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1. Introduction

The spectral theorem is one of the most fundamental theorems in linear functional analysis. It has a 
tremendous impact due to the various applications that the powerful toolbox of spectral decomposition 
is providing. Furthermore the description of physical systems and especially their organization and long-
range behaviour is encoded in the spectral values [12]. Especially in quantum physics and thermodynamics, 
where the energy values are eigenvalues of a suitable Hamiltonian this particular importance becomes clear. 
Spectral theory, however has its applications far beyond physics. To a large extent it is used to describe the 
evolution according to a linear dynamics in a suitable space. It hence has direct interlinks into the classical 
semi-group theory [13,4,9] and is therefore massively used in systems theory. A natural involvement via semi-
group methods can then also be found in stochastic analysis, in particular in the theory of Markov processes 
and Markov chains as well as Dirichlet forms. In recent years spectral theory has also been used in machine 
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learning and artificial intelligence, in particular in pattern recognition. A spectral decomposition allows 
a principal component analysis [16] and hence simplifies the number of contributing modes in a pattern 
by just considering the dominant ones. In face recognition one for example then talks about eigenfaces 
[10]. In line of the early developments of Hilbert’s operator theory, see e.g. [3] in the early 30s of the last 
century von Neumann made important contributions to the spectral theorem for normal operators [14,15]. 
Moreover it was used as the mathematical foundation of many progressing theories in that time from partial 
differential equations to quantum physics. The spectral theorem itself is understood as a collection of results 
on normal operators; see, e.g. [8]. These are generalizing the finite dimensional case of a diagonalizable or 
triagonalizable matrix. The generalization to non-normal operators even beyond the compact case is much 
more involved and less direct than in the standard case. First attempts were undertaken by Gonshor et 
al. [6,7] for special classes of non-linear operators. For special perturbations of normal operators a spectral 
theorem was given in [5].

In this paper we show variant of the spectral theorem using an algebraic Jordan-Schwinger map introduced 
in [1] (Definition 7.2). The advantage of this approach is that we don’t have restriction of normality on the 
class of operators we consider. On the other side, we have the restriction that the class of operators we 
consider should be of weighted Hilbert-Schmidt class.

2. Preliminaries

Fix a separable infinite dimensional Hilbert space H. Let S0, S1 : H → H be generators of the Cuntz 
algebra O2. We will assume that S0 is a shift operator in the sense of [2], that is

∩∞
n=1S

n
0 (H) = {0}.

Note that then K := H − S0(H) is a separable Hilbert space. Hence we can choose an orthonormal basis 
{ξ0,j}∞j=1 of K and define

ξi,j := Si
0ξ0,j , i ∈ N ∪ {0}, j ∈ N.

Then {ξi,j} is an orthonormal basis of H. Denote by H2(T ) the Hardy subspace of square integrable 
functions on the unit torus T , denoted by L2(T ) and define a unitary operator

V : H → H+(K) := H2(T ) ⊗K, V ξi,j := zi+1 ⊗ ξ0,j , i ∈ N ∪ {0}, j ∈ N.

We identify the elements of H+(K) with functions from T to K in such a way that

f ∈ H+(K) if and only if f(z) =
∞∑

n=1
fnz

n, fn ∈ K.

Then H+(K) is a Hilbert space with scalar product

(f, g)H+(K) =
∞∑

n=1
(fn, gn)K = 1

2πi

∫
S1

(f(z), ḡ(z))K
dz

z
.

We will also make use of a Sobolev space based on H+(K). To define it let us introduce the operator

J(f)(z) = 1
z

z∫
f(w) dw, f ∈ H+(K).
0
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Notice that

||Jp(f)||2H+(K) =
∞∑

n=1

||fn||2K
(n + 1)2p , p ∈ Z.

Moreover, J is invertible with (z d
dz + 1)J = Id. Thus we can define a Hilbert space

Hp
+(K) := {f : Jp(f) ∈ H+(K), such that ||Jp(f)||H+(K) < ∞}, p ∈ Z.

