𝑖, 𝛿𝑖) where 

𝛿𝑖 = �
0     𝑖𝑓𝑥𝑖𝑖𝑠𝑎𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔𝑡𝑖𝑚𝑒

1    𝑖𝑓𝑥𝑖𝑖𝑠𝑎𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑡𝑖𝑚𝑒
� 

   In this case, the log-likelihood is obtained as follow 

 𝐿𝑛(𝜃) = ∑ 𝛿𝑖
𝑛
𝑖=1 𝑙𝑛ℎ(𝑥𝑖, 𝜃) + ∑ 𝑙𝑛𝑛

𝑖=1 𝑆(𝑥𝑖, 𝜃) 

𝐿𝑛(𝜃) = � 𝛿𝑖

𝑛

𝑖=1

�
ln(𝛼𝛽) − 2 ln(𝑥𝑖) − �

𝛼
𝛾

+ 1� ln �1 + 𝛾𝑢𝑖
𝛽�

−(𝛽 − 1)𝑙𝑛(𝑢𝑖) − ln �1 − �1 + 𝛾𝑢𝑖
𝛽�

−𝛼/𝛾
�

� + � ln �1 − �1 + 𝛾𝑢𝑖
𝛽�

−𝛼/𝛾
�

𝑛

𝑖=1

. 

      The maximum likelihood estimators 𝛼� , 𝛾� and 𝛽̂ of the unknown parameters α, 𝛾, and 𝛽 are derived 
from the nonlinear following score equations: 

𝜕𝐿
𝜕𝛼

= � 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡
1
𝛼

−
ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾

−
𝛼 �1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln �1 + 𝛾𝑢𝑖
𝛽�

𝛾 �1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ�

⎦
⎥
⎥
⎥
⎤

+
𝛼
𝛾

�
�1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln (1 + 𝛾𝑢𝑖
𝛽)

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

𝑛

𝑖=1

 

𝜕𝐿
𝜕𝛽

= � 𝛿𝑖

𝑛

𝑖=1

�
1
𝛽

+ ln(𝑢𝑖) − �
𝛼
𝛾

+ 1�
𝛾𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽 −

𝛼𝑢𝑖
𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖

𝛽�
−α

γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

�

+ �
𝛼𝑢𝑖

𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖
𝛽�

−α
γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

𝑛

𝑖=1

 

𝜕𝐿
𝜕𝛾

= � 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡𝛼 ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾2 − �

𝛼
𝛾

+ 1�
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽 −

𝛼
𝛾2

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

⎦
⎥
⎥
⎥
⎤
 

 +
𝛼
𝛾2 �

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

.
𝑛

𝑖=1
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Monte Carlo technique or other iterative methods can be used to determine the values of 𝛼� , 𝛾� and 𝛽̂. 

6.2 Test statistic for right-censored data 

 Let 𝑋₁, . . . , 𝑋𝑛 be n i.i.d. random variables grouped into 𝑟 classes 𝐼𝑖. To assess the adequacy of a 
parametric model F₀ 

𝐻0:     𝑃( 𝑋𝑖 ≤ 𝑥 ∣∣ 𝐻0 ) = 𝐹0(𝑥; 𝜃), 𝑥 ≥ 0,   𝜃 = (𝜃1, . . . , 𝜃𝑠)𝑇 ∈ 𝛩 ⊂ 𝑅𝑠 

when data are right-censored and the parameter vector 𝜃 is unknown, Bagdonavičius and Nikulin (2011)  
proposed a statistic test Y² based on the vector 

𝑍𝑗 =
1

√𝑛
(𝑈𝑗 − 𝑒𝑗) ,      𝑗 = 1,2, . . . , 𝑟   , 𝑤𝑖𝑡ℎ𝑟 ≻ 𝑠. 

This one represents the differences between observed and expected numbers of failures (𝑈𝑗and 𝑒𝑗 
) to fall into these grouping intervals  𝐼𝑗 = (𝑎𝑗−1, 𝑎𝑗] with 𝑎₀ = 0, 𝑎𝑟 = 𝜏, where τ is considered to be 
finite. The authors considered 𝑎𝑗 as random data functions such as the r intervals chosen have equal 
expected numbers of failures𝑒𝑗. 

