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In industrial oil furnaces, unstable flames can lead to potentially dangerous conditions. For this reason,
elaborate control systems are used to monitor the various parameters of the process that could become
the source of such problems. A current trend in research is the one that seeks to apply artificial intelli-
gence techniques to efficiently identify a priory anomalous behavior of the flames, so as to help improving
the time response of the automatic control. In system dynamics theory, it is common sense that an accu-
rate modeling of the process under study directly affects the performance of the controlling apparatus.
Unfortunately, due to the complexity of the process, physical models of flame propagation are still not
as much faithful as they should to be used for control purposes. On the other hand, could the complex
dynamics of flame propagation be described in terms of an identified assumed model, one would come
up with a tool for the improvement of the control strategy. In this work, a new approach based on Oper-
ational Modal Analysis (OMA) tools is used to identify four degree-of-freedom second order state-space
models of oil flame dynamics in a prototype furnace. Grabbed images of a CCD camera, after being pro-
cessed through a computer vision method, provide sets of characteristic vectors which, then, serve as
input data to an identification OMA algorithm based on the Ibrahim Time Domain Method. Models of
unstable and stable flames are built and validated through spectral analysis of the reconstructed
time-domain characteristic vectors. The truthfulness of the validation scheme was then confirmed by a
quantitative modal assurance criterion modified to suit the current application. On the grounds of the
results obtained, it is possible to assert that the proposed approach for the description of flame dynamics
can likely predict the occurrence of unstable conditions, thus becoming another tool that might be used
in an automated control system.
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1. Introduction

The monitoring of oil-flame conditions in industrial petrochem-
ical plants is of capital importance in terms of economy, environ-
ment-friendly operation, and safety. Currently, a wide array of
sensors performs the task of measuring and informing the plant
staff who, ultimately, judges the necessity of intervening to alter
control parameters. This process has two drawbacks: firstly,
sensors like thermocouples, flow meters, opacity meters, pressure
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sensor or even air-fuel ratio gauges are normally expensive and
require frequent maintenance interventions; secondly, the judging
ability of distinct operators is not the same, which might lead to
below-standard functioning condition, including potentially dan-
gerous ones. The first drawback pointed above should be tackled
by replacing the specialized sensors by a frame-grabber and a set
of low-cost CCD video cameras properly inserted in the furnace;
those cameras can produce a continuous flow of flame images
exhibiting luminance patterns that are well correlated to the phys-
ical combustion variables. The second drawback can be handled
with computer vision routines able to identify normal or abnormal
combustion states through the analysis of the sequence of flame
images grabbed by the cameras. However, such an aim cannot be
successfully achieved unless the decision-making be supported
by reliable inferences on the image processed data. That is why
the computer vision based systems for combustion processes mon-
itoring usually apply a heterogeneous set of statistical and artificial
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intelligence techniques, especially multivariate statistics, artificial
neural networks and fuzzy logics.

Expert systems with these attributes are getting more and more
importance for the oil and gas industries in the last years
because of the potential impact to clean combustion. Some of the
most recent contributions to this new area are presented in the
sequence.

Taking into account that proper identification of coal chemical
composition is essential to apply an optimization policy for a coal
based combustion process, Zhou et al. (2014) implemented a com-
puter vision method that used flame images analysis to perform
the coal classification. In order to achieve such an aim, characteris-
tic vectors of grabbed and averaged RGB flame images related to
specific coal combustion processes were constructed using spatial
and temporal features of the intensity image signals as well as
their R and G/B channels. Then, a series of experiments concerning
combustion processes based on 4 different chemical compositions
of coal gave rise to a total of 384 feature vectors, from which 2/3
were used in the training of a support vector machine classification
algorithm. Further validation tests showed that the accuracy of the
implemented method surpassed 80% in all tested cases.

Goémez, Hernandez, Coello, Ronquillo, and Trejo (2013) pro-
posed an artificial intelligence based method to identify 4 states
of combustion processes - ‘background radiation’, ‘stable flame’,
‘flame with air excess’ and ‘flame with fuel excess’. Using an optical
sensor scanning system to record time series for the average levels
of luminance of the furnace concerning the four states mentioned
above, the authors construct feature vectors encompassing
geometrical and statistical parameters extracted from these signals
and their respective power spectra. Those feature vectors were
further used to implement a supervised learning process based
on a 2-layer MLP neural network whose internal weights were
adjusted by a genetic algorithm aiming at improving its generaliza-
tion capability.