Notice that S+
0 = V S0V

∗ is a multiplication operator, i.e.:

S+
0 ξ(z) = zξ(z), ξ ∈ H+(K), (2.1)

and, correspondingly, S∗
0 is unitary equivalent to

(S+
0 )∗ξ(z) = V S∗

0V
∗ = ξ(z)

z
− 1

2πi

∫
S1

ξ(w)
w2 dw = z̄ξ(z) − 1

2πi

∫
S1

w̄2ξ(w)dw, ξ ∈ H+(K). (2.2)

In order to establish a connection with Cuntz algebras, we recall the following definition of the Jordan-
Schwinger map (see [1], Definition 7.2):

Definition 2.1. Let V be a separable locally convex Hausdorff topological vector space in duality < ·, · >
with V ∗ and biorthogonal system {ek, fk}∞k=1. Define the Jordan-Schwinger map as follows

D(A) :=
∑

α,β∈N
< Aeα, fβ > sαs

∗
β , A ∈ L(V, V ), (2.3)

∂(f) :=
∑
β∈N

< f, fβ > s∗β , f ∈ V, (2.4)

∂̄(g) :=
∑
α∈N

< eα, g > sα, g ∈ V ∗ (2.5)

where {sk, s∗k}∞k=1 are generators of the Cuntz algebra O∞.

We also recall the following result [2] (Lemma 6.1), which gives a one-to-one correspondence between 
representations of the Cuntz algebras O∞ and ON .

Lemma 2.2. There is 1-to-1 correspondence between representations si �→ Si, i = 0, . . . , N − 1 of ON on H
such that S0 is a shift, and representations of O∞ on H such that the sum of the ranges of the isometries 
is Id. If the representatives of the generators of O∞ are denoted by T j

k , j = 1, . . . , N − 1, k ∈ N, so that

(T j1
k1

)∗T j2
k2

= δk1,k2δj1,j2 Id,

and

N−1∑
j=1

∞∑
k=1

T j
k (T j

k )∗ = Id,

then the 1-to-1 correspondence is given by
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T j
k = Sk−1

0 Sj , j = 1, . . . , N − 1, k ∈ N,

and by

S0 =
N−1∑
j=1

∞∑
k=1

T j
k+1T

j,∗
k ,

and

Sj = T j
1 , j = 1, . . . , N − 1,

where all infinite sums converge in strong operator topology.

We will apply Lemma 2.2 for N = 2. Since in this case we have j = 1, we omit the index j for the sake 
of readability.

3. Spectral theorem

With the help of Lemma (2.2) for N = 2 together with the Definition 2.1 of the map D we can connect 
every linear bounded operator to an analytic function in the variables S0 and S∗

0 . This can already be 
considered as a version of the spectral theorem. We will show throughout the section that indeed D(A) and 
A have the same spectrum and furthermore we have a representation of the quadratic form of the operator 
A in terms of D(A).

Lemma 3.1.

D(A) =
∑

m,n∈N
< Aem, fn > Sm−1

0 S1S
∗
1 (S∗

0 )n−1,

or, equivalently (applying the identity S0S
∗
0 + S1S

∗
1 = Id),

D(A) =
∑

m,n∈N
(< Aem+1, fn+1 > − < Aem, fn >)Sm

0 (S∗
0 )n

+
∞∑

m=0
< Aem+1, f1 > Sm

0 +
∞∑

n=1
< Ae1, fn+1 > (S∗

0 )n. (3.1)

Now we can apply formulas (2.1), (2.2) to deduce the following unitary equivalence of D(A) with an 
analytic function of a shift operator on the Hardy space and its adjoint. As a result we obtain that D(A) is 
unitary equivalent to a suitable integral operator.

Theorem 3.2. The operator D(A) is unitary equivalent to the operator F (S+
0 , (S+

0 )∗) where F = F (z, w) :
C2 → C given by

F =
∑

m,n∈N
(< Aem+1, fn+1 > − < Aem, fn >)zmwn +

∞∑
m=0

< Aem+1, f1 > zm +
∞∑

n=1
< Ae1, fn+1 > wn,

and the operators S+
0 , (S+

0 )∗ are given by formulas (2.1) and (2.2) respectively. Moreover, we have

V D(A)V ∗f(z) = 1
2πi

∫
K(A, z, w)f(w)

w
dw, (3.2)
S1
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with

K(A, z, w) :=
∞∑

m,n=1
< Aem, fn > zmw−n.

Furthermore, if A is an (r, p)-weighted Hilbert-Schmidt operator, i.e.

||A||2HS(r,p) =
∞∑

m,n=1

| < Aem, fn > |2(n + 1)2r

(m + 1)2p < ∞, (3.3)

then

||V D(A)V ∗||2L(Hr
+(K),Hp

+(K)) ≤ ||A||2HS(r,p) (3.4)

Proof. Let us show formula (3.2). We have

V D(A)V ∗ =
∑

m,n∈N
< Aem, fn > (S+

0 )m−1(Id−S+
0 (S+

0 )∗)((S+
0 )∗)n−1.

