The American Mathematical Monthly

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uamm20

Taylor & Francis

Taylor & Francis Group

Pick's Theorem and Convergence of Multiple
Fourier Series

L. Brandolini, L. Colzani, S. Robins & G. Travaglini

To cite this article: L. Brandolini, L. Colzani, S. Robins & G. Travaglini (2021) Pick’s Theorem
and Convergence of Multiple Fourier Series, The American Mathematical Monthly, 128:1, 41-49,
DOI: 10.1080/00029890.2021.1839241

To link to this article: https://doi.org/10.1080/00029890.2021.1839241

@ Published online: 15 Jan 2021.

\]
C»/ Submit your article to this journal

||I| Article views: 364

A
& View related articles &'

p—N
@ View Crossmark data (&
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uamm20


https://www.tandfonline.com/action/journalInformation?journalCode=uamm20
https://www.tandfonline.com/loi/uamm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00029890.2021.1839241
https://doi.org/10.1080/00029890.2021.1839241
https://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00029890.2021.1839241
https://www.tandfonline.com/doi/mlt/10.1080/00029890.2021.1839241
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2021.1839241&domain=pdf&date_stamp=2021-01-15
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2021.1839241&domain=pdf&date_stamp=2021-01-15

Pick’s Theorem and Convergence of
Multiple Fourier Series

L. Brandolini, ® L. Colzani, S. Robins, and G. Travaglini

Abstract. We add another brick to the large building comprising proofs of Pick’s theorem.
Although our proof is not the most elementary, it is short and reveals a connection between
Pick’s theorem and the pointwise convergence of multiple Fourier series of piecewise smooth
functions.

1. INTRODUCTION. A polygon in the Cartesian plane is simple if it has no holes
and if its boundary does not intersect itself. It is called an integer polygon if all of its
vertices have integer coordinates. Let P be a simple integer polygon, |P| its area, /
the number of integer points strictly inside P, and B the number of integer points on
the boundary o P. Then

Theorem 1 (Pick).
1
|P|=I+§B—1. (D

In spite of the elementary statement, this is not an ancient result. It was published
by Georg Pick in 1899, and first popularized by Hugo Steinhaus in 1937 in the Pol-
ish edition of Mathematical Snapshots; see [12, Chapter 4] for an English edition.
The theorem has many proofs and interesting features. Its statement can be explained
to elementary school children, who could be asked to verify it on examples. On the
other hand, it can be related to certain nontrivial topics in mathematics. See, e.g.,
[5] for a connection to Euler’s formula for planar graphs, or [10] for a connection to
Minkowski’s theorem on integer points in convex bodies, or [3] for a complex-analytic
proof. A sketch of an easy proof runs as follows.

Step 1. A simple integer polygon can be triangulated into integer primitive triangles,
with no integer points other than the vertices.

Step 2. Both terms |P| and [ + %B — 1 in (1) are ‘“additive” with respect to the
above triangulation.

Step 3. A primitive triangle together with one of its reflections gives a parallelogram
that tiles the plane under integer translations.

Step 4. This latter parallelogram has area 1, so that (1) holds true for primitive
triangles.

The purpose of this article is to exhibit a direct connection between Pick’s theorem
and harmonic analysis. The Fourier-analytic proof we give here is rather short and self-
contained, it does not rely on any of the above geometric steps, and it is an elementary
consequence of a classical result on pointwise convergence of multiple Fourier series.
Moreover, it suggests a point of departure for higher-dimensional investigations.

In what follows, our standard reference for the harmonic analysis on Euclidean
spaces is [13]. We recall some notations and some well-known results. If f and ¢ are
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integrable functions on R?, then ¢ * f denotes the convolution:
<p*f(X)=/d¢>(x—y)f(y)dy-
R
Moreover, J?denotes the Fourier transform:

IGE / f(x) e e,
]Rd

It is easily verified that if f is integrable on R?, then > _,4 f (n + x) is a periodic
function integrable on the torus R?/Z¢ and its Fourier coefficients are the restriction
of f to the integer points in Z¢,

f (n + x) e—ZTrim'xdx
/Rd/zd rg

f (y) e—27‘[im-(y—n)dy

/Uneld {n+[0,l)d}
- / fGye > dy = F(m).
R4

Hence, formally, one has the Poisson summation formula

Y ftx)=) fmemm )

nezd meZd

Our proof of Pick’s theorem is based on the Poisson summation formula applied
to the characteristic function of a polygon. But there is a problem. The above formula
as written does not immediately apply to nonsmooth functions, such as characteristic
functions. Without additional assumptions the series in both sides of this identity may
not converge pointwise. Even when both sides converge, they may differ. For example,
observe that when a function is modified on a set of measure zero, such as the boundary
of a polygon, the left-hand side of the formula may change, while the right-hand side
remains the same. On the other hand, a correct formula can be obtained assuming
natural regularity conditions on the function f and using suitable summability methods
for the Fourier series.

Next, we recall the elementary facts that are required in order to use Poisson sum-
mation correctly. Recall that if ¢ and f are square integrable, then the convolution is
uniformly bounded:

Iw*f(x)|=’/Rdwx—y)f(y)dy‘

12 12
< (/ Iw(x—y)lzdy> </ If(y)lzdy) ,
R4 R4

using the Cauchy—Schwartz inequality. It follows from the latter inequality, and the
fact that square integrable functions can be approximated by continuous functions with
compact support, that ¢ * f is uniformly continuous. The Fourier transform of the
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convolution is the product of the Fourier transforms of the factors, i.e., @ &) =
@ (§) f (§). The Fourier transform commutes with rotations, and in particular the
Fourier transform of a radial function is radial. Moreover, for every dilation ¢ > 0 the
Fourier transform of ¢, (x) := ¢ ¢ (s‘lx) is @ (¢€). The proofs of these statements
involve elementary manipulations of integrals. Finally, if ¢ is smooth with compact
support, then ¢ is smooth and it has rapid decay at infinity. This follows by repeated
integrations by parts in the integral that defines the Fourier transform.

A quick sketch of our proof of Pick’s theorem now runs as follows. Take a smooth
radial function ¢ with compact support and integral 1, and define

S X)) =@ *x xp (x),

so that f(é) = @ (&) xp (£). The Poisson summation formula applies to this function
[, so that applying (2) with x = 0, we have

D ek xp ()= @em)Xp (m).

nez? meZ?

Observe that the series on the left is finite, because ¢, * xp has compact support,
and the series on the right is absolutely convergent, because xp is bounded and ¢
has fast decay at infinity. Also observe that, if ¢ is small enough, ¢, * xp (1) is the
normalized measure of the angle at the point n:

Qe x xp(n) =72 /2 p(ey) xp(n — y)dy

R
0 ifx ¢ P,

. 1 if x is in the interior of P,

) 12 if x is in the interior of a side of P,

o/2r if x is a vertex of P, with interior angle «.

See Figure 1.

Figure 1. Values of ¢, * xp (n) at the integer points.

From the formula for the sum of the interior angles of a polygon it follows that

1
D ¢exxr () =1+-B—1.

nez?
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One can compute explicitly the Fourier transform ) via the divergence theorem.
In particular, we have

@ (0) xp (0) = xp (0) = |P],
while for every m # 0,
@ (em) Xp (m) = —@ (—em) xp (—m),

and one of the main points is that all of these terms cancel. It follows that

> @ @em)xp (m) = |P|.

meZ?
Hence,
|P| =1+ 1B 1
= 5 .

This is only a sketch of the proof, but it is not difficult to fill in the details. The
details are contained in what follows.
2. CONVERGENCE OF FOURIER EXPANSIONS. The following variation on

the classical Poisson summation formula is tailored for our problem.

Theorem 2. Let ¢ and f be square integrable functions on RY with compact support.
Assume that fRd ¢ (x)dx =1, and also assume that for every Xx,

fx)= Elil(i)l+ {ge * f ()} 3)
Then, for every ¢ > 0,

Z |$(sm) f(m)‘ < 4o00.

mezd
Moreover, for every Xx,
Do fotx)=lim 330§ em) fom) e @)
nezd o meZd

If ¢ is smooth with compact support, then @ has fast decay at infinity and the
theorem reduces to the classical Poisson summation formula. See, e.g., [13, Chap-
ter 7, Corollary 2.6] and [13, Chapter 2, Theorem 3.16] for similar results where ¢ is
the Poisson kernel. Condition (3) is a regularity assumption on the function f, and it is
satisfied at every point of continuity of the function. In particular, in dimension d = 1
and if ¢ is even, at a jump discontinuity of f the hypothesis is satisfied provided that

{f(x+8)+f(x—8)}

f(x) = lim

e—0t

2
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Recall that the one-dimensional Fourier series of a piecewise smooth function at a
jump discontinuity converges precisely to the above limit.

