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Using the coalescence model we compute the multiplicity of Zcsð3985Þ− (treated as a compact
tetraquark) at the end of the quark gluon plasma phase in heavy ion collisions. Then we study the time
evolution of this state in the hot hadron gas phase. We calculate the thermal cross sections for the collisions
of the Zcsð3985Þ− with light mesons using effective Lagrangians and form factors derived from QCD sum
rules for the vertices ZcsD̄�

sD and ZcsD̄sD�. We solve the kinetic equation and find how the Zcsð3985Þ−
multiplicity is affected by the considered reactions during the expansion of the hadronic matter. A
comparison with the statistical hadronization model predictions is presented. Our results show that the
tetraquark yield increases by a factor of about 2–3 from the hadronization to the kinetic freeze-out. We also
make predictions for the dependence of the Zcsð3985Þ− yield on the centrality, the center-of-mass energy
and the charged hadron multiplicity measured at midrapidity ½dNch=dηðη < 0.5Þ�.
DOI: 10.1103/PhysRevD.107.114013

I. INTRODUCTION

After 20 years of the Xð3872Þ observation, exotic
charmonium spectroscopy is still an exciting field with
discoveries every year. For recent reviews see Refs. [1–3].
As it happened in the case of ordinary light mesons, after
the discovery of several new particles a pattern emerged
leading to the successful SUð3ÞF classification scheme.
Over the past two decades dozens of new hadronic states
have been observed and now we need to establish con-
nections between all the new states. An example of
connection, relevant to this work, was suggested in [1],
where the members of the Zc (hidden charm states) family
were grouped into the JP ¼ 1þ Zc nonet. This multiplet is
obtained combining the well-known pseudoscalar SUð3ÞF
nonet P ¼ ðπ−; π0; πþ; K−; Kþ; K0; K̄0; η; η0Þ with a J=ψ ,

as shown Fig. 1. This organization of the states will
eventually lead to an effective field theory of the Zc nonet
interactions with the light and heavy mesons. Such a theory
is needed not only to explain the structure and spectra of
these states, but also to explain their production mechanism
in hadronic reactions. Previous attempts to create a clas-
sification scheme for the multiquark states have been
presented in [4–7]. According to the opinion of the authors
of Ref. [7], the observation of full multiplets of broken
SUð3Þf would be by itself a very strong, if not decisive,
evidence for compact, QCD based, tetraquark models.
The recent observation of the Xð3872Þ in Pb-Pb colli-

sions by the CMS collaboration at the LHC [8] opened a
new era for the study of the exotic charmonium states. In
the beginning of these collisions, quark-gluon plasma
(QGP) is formed. It then expands, cools down and
hadronizes into a hot hadron gas (HG), which lives for
about 10 fm and finally freezes out giving origin to the
observed particles. Hadrons are formed at the beginning of
the HG phase and hence interact with the (mostly light)
particles in the gas. From hadronization to freeze-out, the
multiplicity of exotic charmonium changes because of its
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interactions with light hadrons. Therefore, to understand
the forthcoming data it is crucial to have a reliable theory of
these interactions. The Xð3872Þ has been better studied and
now there are several models which describe its interactions
[9–12]. It is worth mentioning that these models are based
on effective Lagrangians and formulated in momentum
space. In contrast, other works study the interactions of the
Xð3872Þ using geometrical cross sections [13–17]. In spite
of the differences, both approaches lead to similar con-
clusions regarding the suppression of these states.
The interactions of the other states are much less known.

In [18] we developed an effective theory for the interactions
of the Zcsð3985Þ− with light hadrons. In this work, we will
apply it to nucleus-nucleus collisions and will compute the
Zcsð3985Þ− multiplicity which may be measured in the
future.
At first sight, we might think that all the multiquark

states produced at the end of the quark-gluon plasma phase
would be simply washed out during their life in the hot
hadron gas. This would be especially true if these states
were loosely bound meson molecules. However, our
accumulated experience has shown that, in most cases,
these states are easily destroyed but also easily produced.
The result of this competition is unpredictable. In some
cases [12,19] the states are suppressed, in other cases their
abundance remains approximately constant [20] or even
grows slightly. In [21], we have shown that, in the case of
the Tþ