Now it is easy to calculate that

(Id−S+
0 (S+

0 )∗)g(z) = z

2πi

∫
S1

g(w)
w2 dw.

Consequently, we have

V D(A)V ∗f(z) = 1
2πi

∑
m,n∈N

< Aem, fn > zm
∫
S1

((S+
0 )∗)n−1f

w2 dw.

Now the result follows from the representation

((S+
0 )∗)n−1f(z) = f(z)

zn−1 +
n−1∑
i=1

κi(f)
zn−i−1 ,

where {κi}n−1
i=1 are certain linear functionals of f , and the observation that only the first term remains after 

the integration, that is
∫
S1

((S+
0 )∗)n−1f

w2 dw =
∫
S1

f(w)
wn+1 dw.

The inequality (3.4) can be obtained as follows.

∣∣∣∣∣ 1
2πi

∫
S1

IpK(A, z, w) f(w)
w dw

∣∣∣∣∣
2

H+(K)

=
∣∣∣∣ 1
2π

2π∫
0
IpK(A, z, eiφ)f(eiφ) dφ

∣∣∣∣
2

H+(K)

=

∣∣∣∣∣
∞∑

m,n=1

Amn

(m+1)p z
m 1

2π

2π∫
0
f(eiφ)e−inφ dφ

∣∣∣∣∣
2

H+(K)

=
∣∣∣∣ ∞∑ ( ∞∑ Amn

(m+1)p fn

)
zm

∣∣∣∣
2

m=1 n=1 H+(K)
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=
∞∑

m=1

∣∣∣∣ ∞∑
n=1

Amn(n+1)r
(m+1)p

fn
(n+1)r

∣∣∣∣
2

K

≤
∞∑

m,n=1

|<Aem,fn>|2(n+1)2r
(m+1)2p |f |2Hr

+(K) .

Which proves the assertion. �
Remark 3.3. Suppose that an operator A satisfies the following condition:

| < Aem, fn > | ≤ C, n,m ∈ N

for some constant C, and p > 1
2 , r < −1

2 . Then the operator A belongs to the weighted Hilbert-Schmidt 
space HS(r,p).

Remark 3.4. Suppose that an operator A satisfies the following conditions:

| < Aem, fn > | ≤ C

1 + |n−m|l , l > r + 1
2

and

p > r + 1
2 .

Then the operator A belongs to the weighted Hilbert-Schmidt space HS(r,p).

Example 3.5.

(a) Let A be the following infinite diagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 0 . . . 0 . . .

0 α2

2 0 . . . . . .

0 0 α3

3 0 . . .

. . . . . . . . . . . . . . .

0 . . . 0 αn

n . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, |α| < 1.

Then we can deduce from Theorem 3.2 that the corresponding operator D(A) is unitary equivalent to 
the following operator

f �→ 1
2π

2π∫
0

ln (1 − αei(φ−ψ))f(eiψ) dψ

(b) If

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . .

0 1
2 0 . . . . . .

0 0 1
4 0 . . .

. . . . . . . . . . . . . . .

0 . . . 0 1
2n . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, |α| < 1,
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then similarly one deduces that D(A) is unitary equivalent to the operator

f �→ 1
2π

2π∫
0

1
(1 − 1

2e
i(φ−ψ))

f(eiψ) dψ.

(c) If A is an operator in the Jordan form with eigenvalues {am}∞m=1 and corresponding sizes {nk−nk−1}∞k=1
of the Jordan blocks (n0 = 0 by definition), i.e.

A = Jn1(a1) ⊕ Jn2−n1(a2) . . . Jnm−nm−1(am) ⊕ .

Then D(A) is unitary equivalent to the operator which maps f to

1
2π

2π∫
0

[
ei(φ−ψ))

ei(φ−ψ)) − 1

∞∑
l=1

al

(
einl(φ−ψ) − einl−1(φ−ψ)

)
+ eiφ

(
ei(φ−ψ)

1 − ei(φ−ψ) − κ(ei(φ−ψ))
)]

f(eiψ) dψ,

where κ(z) =
∞∑
k=1

znk . For instance, if all nk = k, k ∈ N, that is the operator is diagonal, we get the 

kernel of the form 
∞∑
l=1

ale
il(φ−ψ). If A is not diagonal then the corresponding integral operator is not a 

convolution operator.
(d) Let A = {ai−j}i,j∈Z be the double sided Toeplitz operator then the integral operator corresponding to 

D(A) will have kernel

ei(φ−ψ)

1 − ei(φ−ψ)

∑
k∈Z

ake
ikφ.

