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Resumo

Neste artigo estudamos a existéncia de solugdes quase periédicas e assintoti-
camente quase peritdicas para uma classe de equagdes de evolucio modeladas na
forma

S0 +9,20) = As() + F(t, Da(),
.’E(O) = Iy,

sendo A o gerador infinitesimal de um semigrupo analitico exponencialmente estével
definido sobre um espago de Banach X; B : D(B) C X — X um operador fechado
e f(-),9(-) fungdes apropriadas.



Asymptotically almost periodic and Almost Periodic
Solutions for a class of Evolution Equation

Eduardo Hernandez M, José P. C. dos Santos & Mauricio L. Pelicer

AMS-Subject Classification: Primary 34C27, 47D06.

Keywords: Almost periodic solutions, abstract evolution equations, semigroup of linear
operators.

Abstract

In this paper we study the existence of asymptotically almost periodic and almost
periodic solutions for a class of partial evolution equation described in the form

d . P

E(m(t) +g(t,z(t)) = Az(t) + f(t, Bz(t)), where A is the infinitesimal generator of
an analytic semigroup on a Banach space X, B is a closed linear operator and f,g
are appropriate functions.

1 Introduction

The existence of almost periodic solutions for abstract evolution equation defined on
abstract Banach spaces has been studied in different works, see for instance [2, 9, 10, 11,
12]. By using the semigroup theory and the contraction mapping principle, Zaidman stud-
ied in [10] the existence of almost periodic solutions for the integral equation associated
to the abstract partial differential equation

#(t) = Az(t) + f(t (1)), (1)

where A is the infinitesimal generator of a Cp-semigroup of bounded linear operators on
a Banach space. Recently, Bahaj and Sidki have studied in [2] the existence of almost
periodic solution for (1).

The purpose of this paper is to discuss the existence of asymptotically almost periodic
and almost periodic solutions for a class of partial evolution equations modelled in the
form

%(z(t) +9(t,z(t)) = Az(t) + f(t, Bz(t)), (2)
z(to) = Yo, (3)

where A is the infinitesimal generator of an analytic semigroup of linear operators defined
on a Banach space X, B : D(B) C X — X is a special type of closed operator and
fyg: 1 x X — X are appropriates functions.
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We remark that the technical framework used in this work allow us, for instance, to
study the partial differential equation

2u .
%(u(t,f)—kg(t,u(t,f))) = ia%ﬂf(t’a étf)))'

In fact, it’s well known, see [7], that for a class of operators A, there is a bounded linear

operator L : X — X such that —8% = (—A)% o L. Additionally, we mention that by using
the techniques used in this paper, it’s possible to establish the existence of asymptotically
almost periodic solutions for (2)-(3) without making additional regularity assumptions on
the initial data. We refer to Bridges [1] and Rankin [7] for complementary remarks about
this matter.

The results in this work are generalizations of the results in [2, 10] and our ideas and
techniques can be used in the study of the existence of asymptotically almost periodic and
almost periodic solutions of partial neutral functional differential equations and partial
differential equations of Sobolev type, see Hernndez [5] for details. In general, our results
are proved by using the semigroup theory of bounded linear operators, the theory of
fractional power of closed operators and the contraction mapping principle.

This paper has four sections. In section 3 we study the existence of asymptotically
almost periodic and almost periodic solutions for the integral equation associated to 5
and in section 4 we establish conditions under which these “ mild ” solutions are classical
solutions. In section 5 an example is considered.

2 Preliminaries

In this section we mention a few results and notations needed to establish our results. In
this paper, (X, || -||) is a Banach space and A : D(A) C X — X is the infinitesimal gen-
erator of a uniformly exponentially stable analytic semigroup of linear operators (7());>q
on X such that 0 € p(A). Throughout this work, M,J are positive constants such that
| T(t) ||< Me=° for every ¢t > 0. Under these conditions it is possible to define the
fractional power (—A)%, 0 < o <1, as a closed linear operator on its domain D((—A)%).
Furthermore, D((—A)®) is dense in X and the expression || z [[o=|| (—A)%z || defines a
norm in D((—A)*). If X, is the space D((—A)%) endowed with the norm || - ||, then the
following properties hold, see [6].

Lemma 1 Let 0 < v <9 < 1. Then Xy 1s a Banach space and Xy — X,. Moreover,
the function t — (—A)’T(t) 1s continuous in the uniform operator topology on (0, c0)
and there exist constants Cy, Cy such that

0196—&

o ond [[(T(@) = D(=A4)7"|| < Gyt

I (=A)"T() [I<

for every t > 0.