cc, the time evolution of the abundance depends on the
internal structure of the state: it grows if it is a compact
tetraquark and drops if it is a meson molecule.
Another naive guess would be the following: if the state

has a large hadronic decay width, it will be suppressed.
Otherwise, it will survive the hadron gas and be observed at
the end of the collision. So far this expectation has been
confirmed by our calculations. Indeed, in [22] we have
shown that the K� is suppressed mainly because it decays
(K� → Kπ with a width of ∼50 MeV and lifetime of
∼4 fm) inside the hadron gas. On the other hand, the
abundance of D� stays constant [23] since the decay D� →
Dπ (with a width of ∼70 keV) occurs only much later, after

the end of the hadron gas phase. The Zcsð3985Þ− has a
decay width of ∼12.8 MeV, which corresponds to a life-
time of ∼15 fm. Since this is longer than the expected
lifetime of the hadron gas, we will assume that the
Zcsð3985Þ− decays outside the hadronic fireball and will
neglect the effects of its width.
In the next section, we present the Zcsð3985Þ− (from now

on simply Zcs) interaction cross sections. In Sec. III,
we discuss the details of the rate equation which governs
the Zcs abundance. In Sec. IV we show our numerical
results and in the subsequent section we summarize our
conclusions.

II. THE Zcs INTERACTIONS

In this work we will focus on the multiplicity of the Zcs
produced in heavy ion collisions. The Zcs interactions with
the lightest pseudoscalar mesons have been addressed in
our previous work [18], where the thermal cross sections

for the reactions D̄ð�Þ
s Dð�Þ → Zcsπ, Dð�ÞD̄ð�Þ; D̄sD

ð�Þ
s →

ZcsK and D̄ð�Þ
s Dð�Þ → Zcsη, as well as for the inverse

processes, have been calculated. In Fig. 2 we show the
lowest-order Born diagrams of the relevant processes. To
calculate these cross sections, we have used an effective
theory approach, with the couplings involving π, Kð�Þ, Dð�Þ

and Dð�Þ
s mesons based on pseudoscalar-pseudoscalar-

vector and vector-vector-pseudoscalar vertices. The cou-
plings involving the Zcs have been introduced assuming
that this is an S-wave state engendered by the superposition
of D�−

s D0 and D−
s D�0 configurations, with quantum num-

bers IðJPÞ ¼ 1
2
ð1þÞ. This can be represented by the

effective Lagrangian [24],

LZcs
¼ gZcsffiffiffi

2
p Z†μ

csðD̄�
sμDþ D̄sD�

μÞ; ð1Þ

where Zcs denotes the field associated to the Zcsð3985Þ−
state. Also, the D̄�

sμD and D̄sD�
μ mean the D�−

s D0 and
D−

s D�0 components, respectively.
Two aspects of the formalism developed in Ref. [18]

deserve special comments. The first one concerns the
effective coupling constant gZcs

, whose value has been
taken from Ref. [24]. In that paper gZcs

has been estimated
to be 6.0–6.7 GeV assuming that the Zcs is an S-wave
molecule of ðD̄�

sμDþ D̄sD�
μÞ. The second aspect refers to

the empirical monopole-like form factor that has been
introduced in Ref. [18] to account for the composite nature
of hadrons and their finite extension and also to avoid the
artificial growth of the amplitudes with the energy.
In this work we will assume that the Zcs is a compact

tetraquark. The interaction Lagrangian (1) is the same used
to study molecular states but the coupling constant is
different and can be determined with QCD sum rules
(QCDSR). For a detailed discussion on this issue, we refer

FIG. 1. JP ¼ 1þ Zc nonet formed by the product P ⊗ J=ψ .
This figure was taken from [1].
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the reader to Ref. [25]. The advantage of using the QCDSR
method is that it is more firmly rooted in QCD and also it is
more appropriate to the study of multiquark systems in a
compact configuration, as might be the case of the Zcs state.
In Ref. [26] a detailed analysis of the three-point correlation
function of the vertices ZcsD̄�

sD and ZcsD̄sD� was

performed and the relevant form factor was numerically
calculated and parametrized by the exponential function:

FZcs
ðQ2Þ ¼ g1e−g2Q

2

; ð2Þ

where Q2 ¼ −q2 is the Euclidean four-momentum of the
off-shell particle (the exchangedDs meson), g1¼0.94GeV
and g2 ¼ 0.08 GeV−2. The coupling constant was obtained
from the value of the form factor at the meson pole:

gZcs
¼ FZcs

ðQ2 ¼ −m2
Ds
Þ ¼ ð1.4� 0.4Þ GeV: ð3Þ

We use the form factor (2) and the coupling constant (3)
for the vertices ZcsD̄�

sD and ZcsD̄sD� to calculate the cross
sections of the processes displayed in Fig. 2. The explicit
expressions for the amplitudes and cross sections can be
found in our previous work [18] and the resulting cross
sections are shown in Fig. 3. The cross sections obtained in
[18] are different from those shown in Fig. 3. The former
were obtained with monopole-like form factors and gZcs

¼
6.0–6.7 GeV. The latter were obtained with QCDSR form
factors and gZcs

¼ 1.4 GeV. The new cross sections are 1
order of magnitude smaller (than those found in [18]), they
fall more slowly as the center-of-mass energy increases and
they have large theoretical errors. These features can be
attributed to (2) and (3) and the associated errors, discussed
in [26]. The QCDSR calculation can be made more precise
if one includes more terms in the operator product
expansion and if one has better experimental information
on the Zcs decays.
In the hot hadronic medium formed in heavy ion the

temperature drives the collision energy. Therefore we need
to evaluate the thermally averaged cross sections (or simply
thermal cross sections), defined as convolutions of the
vacuum cross sections with the thermal momentum dis-
tributions of the colliding particles. For processes with a
two-particle initial state going into two final particles
ab → cd, it is given by [9,12,27]

hσab→cdvabi ¼
R
d3pad3pbfaðpaÞfbðpbÞσab→cdvabR

d3pad3pbfaðpaÞfbðpbÞ
¼ 1

4α2aK2ðαaÞα2bK2ðαbÞ
Z

∞

z0

dzK1ðzÞ

× σðs ¼ z2T2Þ½z2 − ðαa þ αbÞ2�
× ½z2 − ðαa − αbÞ2�; ð4Þ

where vab denotes the relative velocity of the two initial
interacting particles a and b; σab→cd represents the cross
sections for the different reactions shown in Fig. 2;
the function fiðpiÞ is the Bose-Einstein distribution of
particles of species i, which depends on the temperature T;
βi ¼ mi=T, z0 ¼ maxðβa þ βb; βc þ βdÞ; and K1 and K2

the modified Bessel functions.

FIG. 2. Diagrams contributing to the following processes

(without specification of the charges of the particles): D̄ð�Þ
s Dð�Þ→

Zcsπ [(a)–(c)],Dð�ÞD̄ð�Þ;D̄sD
ð�Þ
s →ZcsK [(d)–(h)] and D̄ð�Þ

s Dð�Þ→
Zcsη [(i)–(m)]. They are reproduced from Ref. [18].
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In Fig. 4 we show the thermal cross sections for Zcs
production and absorption plotted as functions of the
temperature. The results for Zcs absorption have been
evaluated by using the detailed balance relation. In general,
the results reveal the same qualitative behavior of those
discussed in [18]: the thermal cross sections for the Zcs
absorption do not change much in this range of temper-
ature, staying almost constant. On the other hand, in the
case of Zcs production, most of the cross sections grow
significantly with the temperature.
The qualitative differences between the results shown in

Fig. 4 (obtained with QCDSR) and the corresponding ones
reported in [18] (obtained with an empirical form factor)
remain the same: the QCDSR based results are smaller than
the empirical ones by 1 order of magnitude. In addition, the
larger bands in the plots are due to the greater relative
uncertainties.
Most importantly, as in [18] the thermal cross sections

for Zcs absorption are greater than those for production at
least by 1 order of magnitude, depending on the temper-
ature. This result might have a considerable impact on the

observed Zcs multiplicity in heavy ion collisions: the initial
yield at the end of the quark-gluon plasma phase might
suffer significant changes during the hadron gas phase
because of the interactions. This is what will be investigated
in the next sections.