Applying a cascade of statistical and image processing methods,
Lin and Jorgensen (2011) synthesized a software based sensor to
estimate the NOx emission rate of cement kiln processes. The
methodology adopted by those authors consisted in constructing
a partial least squares regression model that correlates the charac-
teristic vectors extracted from the two most relevant eigen-images
of each RGB flame image with the respective outputs of a set of
sensors measuring chemical and physical variables of the process.

Sun, Lu, Zhou, and Yan (2011) carried out laboratorial experi-
ments aiming at identifying parameters that could be related to
instability in gaseous flames. After grabbing average images of
flames due to combustion processes with different fuel/air ratios,
encompassing fuel-lean and fuel-rich conditions, the authors
examined the power spectra densities (PSDs) of both the visible
and the infrared images. The PSD average frequencies versus
fuel/air ratio graphs, from under stoichiometric (unstable flames)
to upper stoichiometric (stable flames) conditions, exhibit an easily
identifiable maximum (the stoichiometric condition) that can be
used as a threshold to identify unstable flames.

In the article of Chen, Chang, and Cheng (2013) a new method of
controlling the oxygen fuel rate as well its variability is proposed in
order to improve the performance of industrial combustion pro-
cesses. This method uses PCA compacted sequential sets of RGB
flame images to generate measurements representing their main
visual characteristics. According to the authors, almost 99% of the
variance of the images is encompassed by the two most significant
eigen-images of the set, two variables - the weights of those eigen-
images — are used as observable variables on a two-loop control
system developed to maintain a combustion furnace operating at
an optimal and stable condition.

A key feature that must be monitored in order to maintain opti-
mal burning conditions of oil flames is the vapor to fuel rate (VFR),

which directly affects fuel nebulization and flame quality. Fleury,
Trigo, and Martins (2013) proposed a method based on computer
vision and Kalman filtering to monitor nebulization quality of oil
flames in a prototype refinery furnace. In short, the authors show
that CCD-grabbed images of the flames at a priori known nebuliza-
tion quality can be used to devise characteristic vectors that gener-
ate a set of fuzzy classification rules. Then, the components of a
characteristic vector obtained from grabbed images of unknown
a priori nebulization quality are assumed to be state-variables of
a random-walk state-space model which, through a Kalman filter,
effectively estimates the state and the nebulization quality when
there is a statistically-proven convergence to a state that matches
one of the classification rules. The researchers also state that the
method could be improved once, instead of a random-walk model
for the evolution of the state, a more accurate description of the
system dynamics was employed. The difficulty that arises concerns
the fact that phenomenological models available in the literature
are poorly capable of encompassing both micro and macro scales
occurring in flame propagation. As a consequence, a description
based on either one would not cover the wide range of phenomena
in between limiting conditions, thus resulting in a poor model
under the estimation perspective.

Wang and Ren (2014) used a combined gray-level co-occur-
rence matrix of flame images and generalized learning vector neu-
ral network to estimate rotary kiln combustion characteristics.
Texture features of images of flames with ideal working conditions
comprised a database employed to train the neural network which,
further on, was able to identify complete or incomplete combus-
tion on test images.

In order to distinguish the combustion and ignition characteris-
tics of natural gas components, and the effects of mixture blending,
Kamada, Nakamura, Tesuka, Hasegawa, and Maruta (2014) studied
the weak flame propagation in a reactor with controlled tempera-
ture conditions. Flame dynamics were numerically simulated and
experimentally validated against the research octane numbers of
each component fuel. Images of the weak flame propagation were
grabbed at the experimental setup and, along with wall tempera-
ture measurements, provided the necessary data to validate the
procedure. It must be pointed out that this important contribution
does not employ any kind of automated expert system in the
classification process; thus, the reference is justified under the
perspective of using images to obtain characteristics of complex
systems. Image and expert systems are also present in the work
by Tomasoni, Saracoglu, and Paniagua (2014), who devised a flow
pattern recognition algorithm in high-speed imaging to detect
vortex-shedding and shock waves in ultrasonic air flow.