Let (Z,| - ||z) and (W, || - ||w) be abstract Banach spaces. In this work, we indicate by
L (Z : W) the Banach space of bounded linear operator of Z into W and we abbreviate to
L(Z) whenever Z = W. The notation C (I : Z) represents the space of continuous function
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from I into Z endowed with the uniform convergence topology. As usual, C,([0, c0) : Z)
is the space of bounded continuous function from [0, co) into Z endowed with the uniform
convergence topology and Cy([0,00) : Z) is the subspace of C([0,00) : Z) formed by the
functions which vanish at infinity. Along this work, B,(z : Z), € Z, will denote the
closed ball with center at z and radius 7 > 0 in Z. For a bounded and continuous function
£:(a,b) = Z and t € (a,b), we will employ the notation || £ ||,z for

1€ llarz = sup{ll &(s) llz: s € (a, 1]}, (4)

and we will write simply || € ||;,z when non confusion arise.
We remark that a function f : [a,b] — Z is o-Holder continuous, 0 < o < 1, if there
is a constant k£ > 0 such that

[ f(s) = fO ISkt =5 st€lab]

We represent by C([a, b]; Z) the space formed by the o-Holder continuous function from
[a,0] into Z endowed with the uniform convergence topology. The notation C((a, b]; Z)
stands for the space of continuous function f : [a,b] — X such that f € C7([6,b]; Z) for

every § > a.
Next we make some remarks concerning of almost periodic and asymptotically almost

periodic functions.

Definition 1 A continuous function f : IR — Z is called almost periodic if for every
€ > 0 there exists a relatively dense subset of IR, denoted by H(e, f, Z), such that

1fE+&) = F)lz <e
for every t € IR and every £ € H(e, f, Z).

Definition 2 A continuous function f : [0,00) — Z 1is the called asymptotically almost
periodic if there exists an almost periodic function g(-) : IR = Z and w(-) € Cy([0, 00) : 2Z)
such that f(t) = g(t) + w(t) for every t > 0.

In this paper, AP(Z) and AAP(Z) are the spaces
AP(Z) = {u€Cy(IR: Z): wis almost periodic },
AAP(Z) = {u€ Cy([0,00): Z) : uis asymptotically almost periodic },

provided with the norm of the uniform convergence. It’ s well known that AP(Z) and
AAP(Z) are Banach spaces, see [13].

Lemma 2 ( Characterization of almost periodic function ) 4 function f € C,(IR. :
Z) 1s almost periodic if and only if the set of translations {H. f : 7 € IR}, where H, f(0) =
f(r +8), is relatively compact in C,(IR : Z).

Lemma 3 [13, Theorem 5] ( Characterization of asymptotically almost periodic
function) Let F([0,00) : Z) be the subspace of Cy([0,00) : Z) formed by the functions
f() which satisfy the following property: for every e > 0 there exists L(e, f, Z) > 0 and a
relatively dense subset of [0,00), denoted by T (¢, f, Z), such that

1f(E+&) = FBllz <e
for every t > L(e, f, Z) and every € € T (¢, f, Z). Then, F([0,00): Z) = AAP(Z).
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The next definitions and properties are essential for establishing our results.
Definition 3 Let @ C W be a open set and F': IR x Q — Z be a continuous function.

1. F is called pointwise almost periodic ( pointwise a.p.), if F(-,z) € AP(Z) for every
z € Q.

2. F s called uniformly almost periodic (u.a.p. ), if for every € > 0 and every compact
K C € there emists a relatively dense subset of IR, denoted by H(e, F, K, Z), such
that ‘

IFE+&y) = Fty)llz <e

for every (t,€,y) e R x H(e, F K, Z) x K.
Definition 4 Let Q C W be a open set and F' : [0,00) X Q — Z be a continuous function.

1. F s called pointwise asymptotically almost periodic ( pointwise a.a.p.), if F(-,z) €
AAP(Z) for every x € Q.

2. F is called uniformly asymptotically almost periodic (u.a.a.p. ), if for every € > 0
and every compact K C Q there exists a relatively dense subset of [0,00), denoted
by T(e, F,K,Z), and L(e, F, K, Z) > 0 such that

IFE+&y) = Ftyllz <
for every t > L(e, F, K, Z) and every (§,y) € T(F,e, K,Z) x K.
For details concerning the next two lemmas, see [8, Theorem 1.2.7] and [10].

Lemma 4 Let 2 C W be a open set and F' : IR x 0 — Z be a continuous function.
Then the following properties hold.

1. If F is pointwise a.p. and satisfies a local Lipschitz condition at x € Q, uniformly
at t, then F is u.a.p.

2. If F is u.a.p. andy € AP(W) is such that {y(t) : t € IR}W C Q, then F(t,y(t)) €
AP(Z).

Lemma 5 Let Q C W be a open set and F' : [0,00) X Q — Z be a continuous function.
Then the following properties hold.