    The statistic test Y² is defined by 

𝑌² = 𝑍𝑇𝛴�⁻𝑍 = �
�𝑈𝑗 − 𝑒𝑗�2

𝑈𝑗

𝑟

𝑖=1

+ 𝑄 

where𝑍 = (𝑍1, . . . , 𝑍𝑘)𝑇 and  𝛴�− is a generalized inverse of the covariance matrix 𝛴�  and 

𝑄 = 𝑊𝑇𝐺�−𝑊, 𝐴𝚥� =
𝑈𝑗

𝑛
, 𝑈𝑗 = � 𝛿𝑖

𝑖:𝑋𝑖∈𝐼𝑗

 

𝑊 = (𝑊1, … , 𝑊𝑠)𝑇 , 𝐺� = [𝑔�𝑙𝑙′]𝑠×𝑠, 𝑔�𝑙𝑙′ = 𝚤𝑙̂𝑙′ − � 𝐶̂𝑙𝐽𝐺�𝑙′𝐽𝐴̂𝐽
−1

𝑟

𝑗=1

 

𝐶̂𝑙𝑗 =
1
𝑛

� 𝛿𝑖
𝑖:𝑋𝑖∈𝐼𝑗

𝜕𝑙𝑛ℎ(𝑥𝑖 , 𝜃�)
𝜕𝜃

, 𝚤𝑙̂𝑙′ =
1
𝑛

� 𝛿𝑖
𝜕𝑙𝑛ℎ(𝑥𝑖, 𝜃�)

𝜕𝜃𝑙

𝜕𝑙𝑛ℎ(𝑥𝑖, 𝜃�)
𝜕𝜃𝑙′

𝑛

𝑖=1

 

𝑊�𝑙 = � 𝐶̂𝑙𝐽𝐴̂𝐽
−1𝑍𝑗

𝑟

𝑗=1

𝑙, 𝑙′ = 1, … , 𝑠 

𝜃�is the maximum likelihood estimator of 𝜃 on initial non-grouped data. 

Under the null hypothesis H₀, the limit distribution of the statistic Y² is a chi-square with 𝑟 =
𝑟𝑎𝑛𝑘(𝛴) degrees of freedom. The description and applications of modified Chi-square tests are discussed 
in Bagdonavičius et al. (2013). 

    The interval limits 𝑎𝑗 for grouping data into j classes 𝐼𝑗 are considered as data functions and defined by 

𝑎�𝑗 = 𝐻−1 �
𝐸𝑗 − ∑ 𝐻(𝑥𝑙 , 𝜃�)𝑖−1

𝑙=1

𝑛 − 𝑖 + 1
, 𝜃�� ,   𝑎�𝑗 = max (𝑋(𝑛), 𝜏)   
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such as the expected failure times 𝑒𝑗 to fall into these intervals are 𝑒𝑗 = 𝐸𝑟
𝑟

for any j, with 𝐸𝑟 =
∑ 𝐻(𝑥𝑖 , 𝜃)𝑛

𝑖=1 . The distribution of this statistic test 𝑌𝑛
2is chi-square (see Bagdonavičius et al. (2013)). 

5.2 Criteria test for Unit Modified Burr-III distribution 

To verify if data can be described by the Unit Modified Burr-III model, we propose the construction 
of a modified chi-squared using  the statistic Y2 .  Suppose that observed data are grouped into 𝑟 > 𝑠 
sub-intervals𝐼𝑗 = (𝑎𝑗−1, 𝑎𝑗]of [0, 𝜏] where τ is a finite time. As limit intervals 𝑎𝑗 are defined such as 
we obtain the same expected numbers of failures in each interval  𝐼𝑗, so the expected numbers of 
failures 𝑒𝑗 are obtained as 

𝐸𝑗 = −
𝑗

𝑟 − 1
� ln �1 − �1 + 𝛾 �

𝑥
1 − 𝑥

�
−𝛽

�
−𝛼

𝛾
� ,      𝑗 = 1, … . . , 𝑟 − 1

𝑛

𝑖=1

 

Estimated matrix 𝑾� et 𝑪� 

The components of the estimated matrix 𝑾� are obtained  from the estimated matrix 𝑪� which is given by: 

𝐶̂1𝑗 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖:𝑥𝑖∈𝐼𝑗
⎣
⎢
⎢
⎢
⎡
1
𝛼

−
ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾

−
𝛼 �1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln �1 + 𝛾𝑢𝑖
𝛽�

𝛾 �1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ�

⎦
⎥
⎥
⎥
⎤
 

𝐶̂2𝑗 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖:xi∈𝐼𝑗

�
1
𝛽

+ ln(𝑢𝑖) − �
𝛼
𝛾

+ 1�
𝛾𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽 −

𝛼𝑢𝑖
𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖

𝛽�
−α

γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

� 

𝐶̂3𝑗 =
1
𝑛

� 𝛿𝑖

⎣
⎢
⎢
⎢
⎡𝛼 ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾2 − �

𝛼
𝛾

+ 1�
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽 −

𝛼
𝛾2

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

⎦
⎥
⎥
⎥
⎤𝑛

𝑖:𝑥𝑖∈𝐼𝑗

 