Another important issue for the adequate operation of refinery
furnaces is the early detection of flame instability. This phenomenon
may cause the extinction of the flame, resulting in an undesirable
dangerous condition. Models for combustion instability in the liter-
ature (Bouziani, Landau, Bitmead, & Voda-Besancon, 2005) based on
coupled van der Pol equations state that unstable conditions can be
detected under certain controlled situations; however, perturba-
tions may induce false instability diagnosis near theoretically stable
operation setups. Therefore, a description of the dynamics of the sys-
tem based purely on data from observations of flames under actual
operating conditions could possibly enhance the predictability of Al
algorithms in general. In dynamics, a technique that suits this pur-
pose is Operational Modal Analysis (OMA) in the time domain.

Overall, OMA seeks to identify parameters of an assumed model
of the system dynamics using information from measurements of
the system response to known particular inputs, namely, either
step or impulse excitations, in real operating environment. The
so called Ibrahim Time-Domain Method (ITDM), one of the tools
available to perform the task, is widely employed in the identifica-
tion of frequencies and modes of vibration in structures like stayed
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bridges (Liu et al, 2012; Wu, Chen, & Liau, 2012), offshore
platforms (Wang, Zhang, & Feng, 2010), and components of
rotating mechanisms (Grange, Clair, Baillet, & Fogli, 2009), just to
cite some of the most recent publications.

An unconventional application of the ITDM was presented by
Moura, Aya, Fleury, Amato, and Lima (2010). Those researchers
employed the technique to identify the discrete state transition
matrix in electrical impedance tomography, one of the instances
for which analytical models do not suffice to describe the evolution
of the state, the resistivity distribution in a domain of interest, with
the required accuracy. This suggests the power of the ITDM, in the
sense of surpassing its original scope, once the modal decomposi-
tion approach enables avoiding complex (and, sometimes, quite
inaccurate) modeling, even of highly non-linear systems.

Considering the previous discussion and the importance of
combustion condition monitoring, this paper proposes an exten-
sion of the work by the same authors (Fleury et al., 2013) which
addresses the problem of detecting evidence of the beginning of
flame unstable behavior (in order to avoid such condition) in the
time domain. The ITDM framework is tailored to infer the state
transition matrix from a four-degree of freedom second order
model of this phenomenon in a prototype furnace. Grabbed images
from a CCD camera are mapped into a state vector through com-
puter vision methods. This new approach, once implemented in
conjunction with Al algorithms, intends to improve the accuracy
of the decision process.

In the next sections, data collection and processing, as well as a
brief description of the ITDM, with emphasis on the current
approach are presented.

2. Methods

The experimental set up that simulates a small-scale refinery
furnace and the image data acquisition equipment are the same
as mentioned by Fleury et al. (2013), reason why, in this paper,
only a concise description is provided. In Fig. 1, the lower part of
the vertical 4-meter high prototype furnace is depicted, with the
burner schematics shown in detail. The CCD camera for image
grabbing is placed in a shielded and cooled compartment in the
central cross-section of the furnace cylindrical wall. Burner inlets
of primary and dry air, steam and oil enable the control of combus-
tion parameters.

In order to correlate the visual appearance of the flames with
the stability of the combustion process, three series of operational
tests were carried out. Typical stability states, ranked according to
a specialist, were obtained through proper regulation of the
primary/secondary air rate (PSAR) at the burner nozzle, as depicted
in the detail of Fig. 1. Those series, encompassing an amount of 280
images, will be nominated hereafter as ‘stable flames (PSAR = 1.0)’,

‘unsteady flames (PSAR = 1.86)’ and ‘unstable flames (PSAR = 4.0)'.
As illustrated by Fig. 2(a)-(c), the visual appearance of those image
flames are clearly distinct, since the spatial distribution and
arrangement of their pixel gray levels give rise to different types
of texture.