1. If F is pointwise a.a.p. and satisfies a local Lipschitz condition at z € Q, uniformly
at t, then F' s u.a.a.p.

2. If F is w.a.a.p. andy € AAP(W) is such that {y(t) : t € [0,00)}W C Q, then
F(t,y(t)) € AAP(Z).

Throughout this paper, 0 < a, < 1 are fixed numbers and (Y, || - ||y) is a Banach
space such that X, — Y < X for every n € (0, 1). To obtain our results we will use the
following technical conditions.



H; The function s — T(s)y € C([0,00);Y) for every y € Y and there are M > 0,
> 0 such that || T(s) |lew< Me™s for every s > 0. Moreover, the functions
s = (—A)'"PT(s), s = (—A)*T(s) defined from (0, c0) into £(X,Y) are strongly
measurable and there are non-decreasing functions Hg, H, and numbers w; < 0,
i = 1,2, such that e*'*Hg(s) € L'([0,00)), e“>*H,(s) € L'([0, c0)) and

| (—A)"PT(s) llecxor)
| (=A)*T(s) llcex v

< e Hg(s), s >0,

< @2 H,(s), s> 0.

H, The function g(-) is Xg-valued, (—A)?g : IRx X — Y is continuous, (—A)?g(s,0) =
0 for every s > 0 and there is a continuous function L, : [0,00) — (0, 00) such that
Ly(0) = 0 and

1(=A)g(tr,91) = (A g2, 1)l < Lo(r)(Itr = ta| + [ly1 — welly),
for every (t;,y;) € IR x B,(0,Y).

Hjz The map B : D(B) C X — X is a closed linear operator, D((—A)®) C D(B) and
there are continuous functions f : IR XY — X, L : [0,00) — [0,00) such that
L(0) =0, f(5,0) = 0 for every s > 0, f(IR x X,) C X, (—A)*f(t,z) = f(t, Bz)
for every (t,z) € IR x X, and

17t 1) = Flt, )l < Li(r)(L = ta] + [l = wally),
when (¢;,v;) € IR x B,(0,Y).

Remark 1 For ezamples of semigroups of linear operators and functions verifying the
previous assumption, see Bridges [1], Hagen & Turi [4] and Rankin [7].

By considering Hernndez [5] and Rankin [7] we introduce the next concepts.

Definition 5 A function u € C([to,r) : Y') is a Y-mild solution of (2)-(3) if u(to) = yo;

the functions s — AT (t—s)g(s,u(s)), s = (—A)*T'(t—s)f(s,u(s)) belong to L*([to,t] : Y)
for every to <t <r and

u(®) = Tl to)un + 9lto,w)) ~ g(t,u(t) = [ AT(t = 9)g(s,u(s))ds
+ [T = ) f(s,uls))ds,  t€[to,r].

to
Definition 6 A function u € C([to,7) : X) is a mild solution of (2)-(3) if u(te) = yo;
u € C((to,r) : Xa); the function s — AT(t — s)g(s,u(s)) belongs to L([to,t] : X) for
every t € [to,r) and

u(t) = T(t—to)(yo+ g(to, v0)) — 9(t, u(t)) — tAT(t — 5)g(s, u(s))ds

+ tT(t — 8)f(s,Bu(s))ds, tE€ ty,T).
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The next definition has been introduced in Hernndez [5].

Definition 7 A function u € C([to,7] : X) is an S-classical (Semi-classical) solution of
(2)-(3) if ulte) = yo, Z(u(t) + g(t,u(t)) is continuous on (to,r), u(t) € D(A) for all
t € (to, 7] and u(-) satisfies (2)-(3) on (to, 7).

In relation to asymptotically almost periodic and almost periodic solutions we intro-
duce the following definitions.

Definition 8 A function u € AP(Y) is an almost periodic Y-mild solution of (2)-(3)

if the functions s — AT(t — s)g(s,u(s)) and s — (—=A)*T(t — s)f(s,u(s)) belong to
L'((—=00,t] : Y) for every t € IR and

¢ t .
u(t) = —g(t,u(®) = [ AT(t=s)g(s,uls))ds+ [ (~A)°T(t - ) (s, u(s))ds,
for every t € IR.
Definition 9 A function v € AP(X) is an almost periodic mild solution of (2)-(8) if

ue€ C(IR: X,), the function s — AT (t —s)g(s, u(s)) belongs to L'((—oo, t] : X) for every
te IR and

ult) = —g(t, u(t)) — /_; AT(t—s)g(s,u(s))ds-i—/_:o T(t — s)f(s, Bu(s))ds, t € IR.