and 

𝑊�𝑙 = ∑ 𝐶̂𝑙𝐽𝐴̂𝐽
−1𝑍𝑗

𝑟
𝑗=1 𝑙, 𝑙′ = 1,2,3,   𝑗 = 1, … , 𝑟 

Estimated Matrix 𝑮� 

    The estimated matrix 𝐺� = [𝑔�𝑙𝑙′]3×3is defined by 

𝑔�𝑙𝑙′ = 𝚤𝑙̂𝑙′ − � 𝐶̂𝑙𝐽𝐺�𝑙′𝐽𝐴̂𝐽
−1

𝑟

𝑗=1

 

where 

𝚤̂𝑙𝑙′ =
1
𝑛

� 𝛿𝑖
𝜕𝑙𝑛ℎ(𝑥𝑖 , 𝜃�)

𝜕𝜃𝑙

𝜕𝑙𝑛ℎ(𝑥𝑖 , 𝜃�)
𝜕𝜃𝑙′

𝑛

𝑖=1

𝑙, 𝑙′ = 1,2,3 

or 
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𝚤1̂1 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡
1
𝛼

−
ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾

−
𝛼 �1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln �1 + 𝛾𝑢𝑖
𝛽�

𝛾 �1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ�

⎦
⎥
⎥
⎥
⎤

2

 

𝚤2̂2 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1

�
1
𝛽

+ ln(𝑢𝑖) − �
𝛼
𝛾

+ 1�
𝛾𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽 −

𝛼𝑢𝑖
𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖

𝛽�
−α

γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

�

2

 

𝚤3̂3 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡𝛼 ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾2 − �

𝛼
𝛾

+ 1�
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽 −

𝛼
𝛾2

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

⎦
⎥
⎥
⎥
⎤

2

 

𝚤1̂2 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡
1
𝛼

−
ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾

−
𝛼 �1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln �1 + 𝛾𝑢𝑖
𝛽�

𝛾 �1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ�

⎦
⎥
⎥
⎥
⎤
 

                          × �
1
𝛽

+ ln(𝑢𝑖) − �
𝛼
𝛾

+ 1�
𝛾𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽 −

𝛼𝑢𝑖
𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖

𝛽�
−α

γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

� 

𝚤1̂3 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1
⎣
⎢
⎢
⎢
⎡
1
𝛼

−
ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾

−
𝛼 �1 + 𝛾𝑢𝑖

𝛽�
−α

γ ln �1 + 𝛾𝑢𝑖
𝛽�

𝛾 �1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ�

⎦
⎥
⎥
⎥
⎤
 

×

⎣
⎢
⎢
⎢
⎡𝛼 ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾2 − �

𝛼
𝛾

+ 1�
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽 −

𝛼
𝛾2

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

⎦
⎥
⎥
⎥
⎤
 

𝚤2̂3 =
1
𝑛

� 𝛿𝑖

𝑛

𝑖=1

= �
1
𝛽

+ ln(𝑢𝑖) − �
𝛼
𝛾

+ 1�
𝛾𝑢𝑖

𝛽 ln(𝑢𝑖)

1 + 𝛾𝑢𝑖
𝛽 −

𝛼𝑢𝑖
𝛽 ln(𝑢𝑖) �1 + 𝛾𝑢𝑖

𝛽�
−α

γ−1

1 − �1 + 𝛾𝑢𝑖
𝛽�

−α
γ

� 

×

⎣
⎢
⎢
⎢
⎡𝛼 ln �1 + 𝛾𝑢𝑖

𝛽�
𝛾2 − �

𝛼
𝛾

+ 1�
𝑢𝑖

𝛽

1 + 𝛾𝑢𝑖
𝛽 −

𝛼
𝛾2

𝛾𝑢𝑖
𝛽 ln �1 + 𝛾𝑢𝑖

𝛽� − 𝛾 𝑢𝑖
𝛽 + ln �1 + 𝛾𝑢𝑖

𝛽�

�1 + 𝛾𝑢𝑖
𝛽� �1 − �1 + 𝛾𝑢𝑖

𝛽�
α
γ�

⎦
⎥
⎥
⎥
⎤
 

Therefore, the quadratic form of the test statistic can be obtained easily: 
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𝑌𝑛
2�𝛽̂� = �

�𝑈𝑗 − 𝑒𝑗�2

𝑈𝑗

𝑟

𝑗=1

+ 𝑊� 𝑇 �𝚤𝑙̂𝑙′ − � 𝐶̂𝑙𝐽𝐺�𝑙′𝐽𝐴̂𝐽
−1

𝑟

𝑗=1

�

−1

𝑊�  

 

6.3 Maximum likelihood estimation using right censored samples: 

In this section,  𝑁 = 10,000 right censored samples are simulated from the Unit Modified Burr-III model 
with parameters α=0.8,𝛽 = 1.5 and 𝛾 = 1.7. Different sizes are considered  n= 30, 50,150,350,500. To 
calculate the maximum likelihood estimates and their mean squared errors (MSE), we use  Barzilai-
Borwein (BB) algorithms (Ravi, 2009) . Results are presented in Table 1. 

Table1.  Obtained values of MLEs 𝛼�, 𝛽̂ and 𝛾� and their corresponding square mean errors 

𝑁 = 10,000 𝑛₁ = 30 𝑛₂ = 50 𝑛₃ = 150 𝑛₄ = 350 𝑛₅ = 500 
𝛼� 0.9328 0.8839 0.8678 0.8320 0.8003 

𝑀𝑆𝐸(𝛼�) 0.0122 0.0092 0.0088 0.0049 0.0023 
 𝜃�  1.7263 1.6736 1.6239 1.5312 1.5013 

𝑀𝑆𝐸( 𝜃� ) 0.0102 0.0095 0.0083 0.0037 0.0027 
𝛾 �  1.5939 1.6246 1.6523 1.6836 1.7009 

𝑀𝑆𝐸( 𝛾� ) 0.0073 0.0056 0.0035 0.0028 0.0017 

    The maximum likelihood estimates presented in Table 1, agree closely with the true parameter values. 

Criteria test 𝒀𝒏
𝟐  

For testing the null hypothesis H₀ that right-censored data become from Unit Modified Burr-III  model, 
we compute the criteria statistic 𝑌𝑛

2(𝜃)  as defined above for 10,000 simulated samples from the 
hypothesized distribution with different sizes (30, 50,150, 350, 500).Then, we calculate empirical levels 
of significance, when 𝑌² > 𝜒𝜀

2(r), corresponding to theoretical levels of significance (𝜀 = 0.10, 𝜀 =
0.05, 𝜀 = 0.01), We choose 𝑟 = 5. Obtained results are given in table 2. 

 

Table 2. Simulated levels of significance for𝑌𝑛
2(𝜃)test for Unit Modified Burr-III distribution and  their 

corresponding critical values(𝜀 = 0.01,0.05,0.10). 

𝑁 = 10,000 𝑛₁ = 30 𝑛₂ = 50 𝑛₃ = 150 𝑛₄ = 350 𝑛₅ = 500 
𝜀 = 1% 0.0083 0.0087 0.0092 0.0098 0.0105 
𝜀 = 5% 0.0388 0.0398 0.0402 0.0453 0.0499 

𝜀 = 10% 0.0856 0.0891 0.0950 0.0989 0.1002 
 

The null hypothesis 𝐻₀ for which simulated samples are fitted by Unit Modified Burr-III distribution is 
widely validated for the different levels of significance. Therefore, the test proposed in this work can be 
used in fitting this new model. 
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7 Applications 
 

7.1 Case of complete data 

Here, we considered two real datasets to illustrate the flexibility of the proposed distribution. The first 
data is related to the measures of petroleum rock. The data was presented by Cordeiro & dos Santos Brito 
(2012) and consist of 48 rock samples from a petroleum reservoir. According to the authors the data 
observations correspond to 12 core samples from petroleum reservoirs that were sampled by four cross-
sections and our focus is in the shape perimeter by squared (area). The second data set consider the total 
milk production in the first birth of 107 cows from the SINDI race (Cordeiro & dos Santos Brito, 2012). 
The summary measures for both data sets are presented in Table 1.  

Table3: Summary measures for both data sets.  
Measures Data I Data II 

Min.  0.09033 0.0168 
Median 0.19886 0.4741 
Mean 0.21811 0.4689 
Variance 0.00697 0.0369 
Max.  0.46413 0.8781 

The TTT plots and box plots are given in Figures 6 and 7, respectively.  

 
Figure 6: TTT plots for data set I and II. 
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Figure 7:  Boxplots for data set I and II. 