The previous assertion was taken into account to construct a
discriminant characteristic vector »; based on 13 properties
directly related to the texture and spatial distribution of the pixel
gray levels of the flame image I;. The components of ; correspond
to the following image properties:

e 7[1] is the average pixel gray level;

e 7[2] is the image entropy: v;[2] = —ZjN:]pjlogz(pj), where p; is
the frequency occurrence of gray level j;

e 73] is the average local maximum pixel gray level difference
observed through a complete image scanning by a 3 x 3
window;

e [4] is the average local maximum mean standard deviation
observed through a complete image scanning by a 3 x 3
window;

e 74[5] to y[13] are texture characteristics based on the co-
occurrence matrix (Gonzalez & Woods, 1992) of the image I;
relative to two horizontally neighbor pixels whose gray levels
are separated by either 1, 3 or 5 units. This way, #[5], 4[6],
and 7] are the correlation indexes of the number of
occurrences of sequences of two pixels i and j whose gray levels
are separated by 1, 3 and 5 units, respectively. Those indexes
are calculated according to

) (i~ ) — p)p(.Jj) )
7 0i0;

where p(i, j) is the frequency occurrence of two horizontally pixels
exhibiting gray levels i and j, y; and y; are the average number of
occurrences of gray level pixels i and j, and o; o; are their corre-
sponding mean standard deviation. Similarly, #[8], #4[9], and
y[10] are the contrast values of the number of occurrences of
sequences of two pixels i and j whose gray levels are separated by
1, 3 and 5 units, respectively. Those indexes are calculated
according to

> li—j*p(i.j) 2)
ij

Finally, #[11], #[12], and #;[13] are the homogeneity values of the

number of occurrences of sequences of two pixels i and j whose gray

levels are separated by 1, 3 and 5 units, respectively. Those
measures are calculated according to

Fig. 1. Burner schematics (modified from Fleury et al. (2013)).
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b

Fig. 2. Flame images. (a) PSAR = 1.0; (b) PSAR = 1.86; (c) PSAR = 4.0.

3. Ibrahim Time-domain Method theoretical background

The ITDM was conceived in the 1970s and has, since then, been
developed and successfully applied. The methodology here pre-
sented is a concise version of a work by Pappa and Ibrahim
(1981), which reviews a series or previous research since Ibrahim
and Mikulcik (1973).

Essentially, as originally devised, the method infers modal prop-
erties of a n-degree of freedom 2nd order assumed model from the
free-response of a system to either impulsive or other excitation
function (Ewins, 2000). By hypothesis, the dynamics of the system
is represented by the equation

My +Cy+Ky=f (4)

in which M is the mass matrix, C is the damping matrix and K is the
stiffness matrix, y,y,y respectively represent displacement, velocity
and acceleration vector, while f stands for the exogenous forcing
vector. Once this model is mapped into a state-space framework
and the resulting 2n first order differential equations are written
in matrix form, a so called 2n x 2n system matrix conveys all infor-
mation concerning inertia, stiffness and damping characteristics of
the system under analysis.

As it is known from dynamic system theory, the eigenvalues of
the system matrix are used to compute natural frequencies and
damping factors, whereas its eigenvectors provide mode shapes,
for each degree-of-freedom of the assumed model. Thus, provided
that the system undergoes free vibration, Ibrahim’s method
estimates the above-mentioned matrix. Thus, naming x the state
vector and A the system matrix, for a certain instant t; a set of
displacements, velocities and acceleration measurements of the
free-response of the system yield n linear equations to solve for
2n? unknowns according to Eq. (5),

X = Ax; (5)

When measurements for 2n instants ty,t5, . . ., tz,, are made, then one

comes up with 2n? equations, as follows:

[5(]5(2 .. -XZn} = A[X1X2 .. .X2n] (6)
X=AX > A=XX" 7)

Hence, considering that all the components of X and dX/dt are avail-
able, matrix A is unambiguously obtained, as it can be realized from
Eq. (12). It must be emphasized that the solution of this set of
equations is accurate, since X and dX/dt matrices thus built are
square. However, this approach demands the knowledge of
displacements, velocities and accelerations at every instant, which
requires integration and/or derivation of measured signals, or a
complex sensing apparatus to read the three quantities. This
disadvantage was overcome by Pappa and Ibrahim (1981), who
improved the method to use either of the quantities for the estima-
tion of the system matrix. To this end, regarding that the character-
istic equation for the free-response of the system in Eq. (4) is

PM+iC+K=0 (8)

the solution of Eq. (7), at any measuring spot j, may be written as
the sum of the contribution of each individual mode at that spot;
for a given instant ;,