Definition 10 A function u € AP(X) is a S-classical solution of (2)-(3) on IR, if u is a
S-classical solution of (2)-(3) on every interval [to, to + o] C IR, with ty € IR and o > 0.

Definition 11 A function u € AAP(Y) is an asymptotically almost periodic Y-mild

solution of (2)-(3) if u(0) = yo, the functions s — AT (t — s)g(s,u(s)), s = (—A)*T(t —
s) f(s,u(s)) belong to L*((0,t] : Y) for every t € [0,00) and

u(t) = T(E) o+ 9l w)) — ot,u(0) = [ AT(t = s)g(s,u(s))ds
+ /Ot(—A)aT(t —5)f(s,u(s))ds, t € [0,00).
Definition 12 A function u € AAP(X) is a mild solution of (2)-(8) if u(0) = yo, u €

C((0,00) : Xa), the function s — AT(t — s)g(s,u(s)) belongs to L'([0,t] : X) for every
t € [0,00) and

u)) = T(O0o -+ olto, ) — o(t,u(8) ~ [ AT(  S)g(s,u(s))ds
+ /OtT(t — 5)f(s, Bu(s))ds, t €10,00).

Definition 13 A function u € AAP(X) is a S-classical solution of (2)-(3) if u is a
S-classical solution of (2)-(3) on [0,7] for every r > 0.



3 Existence results of Y-mild solutions

In this section we establish the existence of asymptotically almost periodic and almost
periodic Y-mild solutions for (2)-(3). First, we need the next result.

Proposition 1 Let pn € (0,1), v(-) € AAP(X,) and assume that there are w < 0 and a
non-increasing function H,(-) so that e** H,(s) € L'([0,00)) and || (—A)'#T(¢) || z(x.v)<
e“'H,(t) for every t > 0. If u(-) is the function defined by

ut) = | CAT(t — s)o(s)ds, t>0, (5)

then u(-) € AAP(Y).

Proof: From Lemma 3, it’s sufficient to prove that u € F(IR" : Y). Let ¢ > 0 given and
T(e,v,Xy), L = L(e,v, X,) be as in Lemma 3. If t > L(e,v, X)) + 1 and & € T (¢, v, X,,),
then

Ju(t +&) —u(®)ly
¢

VAN

(=AY T (t + € — s)(—A)*v(s)lvds

[ AT~ 8) (~AV2(s +) - (=AV2(6) lvds
= I(t, &) + L(t,€).

Now, we estimate each term I;(¢, &) separately. For the first term we get

£
L6, < (=4 vlanren) [ &I, (t+€ - s)ds

€
< e(=A)vlanrce [ M, (€ - )ds,
and hence, there exits d, > 0 independent of £ such that
I,(t, &) < cre”, (6)

for every t > L(e,v, X,,) + 1.
On the other hand, for the second term we see that

B8 <[4~ 9 (-AFals+6) — (~APu(s) s

[ AT = 5) (~ A (s +€) — v(s))llyds

L+1

L+1
20| (=AY ollaspeED [ e EHIH, (141 s)ds

<
t
e [N (=A) T = ) ooy ds
L+1
< 2”(_A)MUHAAP(X)ew(t_L_l)/O ewsHy(s)ds—%e/o e“*H,(s)ds.



Thus, there exist positive constants dy, d3 independents of ¢ > L(e,v, X,) + 1 and € €
T (e,v, X,) such that

Ig(t, g) S dze“’t + 6d3. (7)
From the inequalities (6)-(7) we have
lu(t + &) — u(t)

where dy, d5 are positive constants independent of t > L(e,v, X,) +1 and & € T (e, v, X,).
Thus, for an appropriate L(e, u) > L(zd ,v, X,) + 1, it follows

Ju(t +&) —u(t)

for every t > L(e,u) and all § € T(55-,v, X,,), which shows that u € F(IR* : V) and
completes the proof of this result. m
Proceeding as in the previous proof we can prove the next result.

Corollary 1 Let pp € (0,1) and v € AAP(X,). If u(-) is the function defined by (5),
then u(-) € AAP(X).

In the next result we establish the existence of asymptotically almost periodic Y-mild
solution of (2)-(3).

Theorem 1 Let Hy,Hy, H3 be verified. Then, there exists ¢ > 0 such that for every
Yo € B(0,Y") there exits an Y-mild solution u(:,yo) € C([0,00) : Y) of (2)-(3). Moreover,
if the functions f, (—A)Pg:[0,00) xY — X are pointwise asymptotically almost periodic,
then u(-,y0) € AAP(Y).