(e) Let A = {ai−j}∞i,j=1 be the Toeplitz operator. Then the integral operator corresponding to D(A) will 
have kernel

∞∑
m,n=1

am−ne
i(mφ−nψ).

The following corollary gives a one-to-one connection between the bilinear form of the operator A and 
its Jordan-Schwinger image.

Corollary 3.6. We have the following representation for A

< Af, g >= ∂(f)D(A)∂̄(g) = ∂(f)V ∗F (S+
0 , (S+

0 )∗)V ∂̄(g).

For an operator A we denote σ(A) (corr. σp(A), σres(A)) its spectrum (corr. point spectrum, residue 
spectrum). The following Lemma will show how the spectra of A and its different parts connect to those of 
D(A). Indeed we see that D(A) is rather related to A∗ from spectral point of view.

Lemma 3.7. For A ∈ L(V, V ) we have

σp(A) ⊂ σres(D(A)) ∪ σp(D(A)), σp(A∗) ⊂ σp(D(A)).

Moreover,
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σp(D(A)) ⊂ σres(A) ∪ σp(A).

If, in addition, V is a Frechet space then

σ(A) = σ(D(A)).

Furthermore, if V is a separable Banach space with separable dual then we have

D(A∗) = D∗(A).

Proof. (a) If λ ∈ σp(A) and, consequently, Af = λf, f ∈ V , then we have ∂(f)D(A) = λ∂(f) by Lemma 
7.3 in [1]. Hence

∂(f)(D(A) − λ Id) = 0, f �= 0

and the image of the operator (D(A) − λ Id) is not dense in H.
(b) Similarly to (a), for λ ∈ σp(A∗) and a corresponding eigenvector g ∈ V ∗ we have by Lemma 7.3 in [1]

that

(D(A) − λ Id)∂̄(g) = 0.

Consequently, λ ∈ σp(D(A)).
(c) If λ ∈ σp(D(A)) and ψ is a corresponding eigenvector then for any f ∈ V we have by Lemma 7.3 in [1]

that

∂(Af)ψ = λ∂(f)ψ,

i.e. ∂((A − λ Id)f)ψ = 0, f ∈ V . Thus an image of the operator (A − λ Id) is not dense in V .
(d) Follows from Corollary 7.5 in [1].
(e) To show the equality D(A∗) = D∗(A) it is enough to notice that by the classical result of Markushevich 

[11] there exists a shrinking Markushevich basis. �
Remark 3.8. In the theorems, lemmata and corollaries before, in which we discussed the spectrum, we did 
not assume that the operator is normal, symmetric or has any other properties than being bounded in 
locally convex topological separable Hausdorff space. In particular A just needs to fulfill that it is weighted 
Hilbert-Schmidt operator on a space with a biorthogonal system, see the definition of the norm in (3.3).

Corollary 3.9. Assume that V is a separable Banach space. If A ∈ L(V, V ) ∩HS(r,p) is a compact operator, 
then D(A) is compact. Furthermore, if A belongs to Schatten class with regularity p ≥ 1, then D(A) belongs 
to Schatten class with the same regularity p.

Proof. Let A ∈ HS(r,p) be a compact operator. Then D(A) ∈ L(Hr
+(K), Hp

+(K))) and can be approximated 
by finite rank projections in the same norm by inequality (3.4). Thus D(A) is compact. By Lemma 3.7
σ(D(A)) = σ(A) = σp(A) ∪ {0} and, moreover, σp(D(A)) ⊂ σp(A) ∪ σres(A) = σp(A) ∪ {0}. Hence the 
point spectrum of D(A) is discrete with the only possible accumulation point in {0} and subset of the 
point spectrum of A (up to point {0}). Since Schatten class norms depends on the point spectrum only and 
σp(D(A)) ⊂ σp(A) we get the second part of the result. �
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3.1. Homeomorphic embedding of a countable group G

Let G be a countable group of order |G| (which could be infinity), F(G) a space of all real valued functions 
on G, H a separable Hilbert space of infinite dimension, O(H) the group of orthogonal operators on H and 
{Sg, g ∈ G} the generators of Cuntz algebra O|G| of mutually orthogonal isometries of H. We enumerate 
generators S· with elements of G. We can assume without loss of generality that∑

h∈G

ShS
∗
h = Id.