III. THE Zcs MULTIPLICITY

A. The time evolution

We are interested in the effect of the Dð�Þ
ðsÞD

ð�Þ
ðsÞ ↔ Zcsπ,

ZcsK and Zcsη interactions on the abundance of Zcs during
the hadron gas phase of heavy ion collisions. To this end,
we model the time evolution of Zcs multiplicity in the same
way as in Ref. [21], through the momentum-integrated rate
equation [9,12,27]:

dNZcs
ðτÞ

dτ
¼

X
c;c0¼D;D�
φ¼π;K;η

½hσcc0→Zcsφvcc0 incðτÞNc0 ðτÞ

−hσφZcs→cc0vZcsφinφðτÞNZcs
ðτÞ�; ð5Þ

FIG. 4. Top: thermal cross sections for the production processes Z−
csπ (left), Z−

csK (center) and Z−
csη (right), as a function of temperature

T. Bottom: the same as in the top panel but for the corresponding suppression processes.

FIG. 3. Cross sections for the production processes Z−
csπ (left), Z−

csK (center) and Z−
csη (right), as functions of center-of-mass energyffiffiffi

s
p

. The bands in the plots denote the uncertainties considered in Eq. (3).
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where NZcs
ðτÞ, Nc0 ðτÞ, ncðτÞ and nφðτÞ are the abundances

of Zcs and of charmed (strange) mesons of type cð0Þ, and the
densities of charmed (strange) mesons of type cð0Þ and of
light mesons φ at proper time τ, respectively.
In order to solve this equation we need to define the

initial condition and we need to know how the quantities on
the right side of the equation depend on time. This will be
discussed in the next sections.

1. Medium in equilibrium

The light and heavy mesons in the medium are assumed
to be in thermal equilibrium and hence ncðτÞ, nc0 ðτÞ and
nφðτÞ can be written in the Maxwell-Boltzmann approxi-
mation as [9,12,27]

niðτÞ ≈
1

2π2
γigim2

i TðτÞK2

�
mi

TðτÞ
�
; ð6Þ

where γi, gi, mi are the fugacity, the degeneracy factor and
the mass of the particle of type i, respectively. The product
of the density niðτÞ by the volume VðτÞ gives the
multiplicity NiðτÞ.

2. Hydrodynamical expansion

The relevant quantities depend on time through the
temperature TðτÞ and volume VðτÞ, which are parametrized
in order to simulate the boost invariant Bjorken expansion
of the hadron gas [9,12,27]:

VðτÞ ¼ π
h
RC þ vCðτ − τCÞ þ

aC
2
ðτ − τCÞ2

i
2
τc;

TðτÞ ¼ TC − ðTH − TFÞ
�
τ − τH
τF − τH

�4
5

; ð7Þ

where RC and τC are the final transverse and longitudinal
sizes of the QGP; vC and aC are its transverse flow velocity
and transverse acceleration at τC; TC is the critical temper-
ature of the quark-hadron phase transition; TH is the
temperature of the hadronic matter at the end of the mixed
phase, occurring at the time τH; and the kinetic freeze-out
occurs at τF, when the temperature is TF. We stress that the
equation above is valid for τ ≥ τH. The above parametriza-
tion is an attempt to mimic the hydrodynamic expansion of
the hadronic matter. In spite of its limitations it was useful
in the study of the time evolution of the multiplicity of other
states (see more discussion in Refs. [9,12]).

3. Fixing the free parameters

We will address central Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV at the LHC. Following Ref. [21] the set of
parameters in Eq. (7) is fixed as explained in [28] and is
given in Table I. The total number of charm quarks in
charmed hadrons, Nc, is conserved during the production
and dissociation reactions. This is enforced by the expression

ncðτÞ × VðτÞ ¼ Nc ¼ const, which leads to the time-
dependent charm quark fugacity factor γc in Eq. (6). In the
case of light mesons, we use their fugacities as normali-
zation parameters to fit the multiplicities given in Table I.