Proof: Let J : [0,00) — IR be the function defined by
30) = Lyfe) (I <A Negery + [ % Hyls)ds) + Ly(r) [~ 5 (s)as
and let » > 0, v € (0,1) be such that
M (147 (A lleer Lo(r) yr + J(r)r < 7. (8)

We affirm that the assertion holds for € = yr. To prove this statement we fix yo € B.(0,Y)
and define the operator I' : B, (0, Cy([0,00) : Y)) — C([0,00) : Y) by

t
y < dge”” + eds,

y <€

Ta(t) = T()(yo+9(0,50)) — g(t, x(t +/ A)PT(t — 5)(—A)Pg(s, z(s))ds
+/ AT (t — s)f(s, z(s))ds

From the assumptions on the functions s — (—A)*T(s) and s — (—A)'7PT(s), the
estimates

(=AY 2T () |y Ly (r)r
e“1*Hpy(s)Ly(r)r
|
)

I(=A)'PT(s)(=A) g (s, 2(s))lly

[(=A)*T ()|l ccxvy Ly (r)r
e’?*Hy(s)L ( T,

1(=A)°T(s)f(s,5(s)ly

VAN VAN VAR VAN



and the Bochner Theorem, we infer that I'z(¢) is well defined and that I'z € C([0,00);Y).
Moreover, for t > 0 we get

P20l
< M(lolly + Lo(r) Il (=4)* legry lwolly) + Lo(r) 1| (=4) flzgxery lla(®)ly
[ I ATT() Nl Loryrds + [ 1) (~A)°T(s) gy Lirirds
< MO+ Ly(r) | (=4 llewear) 1) + J0)r,

which from (8) implies that I'(B,(0, C4([0, 00) : Y))) C B,(0, Cy([0, 0) : Y)).
Next, we prove that I" is a contraction on B, (0, Cy([0,00) : Y)). For functions u,v €
B,.(0,Cy([0,00) : Y)) we get

[Tu(@) = To(@)lly < Ly(r) |
+Ly(r)

—~

—A) llexry llult) = v@lly

I (=A)PT(t = 5) llecximy lluls) = v(s)|lvds

S

a4

L) [ (AT = 5) lprary uls) — v(s) s
Ly(r) (Il (-4)2 llevxory + [ e Ha(s)ds) [l — vl

+ (L) [ e Has)ds) lu—vllo.y

< J(r)]|u—=v]losy,

VAN
o

which proves that I' is a contraction on B,(0,C([0,00) : Y)) and that I has a unique
fixed point u(-, y0) € B, (0, Cy([0,00) : Y)). Clearly, u(-, o) is a Y-mild solution of (2)-(3).
If (—A)#g and f are pointwise asymptotically almost periodic, it follows from Lemma
5 and Proposition 1 that each solution u(:, ), yo € B¢(0,Y), is an asymptotically almost
periodic Y-mild solution of (2)-(3). The proof is now complete. m
In the next result we discuss the existence of almost periodic Y-mild solutions.

Theorem 2 If the assumptions Hy,Hy, Hs are satisfied and the functions (—A)P, f are
pointwise almost periodic, then there exits an almost periodic Y -mild solution of (2)-(2).

Proof: Let I': AP(Y) — AP(Y) be the map defined by

t

Fu(t) = —g(t, u(t)) — / AT (t - s)g(s,u(s))ds + /_;(—A)O‘T(t — 8)f(s,u(s))ds.

—0o0

The same arguments used in the proof of Theorem 1 proves that T'u(t) is well de-
fined and that T'u € Cy(IR;Y). In order to prove that I' is AP(Y)-valued, we fix
u € AP(Y) and € > 0. We know from Zaidman [13, pp. 30 ] and Lemma 4, that

z(t) = (F(t,u(?)), (—A)Pg(t, ut))) € AP(X x X). If £ € H(e, 2(+), X x X) we get

ITu(t + &) = Tu(@®)lly
< H=A7 Nlegenll (A gt + &, ult +€)) — (—A4)Pg(t, u(®))|

4 [ NPT 5) (AP gls + & uls + ) — (4P g(s, u(s)) Ivds

9



+ [ AT ) (75 + € uls + )~ Fs,u(s)) lyds
< €l (-4 )_ﬂ ||£(X;Y)+/000(7|(—A)1_ﬂT(5)H.c(x;Y)+H(—A)"T(S)|lz(x;v))d8]
< el (<A Hlepen + || (€ Hals) + ¢ Hy(s)) ds),

which shows that I'u € AP(Y'). Thus, I' is well defined and with values in AP(Y).