2n
Xi(t) = et 9)
k=1

in which ¥, represents the free-response of the mode associated to
the kth eigenvector at the jth spot, and /4, the corresponding
eigenvalue, solution of the characteristic equation, in general, both
complex numbers. When 2n points are measured at several time
instants, after some algebraic manipulation, Pappa and Ibrahim
(1981) prove that the sought system matrix A is part of an eigen-
value problem. It follows that the eigenvalues of matrix A, complex
numbers of the form 4, = 8, + iy,, and the roots of the characteristic
equation, the eigenvalues of the spatial model of Eq. (1) (Ewins,
2000) s, = o + imqy, are related by

B+ iy = eloioasi (10)
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In the above equation, A t; represents an arbitrary time-shift and, in
view of Eq. (9), the scalars B, and 7y, can be used to obtain the
damped natural frequency, natural frequency and damping factor
for each mode according to Eqs. (11)-(14) below which, once
associated to the eigenvectors, completely characterize the system
dynamics.

Tk
@) = tan™! (A%) (11)
Ok
Tl 1
(o2 +02,)
(@)
Wk = % (13)
(1-4%)
1
O = 55, 10 (B +7%) (14)

An important issue that avoids straightly employing either the ori-
ginal or the modified ITDM is the demand of data from the free-
response of the system under evaluation. This problem arises in
several field situations, for instance, the identification of large struc-
tures like buildings and bridges, whose free-response is virtually
impossible to obtain since, at least, random excitation coming from
the environment (wind, ground vibration transmitted to the struc-
ture via mechanical constraints) is always present. In the case of the
present scope, a free-response would imply extinguishing the
flame, a potentially dangerous operational condition. This difficulty
can be surmounted when the ITDM is employed in conjunction with
the Random Decrement Technique (Cole, 1971), also known as
RANDOMDEGC, since demonstrated by Ibrahim and Mikulcik (1977).

The RANDOMDEC technique uses data from random excitation
to estimate the free-response of the system. Cole (1971) asserts
that, for a system vibrating under random stationary excitation,
when the average of numerous samples of the displacements
response are computed, the contribution of velocities and acceler-
ations on the measured signal gradually vanish; consequently, the
free-response is obtained. The RANDOMDEC signature of the sys-
tem, as named by Cole, is computed using segments of the mea-
sured displacement signal delimited by the same boundary
condition (a chosen amplitude, for instance). First, N equal time-
length T segments of the measured signal y(t), starting at instants
tj (j=1,2...N) provided that y(t;) = o (the boundary condition) are
sampled. Subsequently, the signature is obtained according to Eq.
(15),

o(T) . EN Yt +1) (15)
N
=

the sought free-response of the system.

In this work, the RANDOMDEC signature is computed from
averages of segments with initial value (boundary condition)
ranging from 60% to 80% of the maximum amplitude. A four
degree-of-freedom second order system model with viscous
damping was admitted for the application of the ITDM. Owing to
the availability of only one measuring station (the housing for
the camera in the furnace wall), the procedure outlined by Pappa
and Ibrahim (1981) was employed to fill the response matrix and
the time-shifted response matrix, in the following way: lines at
the upper half of the response matrix received data collected at
lagging intervals of 1/24 and 1/8 s; data on the upper four lines,
further delayed in 7/24 s, completed the lower four lines. The
lagged response matrix, on the other hand, was obtained through
a time-shift of 5/6 s of the elements of the response matrix. Finally,
12 time-instants were used by the ITDM.

At this point, one might argue that the furnace/flame kept in
steady operation does not characterize a random excitation. In

reply, one may assert that, for the observation model employed,
i.e., grabbed images from a CCD camera, a deterministic excitation
would be identifiable only if one directly altered luminous inten-
sity inside the furnace, instead of acting on PSAR at the burner.
Since the former is not done in the experiment, the hypothesis of
random excitation holds.

4. Results and discussion

Grabbed images from the unstable flame condition (PSAR = 4.0)
were processed according to the description of Section 2, providing
a set of vectors vty),i=1,...,13,k=1,...,100, corresponding to a
temporal sequence from available data of short-period trials for
each of the 13 image characteristics. This reduced number
of results poses another difficulty to the utilization of the
RANDOMDEC technique: according to Cole (1971), the procedure
is as accurate as the number of averages in Eq. (12) increases. One
manner to deal with this problem is by vectorizing ; so as to obtain
a longer sequence and improve algorithm performance, an artifice
whose justification is based on the rationale that follows.