4. Initial conditions via coalescence model

The yield of the Zcs state at the end of QGP is computed
with the help of the coalescence model [28]. This approach
is based on the overlap of the density matrix of its
constituents with its Wigner function. It encodes some
aspects of the intrinsic structure of the system, such as
angular momentum and the type and number of constituent
quarks. So, assuming that the Zcs state is an S-wave
tetraquark with quark content cc̄sū, its multiplicity at τC
is given by [9,12,21,28,29]

Ncoal
Zcs

ðτCÞ ≈
gZcs

½ð4πÞ3M�3=2
ðω3=2VÞ3

1

ð1þ 2T=ωÞ3

×
N2

cNsNq

g2cgsgqðm2
cmsmqÞ3=2

; ð8Þ

where gj and Nj are the degeneracy and number of the jth
constituent of the Zcs (the index q refers to the light flavor
quarks). The hadron is assumed to behave like a harmonic
oscillator and the quantity ω is the oscillator frequency. The
frequency, the quark numbers and masses were taken from
[21,28] and are summarized in Table I. With the parameters
from Table I, Eq. (8) yields

Ncoal
Zcs

ðτCÞ ≈ 6.5 × 10−7: ð9Þ
For the sake of comparison, we compute the initial number
of Zcs within the statistical hadronization model (SHM),

TABLE I. Parameters used in Eq. (7) for the hydrodynamic
expansion of the hadronic medium formed in central Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, and in Eq. (8) for the coales-
cence model [21,28,29].

vC (c) aC (c2=fm) RC (fm)
0.5 0.09 11

τC (fm=c) τH (fm=c) τF (fm=c)
7.1 10.2 21.5

TC (MeV) TH (MeV) TF (MeV)
156 156 115

NπðτHÞ NKðτHÞ NηðτHÞ
713 134 53

Nc NsðτHÞ NuðτHÞ [¼ NdðτHÞ]
14 386 700

mc (MeV) ms (MeV) mq (MeV)
1500 500 350

ωc (MeV)
220
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which is based on Eq. (6). We find Nstat
Zcs

ðτHÞ≡
NZcs

ðτHÞVðτHÞ ¼ 2.35 × 10−3, which is about 4 orders
of magnitude higher than that obtained with the coales-
cence model.
We emphasize that only the compact tetraquark con-

figuration was explored. In the molecular interpretation, the
oscillation frequency is estimated to be ω ¼ 6B, with B
being the binding energy. However, the observed Zcs mass
is higher than the D�−

s D0 or D−
s D�0 thresholds, which

makes it difficult to interpret the Zcs as a bound state of
hadrons.

B. The system size dependence

In order to express the Zcs multiplicity in terms of
measurable quantities, let us introduce the dependence
of the NZcs

on the system size, represented here by the
measurable central value of the rapidity distribution of
charged particles: N ¼ ½dNch=dηðjηj < 0.5Þ�1=3. To make
predictions we will use empirical relations which connect
the quantities listed in Table I with N . The relations are
briefly described below. For more details, we refer the
reader to Ref. [21].

1. Kinetic freeze-out time

The empirical formula relating N and the kinetic freeze-
out temperature TF is given by [21,22]

TF ¼ TF0e−bN ; ð10Þ

where TF0 ¼ 132.5 MeV and b ¼ 0.02. This parametriza-
tion has been chosen so as to fit the blast wave model
analysis of the data performed by the ALICE collaboration
[30]. Inserting Eq. (10) into the Bjorken-like cooling
relation τFT3

F ¼ τHT3
H, we obtain

τF ¼ τH

�
TH

TF0

�
3

e3bN : ð11Þ

Thus, the larger (smaller) the system and the multiplicity of
produced hadrons, the longer (shorter) the duration of the
hadron gas. For a given system (N ), Eq. (11) determines
the time up to which we integrate the rate equation (5).
Therefore NZcs

will be a function of N .

2. Volume

We start with the relation between the volume per
rapidity (dV=dy) and dNch=dη obtained in [31] with the
SHM:

dV
dy

¼ 2.4
dNch

dη

����
jηj<0.5

¼ 2.4N 3: ð12Þ

The integration over the rapidity yields the relation
V ∝ N 3, with V being the chemical freeze-out volume
VC ¼ VðτCÞ. As in Ref. [28], we assume that VC ¼
VH ¼ VðτHÞ. The proportionality constant can be deter-
mined using the parametrization reported in Ref. [32] for
0%–5% centrality class in 5.02 TeV Pb-Pb collisions. It
gives the volume VH ¼ 5380 fm3 for ½dNch=dηðη< 0.5Þ� ¼
1908 (N ≈ 12.43). Consequently, we obtain