We affirm that there exists 7o > 0 small enough such that I' is a contraction from
B, (0, AP(Y)) into B,,(0,AP(Y)). Let r > 0 and u € B,(0,AP(Y)). If t € IR we see
that

Iru@lly < (=4 ool gt u@)]
Lo(r) [ (=AY PT(E = 5)llcqx o)y ds

i) [ NAY T = )l lfu(s) s

0
< H (_A)_B ”E(X;Y) Lg(r)r = Lg(r)r/_ ewlsHB(S)ds
0
+Lf~(7")7“/ e“** H,(s)ds,
and so that
ITullapy < 7J(r),
where
5 o 0
J(r) = Ly(r) <|] (—A) 7" |lzxiv -l—/-ooe 3 Hg(s)ds> + Lg(r) /_oo e“?*Hy(s)ds.

Since J(-) is continuous and J(0) = 0, we can fix o > 0 such that J(ry) < 1. Obviously,
I'(B,,(0,AP(Y))) C B,,(0,AP(Y)). Moreover, for u,v € B,,(0, AP(Y)) we get

ITu(t) — Tu(®)lly
< (-4 nm 1 1(=APg(t,u(®) — (~A)g(t, ()]

[ M= = 9)lleorn I(-4)0(s, u(s)) ~ (~APPg(s, v(s) ds

+ / ATt = 8) e 1F (s, u(s)) = Fs,0(5))llds

Ly(ro) Il (=A) ™ llecxvy lu = vllapy

Hllu = ollapry (Lolro) [ e Ha(s)ds + Lytro) [ e Ha(s)ds )

< J(ro) |l w = vllapey,

IN

which proves that I' is a contraction on B, (0, AP(Y)) and that there exists an almost
periodic Y-mild solution of (2)-(3). The proof is finished. m

10



4 Existence and regularity of mild solutions

In this section we establish conditions under which an Y-mild solution of (2)-(3) is a mild
solution. Then, we apply theses results to prove the existence of asymptotically almost
periodic and almost periodic solutions for (2)-(3).

In the next results, u(-) € C([0,b] : Y) is a Y-mild solution of 2- 3 on [0, 5] and the
next assumption is always verified.
Assumption (A,f,g); 0<a < B <1, || (—4)7F |
are constants 0 < 01,09 < 1 such that

I(=A)g(t,2) = (=A)Pa(s, )l < Lo(r) (jt = 5| + & — wlly),
17(t2) = Fs o)l < Li(r) (It = oI + |z = ylly),

for every t,s € IR and z,y € B,(0,Y).

x:v) L(|| w [Jop,y) < 1 and there

Remark 2 We observe that the solutions guaranteed by the Theorems 1 and 2 are such
that || (—A)™ ||lzxvy LU w lootpy) < 1 for every o € IR and all p > 0.

The next results are proved using the ideas in Rankin [7].

Proposition 2 Let condition (A, f,g)1 be satisfied and assume that there are positive
constants d, dy, dy; 0 < &1,& < 1 such that

) d . d
I(=A) T ()l exry € = and  [(=A)TT(5)||cxvy < sng

sé1
for s € (0,0] and p € [0,d]. Thenw € C?((0,b};Y) for 0 = min{d,1—c, 01,1 -£,1-&}.
Proof: Let t € (0,6) and 0 < h < 1 such that ¢t + h € (0,b]. Then

e + ) = u()ly
< (ATE) llepean |l (T() = DTE)(~A) (o +9(0,30)) |
APl 1= 4 gt + b ult + b)) — (=AY g(t,u(®)

+ [ A5 - 9) (TR — 1) (AP g, u(s))ds

+/t+ o ﬁT(t-l—h—S)HﬁxY (= ) g(s,u(s))|lds
+ [ N4V — 5) (T () = 1) (~4)#Fs, u(s)) s
+/t+h AT (t+ h = s) ||zixm)l] f(S u(s))l|ds

2 d2

MCLA || yo + 9(0,yo) ||

+H( Ay ﬂ||c xiry Lol llay) (A7 + [fu(t + h) — u(®)lly)
+ / ST = (=AY g, u(s)) s

dy b6

1 . 61
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+/Ot (t_d#”(ﬂh) — I)(=A) ™" f (s, u(s))|ds
dyh1=€

+Lf'(|| wlsy) || sy

1-&
262 .
& MO [ g0+ 9(0,30) |

HI(=A) P lleoem Lo (Il w lloy) (B + [[ult + ) = u(t)|ly)

ds

P ¢ ds - pe t ~
i h“/ L A S h“/ _Y L gn-e
e 0o (t—s)& i T 0 (t—s)é T,

IN

and then

lut+h) —u@lly < Ly(ll wlloy)I(=A)lleoemllult + £) — u(@)ly + dsh'~
+dgh® + dih* + dph' 6 4 dyh1=8,

where the constants czi, ©=1,2,...7, are independent of ¢, h and p € [0,d]. Since t,h, p
are arbitrary and || (—=A)™? |lzxvy L(| w |loy) < 1, the last inequality proves that
u(-) € C7((0,0;Y) for 0 = min{d,1 — o, 01,1 — &,1 — &}. The proof is finished.