In the first place, the stationarity hypothesis was admitted as a
requirement to the RANDOMDEC scheme, which implies that
grabbed data (images) represents a stochastic process. The
instantaneous components of each of the characteristic vectors v
are obtained from the same data sample through strictly
deterministic algorithms; furthermore, this sample contains infor-
mation concerning the whole process at that instant. Therefore, it
is fair to admit that the process is also wide-sense ergodic. As a
consequence, the proposed vectorization will preserve the two first
moments of the entire process.

Off-set cancelation and normalization of each sequence of
parameters were performed before the vectorization process,
whose outcome for the PSAR = 4, 0 is featured in Fig. 3. The ‘relative
amplitude’ instead of physical units at the ordinates label is thereof
justified. The RANDOMDEC/ITDM was, then, employed to compute
the modal parameters of the model, which can be seen in the
second and third columns of Table 1.

In order to corroborate the above results, a spectral analysis of
the temporal sequence of Fig. 3 was performed and provided the
power spectrum depicted in Fig. 4, on which is possible to realize
the spreading of the signal power throughout the whole range of
identifiable frequencies, namely, from O to 12 Hz, including peaks

relative amplitude

1 . . . . .
0 10 20 30 40 50 60

time(s)

Fig. 3. Vectorized time-history of characteristic parameters for the ‘unstable’
flames (PSAR = 4.0).
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Table 1
Damped natural frequencies/damping factors for each identified mode and discrep-
ancy among frequencies computed from ITDM/RANDOMDEC and spectral analysis.

Natural ITDM-Rd damped natural FFT damped e =fram) o 100
mode frequency f (Hz)/damping natural Tra
factor ¢ frequency f (Hz)
1 1.88/0.072 1.88 0.0
2 2.41/0.740 2.88 19.5
3 3.60/0.791 3.40 -5.5
4 5.03/0.005 5.07 -0.8

at the four frequencies obtained by the ITDM/RANDOMDEC tech-
nique. The occurrence of several spurious frequencies among those
identified can be explained by leakage arising from the convolution
with a rectangular window before the spectral analysis. Neverthe-
less, the four frequencies of interest do present higher relative
amplitudes. For the sake of comparison, the third and fourth
columns of Table 1 show, respectively, natural frequencies
computed by Fast Fourier Transform (FFT) and their relative
discrepancy to the ones obtained with by the proposed approach.
Overall, the errors may be considered negligible except for the
second natural mode.

The next step concerns the validation of the proposed approach;
to this end, it suffices to verify whether data from stable
(PSAR=1.0) and partially stable (PSAR=1.9) flame conditions,
once processed according to ITDM/RANDOMDEC technique with
parameters tuned for the unstable condition, can be distinguished
from the latter. A further ratification is possible by reversing the
process, i.e., using the ITDM/RANDOMDEC to identify stable flames
and check the parameters thus found against partially stable and
unstable flames. The results of both analyses are described below.

Spectra of signals reconstructed from the identified models,
normalized by each relative amplitude, are depicted in Fig. 4a
and b, whose reference spectra are respectively the curves for
PSAR =4 and PSAR =1.0. According to common sense reasoning,
one should expect closer resemblance between curves of PSARs
1.9 and 4.0 in Fig. 4a whereas, in Fig. 4b, curves of PSARs 1.9 and
1.0 would presumably look more alike. This qualitative analysis,
however, does not provide solid ground for a definitive validation
of the method since, in the first case, a clear match occurs once,
at the 3.41 Hz frequency; on the other hand, in the second case,
frequency matches occur close to abscissae 1.3 and 5.7 Hz.

A quantitative measure of the adherence between an estimated
mode and a reference mode which is normally used in OMA is the

PSAR=1.0
----- PSAR = 4.0
——PSAR= 1.9

o
@®

relative amplitude
o o
IS =

o
N

o:?”&
=

0 2 4 6 8 10 12
frequency (Hz)

(a)
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Modal Assurance Criterion - MAC (Ewins, 2000). The MAC essen-
tially computes cumulative least-squares differences of all the
combinations of pairs of data from distinct sets into a single scalar,
despite that mode shapes and frequencies may be complex-valued.
In the present case, the MAC has been modified to provide separate
summations of the squared differences among frequencies and
amplitudes of the reference and the other spectra in both cases
under consideration.