V ¼ 2.82N 3: ð13Þ

3. Charm quark number

As we are not aware of any experimentally established
connection between Nc and dNch=dηðη < 0.5Þ in the
context of heavy ion collisions, we make use of the data
from the ALICE collaboration reported in Ref. [33] on
the production of charm mesons in high multiplicity pp
collisions at

ffiffiffi
s

p ¼ 7 TeV. The differential distribution ofD
mesons as a function of dNch=dη in Fig. 2 of the mentioned
paper may be parametrized by a power law, which after the
integration over the appropriate interval of rapidity and
transverse momentum yields the relation [21]

ND ∝
�
dNch

dη

�
1.6

∝ ðN 3Þ1.6: ð14Þ

We also assume that the charm quark number and the
number of D mesons are proportional:

Nc ∝ ND ∝ ðN 3Þ1.6: ð15Þ

The proportionality constant can then be fixed by using the
number shown in Table I (Nc ¼ 14 for N ¼ 12.43),
yielding

Nc ¼ 7.9 × 10−5N 4.8: ð16Þ

4. Light and strange quark numbers

In the case of the light and strange quark numbers, we
follow the same procedure described in the previous
subsection, i.e., making use of a relation similar to
Eq. (15). In the lack of data relating directly Nu, Ns to
the charged particle multiplicity, we use this power law
with the exponent 1 rather than 1.6, taking into account the
dependence of the pions and kaons with dNch=dη reported
in Table 3 of [30]. Next, we can fix the proportionality
constants in order to match the numbers Nu, Ns displayed
in Table I at N ¼ 12.43, obtaining the expressions

Nu ¼ 0.37N 3;

Ns ¼ 0.20N 3: ð17Þ
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5. Centrality and energy dependence

The quantity N depends on the ion mass number (A)
on the center-of-mass collision energy (

ffiffiffi
s

p
) and on the

centrality of the collision. It is interesting to find the
dependence of N on one of these variables, keeping
the others constant. This was done in Ref. [32], where,
fixing the energy at 5.02 TeV and choosing the projectiles
to be Pb-Pb, the authors found (and displayed in their
Fig. 4) a relation between N and the centrality which can
be parametrized as

dNch

dη

����
jηj<0.5

¼ 2142.16 − 85.76xþ 1.89x2 − 0.03x3 þ 3.67

× 10−5x4 − 2.24 × 10−6x5 þ 5.25 × 10−9x6;

ð18Þ

where x denotes the centrality (in%). Similarly, in the same
paper we can extract the dependence of N on

ffiffiffi
s

p
from

Fig. 3. It can be parametrized as

dNch

dη
¼ −2332.12þ 491.69 logð220.06þ ffiffiffi

s
p Þ: ð19Þ

IV. RESULTS

A. The time evolution

Here we present our results for the time evolution of the
Zcs multiplicity by solving Eq. (5). We emphasize that in
our calculation the Zcs is treated as a compact tetraquark.
This is consistent with the use of QCDSR (which are not
appropriate to study extended hadron molecules) and with
the choice of initial conditions given by the coalescence
model with the parameters given in Table I. For the sake of
comparison we will also show the results obtained with the
statistical hadronization model, i.e. with Eq. (6).
In Fig. 5 we show the evolution of the Zcs abundance as a

function of the proper time. The band represents the
uncertainties coming from the QCDSR calculations of
the absorption and production cross sections. These results
(obtained with initial conditions given by the coalescence
model) suggest that NZcs

increases by a factor of ≃2–3
during the hadron gas phase. This behavior is the result of
the competition between the two contributions on the right
side of the kinetic equation (5): the gain and loss terms
related to the Zcs-production and absorption reactions,
respectively. The thermal cross sections for Zcs absorption
are bigger than those for Zcs production. However, when
multiplied by NZcs

(which is initially small) they become a
small number and therefore the gain term dominates,
yielding a positive value for the time derivative of Ncoal

Zcs
.