Proposition 3 Let assumptions in Proposition 2 be satisfied. Then u(-) € C((0,b]; X.,)
for v = min{1l — «, £}.

Proof: To prove this result we introduce the decomposition u = 323, u; where

w(®) = T +9(0,u(0)) - gt u(®),
w(t) = [ (~A)PT(t - 9)(=A)g(s, u(s))ds,

us(t) = /Ot(—A)O‘T(t—s)f(s,u(s))ds.

It’s obvious that u; € C'((0,b]; X). On the other hand, from Proposition 2 we know that
u(-) € C7((0,0];Y) for 0 = min{d,1 — o, 01,1 — &,1 — &} which from the estimate

I(=A)*IT(t - 5) (g(s,u(s)) — g(t, u(t)) |

< N=A™PTE = s)lleoll(—A4) (s, uls)) = (=AY g(t, u(@)|

C“H-l—ﬁ o1
< m%(” U floy) (It = 5|7 + [Ju(s) — u(t)lly)

(t — s)7ti-F-o1 * (¢ — g)1+1-F-0’

IN

implies that the function
v(s) = (=A)™HT(t ~ 5) (9(s, uls)) = g(t, u(?)),

is integrable on [0,t), ¢t € [a, b], when v < min{f + 01, 5+ o}. In particular, for v = 8 we
find that

/Ot v(s)ds + (—A)Pg(t,u(t))

12



- /otv(S)ds +if—A) /Ot(—A)ﬁT(t = 5)g(t,u(t))ds + T(t)(=A) g(t, u(t))
= /t( APPFIT(t = 5) (g(s,u(s)) — g(t, u(t))) ds
n / AT (t — 8)g(t,u(t))ds + T(t)(— A)Pg(t, u(t)),

which shows that u,(-) € C([0,b]; X5) since (—A)? is a closed operator.

Proceeding as in the previous case, we can prove that us(-) € C([0, b]; X;_,).

From theses remarks we conclude that u(-) € C((0, b]; X,) for v = min{1 — o, 8}. The
proof is finished. m

Theorem 3 Assume that the hypotheses of Proposition 3 are verified. If < 1— «, then
u(-) s a mild solution of (2)-(2).

Proof: The assertion is consequence of Hz and Lemma 1. m
Next we establish conditions under which u(-) is a S-classical solution.
Proposition 4 Let assumption in Theorem 3 be satisfied and assume that
Ly(l w oI (=A)* Nl cixan (= A) " flew < 1.
Then u € C?((0,b] : Xo) for o = min{f — @, 01}.
Proof: Using the fact that u € C((0,6] : X,) and Lemma 1, for 0 < § < t < b and
h > 0 such that ¢ + h < b we find that

u(t + h) = u(t)]]a
< [ (=A)*T(R) = T (t)(vo + 9(0,%)) |
HI(=A) Pl (=A)P gt + b, ult + b)) — (~A)Pg(t, u(t))||

+ LA @) = DT - 5)(- 4V g(s, u(s)ds
+ [ AT+ = 94V (s, us))llds

+ | (A (T(R) = DT(t ~ 5)f(s,u(s))llds

VAN
T
R

[l %o +9(0,70) ||
(= APl Lol w lly) (87 + llult + h) = u(?)lv]
+ [ o™ || (A) Tt 5)(~ A)g(s, u(s)) s

t+h Ci- 5
[ e -4 s u(o) s

+ [ Okt | (= A)T (= 5)1 (5, u(s))ds

w7 e I e las

13



and hence

Jut + h) = u(t)]a
H=A)*leco Lo (Il w sy ) (= A) ooy lult + B) = u(t)||«
+dih® L dph? % d B,

where the constants d; are independent of ¢ > ¢ and h. This inequality completes the
proof of this Proposition since § > a.
The next result is consequence of Proposition 4, [6, Theorem 4.3.2] and [5, Lemma 2].

Theorem 4 Assume that the hypotheses of Proposition 4 are verified. If g € C(IR x X
X1) and B+ min{f — a,01} > 1, then u(:) is a S-classical solution of (2)-(3).

Remark 3 [t’s clear that the previous results of reqularity of Y-mild solutions are valid
Jor every Y -mild solution u € C([o,0 + p;Y),0 € IR, u > 0.

As consequence of the Theorems 3, 4 and Remarks 2 and 3, we obtain the following
existence result of asymptotically almost periodic and almost periodic solutions of (2)-(3).
The proof of the next result will be omitted.

Theorem 5 Let assumptions Hy, Ha, Hs and condition (A, f, g); be satisfied and assume
that « <1 -« and 4+ min{f — a, 01} > 1. Then the following properties are verified.