Table 4: Estimates of fitted probability models data set I and II 

Model Estimates 
Data I 

UMBIII(α,β,γ) 0.012251 (0.00773) 2.978202 (0.49652) 0.003526 (0.00253) 
UBIII(α,β) 0.008681 (0.00751)  86.27007 (75.6466) - 
Kw(α,β) 2.718627 (0.29347) 44.65225 (17.5699) - 
Beta(α,β) 5.941494 (1.18133) 21.20558 (4.34689)  - 

Data II 
UMBIII(α,β,γ) 1.453992 (0.54590) 2.901119 (0.48203) 3.390499 (2.06368) 
UBIII(α,β) 0.778232 (0.08888) 2.146778 (0.21063) - 
Kw(α,β) 2.194214 (0.22233) 3.434557 (0.58165) - 
Beta(α,β) 2.412477 (0.31449) 2.829738 (0.37443) - 

 

Table 5: log-likelihood, AIC, BIC, ADF, CVM, KS for data set I and II 

Model 𝑙 AIC BIC ADF CVM KS 
Data I 

UMBIII(α,β,γ) 58.4032 -110.806 -105.193 0.166041 0.025035 0.076755 
UBIII(α,β) 26.4270 -48.8540 -45.1116 9.217786 1.888226 0.340846 
Kw(α,β) 52.4915 -100.983 -97.2407 1.289244 0.205989 0.153311 
Beta(α,β) 55.6002 -107.200 -103.458 0.776733 0.129985 0.142721 

Data II 
UMBIII(α,β,γ) 29.3319 -52.6639 -44.6454 0.230279 0.032617 0.052212 
UBIII(α,β) 26.6057 -49.2113 -43.8657 0.951273 0.161876 0.077329 
Kw(α,β) 25.39467 -46.7894 -41.4437 1.003554 0.152338 0.076311 
Beta(α,β) 23.77723 -43.5545 -38.2088 1.385648 0.228342 0.091009 
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Figure 8:  Fitted probability models and empirical data for data set I. 

 
Figure 8:  Fitted probability models and empirical data for data set II. 

 

7.2 Case of censored data 

Consider data of times to infection of kidney dialysis Patients (Nahman et al. 1992; Klein & 
Moeschberger, 2006): 

Infection Times:  1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5 26.5  

Censored Observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 

12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5. 

We make a change of variable; we divide the data by 30, to get data between 0 and 1. We use the statistic 
test provided above to verify if these data  follow the Unit Modified Burr-III distribution, and at that end, 
maximum likelihood estimators are computed and the values are 
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𝜃 = (𝛼, 𝛽, 𝛾)𝑇 = (1.152 , 1.784, 2.0154)𝑇 . 

Then data are grouped into 𝑟 = 5 intervals 𝐼 𝑗. We give the necessary calculus in Table 6.  

Table 6.values of 𝑎𝑗, 𝑒𝑗, 𝑈𝑗, 𝐶̂1𝑗, 𝐶̂2𝑗, 𝐶̂3𝑗 

𝑎𝑗 0.174 0.262  0.425 0.731 0.924 
𝑈𝑗  10 8 11 8 6 
𝑒𝑗 5.4152 5.4152 5.4152 5.4152 5.4152 

𝐶̂1𝑗 0.936 0.0836 0.7362 1.035 0.9843 
𝐶̂2𝑗 −0.0236 0.01352 −0.9387 −1.2343 0.0214 
𝐶̂3𝑗 0.0186 −2.3462 0.0236 −0.9363 0.0415 

 

The statistic test value 𝑌𝑛
2 is equal to 

𝑌𝑛
2 = 𝑋² + 𝑄 = 4.624 + 2.936 = 7.560 

    This value 𝑌𝑛
2 =  7.560 is less than the critical chi-square value 𝜒5

2= 11.0705 (for significance level ε = 
0.05), so we can say that the proposed model Unit Modified Burr-IIIfit these data. 

8. Conclusion 

In this work, we proposed a unit distribution based on the MBIII distribution called UMBIII distribution 
and derived its mathematical properties. For this flexible model, we presented many important 
mathematical properties that allow us the application in many problems.  Since the parameters are 
unknown, we derived different classical inferential procedures for the proposed distribution. From a 
simulation study, we observed that the MPS estimator returned best estimates when compared with other 
estimation methods. The MPS has important properties such as invariant under one-to-one 
transformation, asymptotic efficiency, and the consistency of the MPS holds under more general 
conditions than for MLEs. Additionally, we proposed a modified Chi-square goodness of fit test to verify 
the adequacy of the data. The tests are provided for the right-censored data, which occurs in many real 
problems related to survival analysis, and for complete data. We have shown the usefulness of the 
proposeddistribution in two real applications. Further applications of the proposed model to describe 
business data mining (Olson et al., 2007; Shi, 2014; Shi et al., 2011) are under investigation. 
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