Hence, the Zcs multiplicity grows during the expansion and
cooling of the system. The curve obtained with initial

conditions given by the statistical hadronization model
remains practically constant during the hadronic gas phase.
This happens because the initial value Nstat

Zcs
is much higher

than Ncoal
Zcs

and hence the loss term has the same magnitude
as the gain term. It is interesting to observe that the
approximate constancy of Nstat

Zcs
is the practical definition

of chemical equilibrium. In the SHM it is an assumption.
Our numerical calculations give some support to it.

B. N ,
ffiffi
s

p
and centrality dependence

Now we present and discuss our results for the Zcs

multiplicity as a function ofN , of
ffiffiffi
s

p
and of the centrality.

First we determine the N -dependent initial conditions via
the coalescence model by substituting the relations (13),
(16) and (17) into (8). These substitutions yield the relation

Ncoal
Zcs

∝ N 6.6: ð20Þ

Then, with the N dependent initial conditions, the kinetic
equation (5) was integrated up to the kinetic freeze-out
time, τF, which, in its turn, also depends on N according
to Eq. (11).
The method summarized above allows us to generate the

plot of the Zcs abundance as a function of N , shown in
Fig. 6. The band representing the uncertainties is not visible
here because the range of the abundances considered is
much larger than in the previous figure. We observe that the
multiplicity increases as the system size grows. Comparing
the regions of p-p and Pb-Pb collisions (for example N ∼
2–3 and 10–12.5, respectively),NZcs

changes several orders
of magnitude. Both Ncoal

Zcs
and Nstat

Zcs
show a similar behavior,

but with different magnitudes. Thus, these results strongly

3

FIG. 5. Zcs multiplicity as a function of the proper time in
central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The curves
represent the results obtained with initial conditions given by
the coalescence and statistical hadronization models. The band
denotes the uncertainties coming from the QCDSR calculations
of the absorption and production cross section.
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suggest that collisions involving heavy ions appear as a
very interesting environment to investigate the Zcs proper-
ties and discriminate its intrinsic nature.
For completeness, we show the dependence of the Zcs

abundance with other relevant observables. Making use of
the relations (18) and (19), in Figs. 7 and 8 we present NZcs

as a function of centrality and center-of-mass energy
ffiffiffiffiffiffiffiffi
sNN

p
,

respectively. They show the strong dependence of the
multiplicity with the centrality and

ffiffiffiffiffiffiffiffi
sNN

p
. The multiplicity

NZcs
increases with centrality by several orders of magni-

tude. In addition, our predictions for the
ffiffiffiffiffiffiffiffi
sNN

p
dependence

indicate that at LHC energies (i.e. 1–10 TeV)NZcs
grows by

1 order of magnitude. We expect that these estimates can be
tested experimentally in the near future.

V. CONCLUDING REMARKS

In summary, we have improved our previous calculations
[18] of the Zcs cross sections, introducing QCDSR form
factors and coupling constants. We have further continued
the calculations, solving the rate equation and determining
the time evolution of the Zcs multiplicity. The main
conclusion is that NZcs

grows by a factor 2 during the
hadron gas phase of heavy ion collisions at the LHC. Then,
using a series of empirical relations connecting several
variables to the measured central rapidity density, N , we
have made predictions for the behavior of NZcs

with the
system size, which can be confronted with data, when they
are available.
This work is part of a comprehensive effort to study the

behavior of all the new multiquark states in a hadron gas.
This study is of crucial importance, since in the near future
these states will be investigated in relativistic heavy ion
collisions. Progress has been achieved and today we
certainly know more than when this program started, ten
years ago. But there is much more to be done. From now
on, one of the priorities will be to look for a more
comprehensive approach, treating the states as members
of multiplets which share common properties, instead of
studying them one by one. In this sense, the classification
shown in Fig. 1 is welcome.
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FIG. 6. The Zcs multiplicity as a function of N . The curves
represent the results obtained with initial conditions given by the
coalescence and statistical hadronization models.

FIG. 7. The Zcs multiplicity as a function of centrality in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The curves represent the results
obtained with initial conditions given by the coalescence and
statistical hadronization models.

FIG. 8. The Zcs multiplicity as a function of the center-of-mass
energy

ffiffiffiffiffiffiffiffi
sNN

p
in central Pb-Pb collisions. The curves represent the

results obtained with initial conditions given by the coalescence
and statistical hadronization models.
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