Upon naming Nr: number of reference signals; Nt: number
of test signals; Nrp: number of peaks of the reference signals;
Ntp: number of peaks of the test signals; t: superscript related
to test; r: superscript related to reference; F computation
index related to frequency; and A: computation index
related to amplitude, the criterion can be mathematically stated
according to:

Nt Nrp Ntp

(MACy),, ZZZ( Jk) Nr=1,2 (16a)
i=1 j=1 k=1
Nt Nrp Ntp

(MAC)y, ZZZ( jk) Nr=1,2 (16b)
i=1 j=1 k=

MAC — 1 MAGs x MAC, (160

max(MACr, MAC,)

Eqgs. (16a) and (16b) represent a quantitative measure of the
scattering of frequencies and relative amplitudes around respective
their references, whereas Eq. (16c) expresses, in a single scalar,
the combined effect of both dispersions. Thus, stable or partially
stable flames, when tested using parameters computed from
unstable flames, are expected to exhibit increasing values of MAC
(partially stable > stable); conversely, unstable or partially stable
flames should present decreasing values of MAC if probed against
stable flames identified model. The results of the above validation
are presented in Table 2, from which it is possible to confirm the
truthfulness of those hypotheses.

The validation step ends the whole proposed process for detect-
ing evidence of the beginning of flame instability. Recalling what
was mentioned in the introductory section, it is now possible to
collect, from Eq. (10), the proper components of the discrete-time
state transition matrix A, thus characterizing the dynamics of the
system in the time domain, as it was initially proposed. Moreover,
time-history of characteristic vector can be reconstructed from the
identified system model and, as a consequence, one is able to infer
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Fig. 4. Comparative relative power spectra for identified models of (a): unstable (PSAR = 4.0); and (b): stable (PSAR = 1.0) reference flames.
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Table 2
MAC values for cross-validation of the qualitative analysis.
MAC Test PSAR
1.0 1.9 4.0
Reference PSAR 4.0 0.0 0.67 1
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Fig. 5. Comparative time-evolution of measured and reconstructed characteristic
vectors for flames with PSAR = 4.0.

how long flames with those features would take to be
extinguished. The time-evolution of both measured and recon-
structed characteristic vectors is shown in Fig. 5, from which it
can be asserted that unstable flames would last less than 20s
before total extinction.

It is important to point out that, in comparison to the previous
work of Fleury et al. (2013), in which the white Gaussian noise rep-
resented the dynamics of flame propagation (in a state-space ran-
dom walk model), the current research has been able to identify a
second-order four degree-of-freedom model that describes the
time evolution of the combustion process. Furthermore, data com-
pression resulting from the application of modal identification, a
feature that was not present in the previous work, tends to
enhance the discrimination ability of the system, since redundancy
is diminished.

5. Conclusions

The main contribution of the present work is the successful
identification and validation of a grey-box model that is capable
of describing the dynamics of oil-flames in a prototype furnace
based on sequences of images grabbed by a CCD camera. The Oper-
ational Modal Analysis approach here adopted to quantitatively
validate the procedure does not have, to the knowledge of the
authors, any parallel in the literature. In relation to other works
that attempt to infer evolution models from computer-vision pro-
cessed images of turbulent phenomena (Chen et al. (2013),
Tomasoni et al. (2014), for instance), the results here depicted
overcome those in the sense that data compression through modal
identification is likely to improve the discriminating ability of the
flame classification system.

Concerning previous research by the same authors (Fleury et al.,
2013), the superiority of the proposed scheme stems from the

development of a flame-image based dynamic model that can be
used in the stochastic estimator instead of a random-walk model,
thus improving the predictability of the said estimator.

As regards to the classification reliability provided by the
method, results of the MAC criterion indicate that there is still
room for improvement. The characteristic vector of the image
could include temporal features such as the mean value and
standard-deviation of the averaged light intensity, thus expanding
the observability of the model. Furthermore, background removal
(using, for example, time median filtering) would sever radiation
of the instantaneous flames from that emitted by the refractory
furnace wall. On the other hand, instead of inferring the
parameters of a linear second-order grey-box model, a non-linear
function could be probed in order to better describe the dynamics
of the system in view of the observed data.

The above research suggestions and their incorporation in the
methods already described comprise the core of current work by
the authors of this article with the purpose of bringing about
further improvements in decision-making algorithms to be used
in automatic control systems for industrial applications.
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