Proof. Under the assumption of the theorem, the convolution ¢, * f is bounded with
compact support, the sum ) _, .4 ¢, * f (n + x) is finite, and it gives a bounded func-
tion on the torus R?/Z? = [0, 1)?, with Fourier coefficients ¢ (em) f (m),

/ Z Qe x f(n4+x) e mimx g x
RYZE\ g

- / @k [Ty =P (em) [ (m).
R
Hence, the function

Y e f(n+x)

nezd

has Fourier expansion

> @em) f(m) e

mezd

Recall that Fourier series may diverge at some points; hence it is not obvious that
the above Fourier series converges and that it is equal pointwise to the function being
expanded. Since the sum ), ;4 ¢ * f (n + x) is finite and has a bounded number of
nonzero terms as ¢ — 0T, for every x the limit commutes with the sum:

lim Z(ps*f(n—l—x) :Zf(n—l—x).

e—0t
nezd nezd

Then it is enough to show that for every x,

Y gexfrtx)=Y §lem)f(m)emm, )

nezd mezd

This follows from the fact that )" /4 |$(sm) f(m)’ converges, which is a conse-
quence of the following Plancherel-Polya type inequality. Let g be an integrable func-
tion with compact support and let ¥ be a smooth compactly supported function with
¥ (x) = 1 on the support of g. Since g (x) = ¥ (x) g (x), g(€) = ¥ x g (&), and ¥ is
rapidly decreasing, we have

Yo Eml=)"

meZd meZd

/Rd@(m—@:g‘(@ds‘

<sup 4 Y [P (m—8) /Rd|§(s>|ds<cfw|§<s)|ds.

d
EeR meZd
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Observe that above the constant ¢ depends on v (x), hence on the support of g. See,
e.g., [11, Chapter 3] for more general inequalities of this type.
Applying this inequality to the function g (x) = ¢, * f (x), we obtain

2

meZd meZd

1/2 o 1/

<c</ |a<es>|2ds) ([ 7@ dé)
Rd Rd

12 12

=ce-d/2</ |¢<x>|2dx) (/ If(x)lzdx) .
]Rd ]er

Observe that the factor £¢/? does not contradict the existence of the limit as & —
0". The above estimate is just what we need to show the pointwise equality (5) for
every fixed ¢ > 0, since we already observed that the limit of the left-hand side of (5)
exists. ]

o] = Y [pem Fonl <c [ lpes Fe)ae

R

2

3. PICK’S THEOREM. Our proof of Pick’s theorem below is a corollary of the
version of the Poisson summation formula above, applied to characteristic functions
of integer polygons. Such characteristic functions do not satisfy the assumption (3) of
Theorem 2, but they can be regularized by modifying the values at the boundary. It is a
classical argument to restate Pick’s theorem in terms of normalized angles as follows.
Define a regularization of the characteristic function of the polygon P:

0 ifx ¢ P,
Yo (1) = 1 if x is in the interior of P,
Xp =112 if x is in the interior of a side of P,

o/2r if x is a vertex of P, with interior angle «.

Assuming that P has N vertices, since the sum of the inner angles is 7 (N — 2), we
have

Yoxry= Y 1+ 3 12+ Y a/2n

keZ?2 interior points of P interior points of sides of P vertices of P

1 1 1
=l+-(B—N)+-(N-2)=I1+_-B—1.
~|—2( )+2( ) +3

Hence, Pick’s theorem is reduced to the following.

Theorem 3. If P is a simple integer polygon, then

> %) =Pl

nez?
Proof. Let ¢ be a square integrable radial function with compact support and integral
1; for example let ¢ (x) = 47~ x(xj<1/2 (x). For ¢ > 0 small enough and for every
n € 72 it can be easily shown that

De * Xp(n) = xp(n).
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Then ¥ p satisfies the assumption (3) of Theorem 2 and

D Xp ()= Tim 3G lem)Xpm) . ©6)

nez? meZ?