1. If the functions f,(—=A)Pg : [0,00) x Y — X are pointwise asymptotically almost
periodic, then there exists € > 0 such that for every yo € B(0,Y) there ezits an a-
symptotically almost periodic S-classical solution, u(-,yo), of the system (2)-(3) such
that u(0, o) = Yyo-

2. If the functions f,(—A)Pg : [0,00) X Y — X are pointwise almost periodic, then
there exits an almost periodic S-classical solution of the equation (2)-(2).

5 Example
In this section we illustrate some of our results. Consider the first order evolution equation
d g _ ut,§) / _
& (108 + [T a0l Eputtndn| = LG4 Pt ut.9), €€ I= (0,7
(9)
u(t,0) = u(t,7) =0, telR, (10)

where a(-) € Cp(IR,IR), a(0) = 0 and

'b(n, €)

B ,% = 1,2, are measurable, b(n,7) = b(n,0) = 0 for

(a) The functions b(n, §),
every € IR and

b( s
=l a(") |, m:m) max{// 88215 2dnd€)? 1 1=0,1,2} < 1; (11)

for every t € IR.
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(b) F: IR’ — IR is continuous and there is 4 € Cy(IR,IR*) such that ©(0) =0 and
| F(t,2) = F(ty) < p(t) [z -y |,

for every t € IR and every (z,y) € IR%.

Let X = L*([0,7]) and A : D(A) C X — X be the operator Az = 2" where
D(A) := {z(:) € L*([0,7]) : z"(-) € L*([0,7]), 2(0) = (=) = 0}.

It’s well known that A is the infinitesimal generator Co-semigroup (T'(t));>o on X. More-
over, the next Theorem is valid.

Theorem 6 Under the previous conditions, the following properties are verified.

2

1. A has discrete spectrum, the eigenvalues are —n?, n € IN, with corresponding

. 12 . .
eigenvectors zp(€) = (;) sin(ng) and the set {z, : n € IN} is an orthonormal
basis of X.

2. Foreveryz € X, T(t)x = 12, eVt < Tz, > 2. Moreover, the semigroup

(T'(t))e0 is compact, analytic, self-adjoint and || T(t) ||< et for every t > 0.
8 For feX, (mA)f =2 n"2 < f 2,> 2z, and the operator (—A)? is given by
(AP F=T"2 wt< fio, > 5 o0

D((—A)e):{fEX:in29<f,zn>anX}.

=1

—t
Moreover, |(—A)~2|| =1 and || (—A)2T(t) ||< 37\_/%_0 for every t > 0.

4. Let 1 < p,g < oo and @ € (0,1). Then T(t) € L(LP(I) : LYL)) for every t > 0
and there exists Dy > 0 such that || (—=A)*T(t) ||lzwey Laq)< Qtfi—;t for every t > 0,
11

—n(l_1
where z = m(p q).

5. There exits a bounded linear operator C': X — X such that C(W'(I)) € Wy2(I)

and a% = (=A)2C on W(I).
Proof: The assertions (1)-(4) can be deduced from [3, Theorem 2.3.5] and [7, Theorem
4]. The property (5) is proved by using the steps in the proof of [1, Lemma 2.4]. The

proof is finished.
By defining the functions f(:),¢(:) : IR x X — X

9(t,2)€) = a(t) [ b(n, Oa(nan,
f(t,ﬂ?)(f) = F(t,aj(f)),
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the system (9)-(10) can be modelled as the abstract differential equation (2)-(3). More-
over, f,g are continuous function, g is D(A)-valued, Ag : IR x X — X is continuous
and

1
(=4 gt ) ey < al®) [ Ly, 0= 0,51,
1ft2) = fEy Il < w®) lz-yl,
for every ¢t € IR and every z,y € X.

Obviously, our results can be applied in the case Y = X. In this particular case we ge
the next results which is consequence of the Theorem 5.

Theorem 7 Under the previous conditions, the next properties are verified.

1. Assume that f : [0,00) x X — X is pointwise a.a.p. and that a(-) is asymptotically
almost periodic. Then there exists € > 0 such that for every y, € B.(0,X) there
exists an asymptotically almost periodic S-classical solution, u(-,vo), of (2)-(3) such
that w(0,y0)) = yo.

2. If f :[0,00) x Y = X s pointwise almost periodic and a(-) is almost periodic, then
there exists an almost periodic classical solution of (2).

Remark 4 By using the results in this paper, in a forthcoming paper we will study the
existence of almost periodic solutions for the Navier-Stokes equation

u'(t,z) = Au(t) + (u(t) - V)u(t) + ¢'(t) (12)

where g € C(IR : V) and V = {u € H} : divu = 0}. ( See [1] for details about this
matter. )
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