Definition 3.10. Define D : G → O(H), ∂, ∂̄ : F(G) → O|G|, as follows

D(g) :=
∑
h∈G

ShS
∗
gh, ∂(α) :=

∑
h∈G

α(h)Sh, ∂̄(α) :=
∑
h∈G

α(h)S∗
h, g ∈ G,α ∈ F(G).

The next lemma shows the well-definedness of D on a group.

Lemma 3.11. The map D is a faithful homomorphism of groups:

D(g)D(f) = D(gf), D∗(g) = D(g−1), D(e) = Id, g, f ∈ G. (3.5)

Furthermore,

D(g)∂(α) = ∂(α ◦ g), ∂̄(β)D(g) = ∂̄(β ◦ g−1), ∂̄(β)∂(α) =
∑
h∈G

α(h)β(h), α, β ∈ F(G), g ∈ G. (3.6)

Proof. The result immediately follows from definitions of D, ∂, ∂̄. �
Since the operators D(g), g ∈ G are orthogonal the spectral theorem for normal operators gives that

D(g) =
∫

σ(D(g))

λdEλ(g),

where Eλ(g), λ ∈ σ(D(g)) are spectral projections of D(g). Consequently, for any f ∈ L2(S1) we can define

f(D(g)) :=
∫

σ(D(g))

f(λ)dEλ(g).

In this way, we can expand the group G by adding, for example, all square roots of elements of G.

Remark 3.12. The representation in the Definition 3.10 can be written using the construction of Lemma (2.2)
as follows. Let G be an infinite countable group and K : G → N be an arbitrary enumeration of elements 
of G and S0 : H → H be a shift operator on H then, in the same way as in the Lemma 3.1, we get the 
following formula

D(g) :=
∑
h∈G

S
K(h)−1
0 (S∗

0 )K(gh)−1 − S
K(h)
0 (S∗

0 )K(gh), g ∈ G (3.7)

Every enumeration K can be written as K = σ ◦K0 where K0 is some fixed enumeration and σ : N → N

is a transposition.
Thus the representation (3.7) is characterised by two parameters– shift operator S0 of H and an element 

σ of the group of transpositions.
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Example 3.13. Let G = Z2 ×Z2 be the Klein group with generators a, b and Se, Sa, Sb, Sab be the mutually 
orthogonal isometries of auxiliary infinitedimensional separable Hilbert space H generating Cuntz algebra 
O4. Then we have the following faithfull representation of G:

D(e) := Id,D(a) := SeS
∗
a + SaS

∗
e + SbS

∗
ab + SabS

∗
b ,

D(b) := SeS
∗
b + SbS

∗
e + SaS

∗
ab + SabS

∗
a,

D(ab) := SeS
∗
ab + SabS

∗
e + SaS

∗
b + SbS

∗
a.

Example 3.14. Let G = Z and K : Z → N given by

K(m) :=
{

2m + 1 , m ∈ N ∪ {0}
−2m , m < 0

Then D(0) = I and for m ∈ N,

D(m) =
m∑

k=1
S2k−1

0 (I − S0S
∗
0 )(S∗

0 )2m−2k

+
∞∑

k=m+1
S2k−1

0 (I − S0S
∗
0 )(S∗

0 )2k−2m−1

+
∞∑

n=0
S2n

0 (I − S0S
∗
0 )(S∗

0 )2n+2m, (3.8)

D(−m) = D(m)∗ or, direct calculation gives

D(−m) =
m∑

n=0
S2n

0 (I − S0S
∗
0 )(S∗

0 )2(m−n)−1

+
∞∑

n=m+1
S2n

0 (I − S0S
∗
0 )(S∗

0 )2(n−m)

+
∞∑

n=1
S2n

0 (I − S0S
∗
0 )(S∗

0 )2n+2m−1. (3.9)

Notice that, we have D(m) = D(1)m, m ∈ N and Lemma 3.11 (identity (3.6)) implies that D(m) acts as 
shift on the sequence α = {αk}k∈Z (represented by operator ∂(α)).
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