Observe that in this identity the limit can be omitted as soon as ¢ is small enough, and
also observe that X, (m) = xp (m), since X (x) = x (x) except on a set of measure
zero. Let P have vertices { P;} and sides {P; + 1 (P;z1 — P;) : 0 <t < 1} with out-
ward unit normals {n j } Then, with the notation Py, = P, if m # 0 the divergence
theorem yields

S(\P (m) — / ef2nim~xdx — / le( _m 2€2nim~X> dx
P P 2mi |m|

N 1
— _1 nj-m 1Py — P|/ e~ 2mim (Pi+1(Pit1=P;)) gt
2 J+ J
2mi o m| 0

The one-dimensional integrals can be computed explicitly, and when P; and m belong
to Z2, then

1e’z”"’”'(Pj*’(PjH*Pj))dt = 0 if m- (PJ+1 - Pj) # 0,
0 1 if m-(Pjy — P;)=0.

Recalling that ¢ (0) = 1 and xp (0) = | P|, we obtain

DG Em e m)=%p O+ Y @(em)xp (m)

meZ? meZ2\{0}

N
1 7 (em) =
= 1Pl = 5= [P = P 2 Pem
j=1 m#0, m'(PjJrl_P_/):O

(7

Finally, the sums inside the parentheses vanish, because, under the assumption that
@ (em) is radial, @ (em) |m|~>m - n; is an odd function of m. Hence

D" @ (em) xp (m) = |P].

meZ?

Observe that in the proof of the above theorem the assumption that the polygon is
simple can be weakened. In particular, the formulation of Pick’s theorem in terms of
normalized interior angles also holds for integer polygons with holes.

4. FURTHER REMARKS. Pick’s theorem, in the naive form that we know it, fails
in dimension d > 3. Indeed, as observed by J. E. Reeve, the tetrahedron with vertices
0,0,0), (1,0,0), (0,1,0), (1, 1, N), has volume N /6, contains four integer points
on the boundary, and has no integer points inside. Hence there is no simple relation
between the volume and the integer points for general three-dimensional integer poly-
topes.
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Fascinating relations do appear, however, when an integer polyhedron is dilated by
an integer factor. By Ehrhart’s theorem from the 1950s, the number of integer points in
a dilated integer polyhedron P is a polynomial function of the integer dilation param-
eter, with leading coefficient equal to the volume of P. The reader may consult, for
example, the books [1] and [2] for an account of Ehrhart’s main theorems. The Pois-
son summation formula was used in [4] to analyze the Ehrhart polynomial of an integer
polytope in R,

The above-defined regularized discrete volume ), _,4 Xp (n) can be easily defined
in every dimension, but in general it is no longer equal to the Euclidean volume |P|.
However, as we see from equations (6) and (7), it is still true that

Y Xp)=IP| ifandonlyif Y @(em)Xp (m)=0 (8)

nezd 0#£meZd

for all sufficiently small ¢ > 0, and for every choice of ¢ as before. That is, if an
integer polytope P satisfies (8), then by definition its continuous Euclidean volume is
equal to its regularized discrete volume. We can call such integer polytopes concrete
polytopes, following the tradition of [7], who used the first three letters of “continuous”
and the last five letters of “discrete” to consider objects that can be described by both
continuous methods and by discrete methods.

An interesting open problem is to characterize the concrete polytopes in R"; that is,
what are the integer polytopes that enjoy the relation Y, .4 Xp (1) = |P|?

As already shown by Barvinok [1], integer zonotopes are concrete polytopes, as
well as integer symmetric polytopes whose facets are also symmetric. A more general
family of concrete polytopes is given by multiple tilers. Indeed, an easy application of
the Poisson summation formula (see [8], [9, p. 137]) tells us that the integer polytope
P multi-tiles RY with the lattice of integer translations, if and only if X (m) = 0 for
every m € Z\{0}, so that identity (8) is trivially satisfied. On the other hand Garber
and Pak have recently shown that there exist concrete lattice polytopes in R* which do
not multi-tile R? (see [6]).
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