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ABSTRACT: The development of innovative active food packaging is a promising strategy to mitigate food loss and waste while
enhancing food safety, extending shelf life, and maintaining overall quality. In this review, Pickering emulsions with essential oils are
critically evaluated as active additives for sustainable food packaging films, focusing on their antimicrobial and antioxidant properties,
stabilization mechanisms, and physicochemical performances. A bibliometric approach was used to contextualize the current
research landscape and new trends. Data were collected from the Web of Science and Scopus databases to find studies published
between 2020 and 2024. The analysis of 51 articles shows that cinnamon, clove, and oregano are the most used essential oils, while
cellulose and chitosan are the predominant polymer matrices. Pickering emulsions as stabilizers in food science represent a step
forward in sustainable emulsion technology. The incorporation of essential oils into biobased films via Pickering emulsions can
improve the mechanical and barrier properties, antimicrobial and antioxidant activities, and shelf life of foods. This approach offers a
natural, environmentally friendly alternative to conventional materials and is in line with the 2030 Agenda goals for sustainability and
responsible consumption. Recent advances show that composite particles combining polysaccharides and proteins have higher
stability and functionality compared to single particles due to their optimized interactions at the interfaces. Future research should
focus on developing scalable, cost-effective production methods and conducting comprehensive environmental testing and
regulatory compliance, particularly for nanotechnology-based packaging. These efforts will be crucial to drive the development of
safe and effective biobased active food packaging.

1. INTRODUCTION
The Food and Agriculture Organization (FAO) estimates that
approximately one-third of the edible food produced globally
for human consumption�equivalent to 1.3 billion tonnes
annually�is lost or wasted. This represents not only a moral
and economic failure but also an inefficient use of natural
resources that must be addressed to resolve cross-cutting issues
essential for achieving the 2030 Agenda.1

The development of active packaging, a technology designed
to interact intentionally and positively with food, has emerged
as a promising strategy to mitigate food loss and waste, extend
shelf life, and improve food safety and quality. Food packaging

systems with bioactive components can provide a variety of
functions, such as moisture and oxygen absorption, antioxidant
effects, free radical scavenging to mitigate oxidation, and
inhibition of microbial growth. These effects can either be
inherent to the base material of the packaging or introduced by
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the addition of bioactive compounds, such as plant extracts and
essential oils that functionalize the packaging. By improving
the performance of the material, this approach not only
extends shelf life and reduces food loss and waste but also
promotes sustainability.2−4

Active functionalities can be achieved through various
application methods, such as using sachets with active
ingredients in the packaging, incorporating active compounds
into the packaging material, or coating food directly with active
suspensions. The incorporation of active components into food
packaging systems creates a dynamic, continuous interaction
between the packaging, the food, and the external environ-
ment. The packaging serves not only as a protective barrier but
also as an active system capable of releasing or absorbing
certain substances such as moisture, gases, or antioxidants to
create suitable internal conditions. At the same time, the food
interacts with the packaging through processes such as gas
exchange, moisture transfer, or the migration of aromas and
compounds that can affect its freshness, safety, and quality.
External environmental influences such as temperature,
humidity, and oxygen content also influence these interactions
and affect both the performance of the packaging and the
stability of the food. This synergistic three-way interaction
extends the shelf life of the product, inhibits microbial growth,
and preserves its sensory and nutritional properties throughout
the supply chain�from storage and transportation to market-
ing and final consumption.4,5

Food packaging is crucial for preserving safety and quality,
and beyond that it has the potential to advance into active
packaging, offering enhanced functionality. However, conven-
tional petroleum-based synthetic plastics, widely used for food
packaging, contribute to resource depletion, environmental
pollution, and health problems due to their complex and costly
recycling process, low biodegradability, and the diffusion of
toxic additives and micro- and nanoplastics.6 To address this
challenge, researchers are exploring biodegradable and
biobased materials as viable alternatives for packaging solutions
that not only align with sustainability goals but also meet
growing consumer demand for safe, fresh food and clean labels,
as well as functional packaging with minimal environmental
impact.7,8

In the development of a new generation of food packaging,
the focus is on research into environmentally friendly materials
from renewable sources. Flexible biobased films, primarily
composed of biopolymers such as polysaccharides, proteins,
and lipids, provide a sustainable matrix for the incorporation of
natural active agents.4,9,10 Adding essential oil (EO), bioactive
compounds, or other functional ingredients to the film-forming
suspension (FFS) is a viable way to enhance the antioxidant
and antimicrobial properties of biobased films.3,8 This
approach contributes to achieving the desired active properties
in food packaging materials.2 However, EOs are highly volatile
and susceptible to oxidation, light, and thermal degrada-
tion.11,12 In addition, when free EO is mixed directly with a
FFS or added in the form of conventional emulsions, it tends
to be rapidly released, which can reduce the antimicrobial or
antioxidant efficacy of the packaging over the shelf life of the
food product, posing a challenge for its incorporation into the
film-forming process.13,14 To overcome this challenge, recent
approaches involve encapsulating these natural compounds
with colloid particles before adding them to the FFS.15

Therefore, the Pickering emulsion (PE), an emulsion stabilized
with biopolymer particles, is the most suitable technique. PE is

characterized by higher coalescence stability, stronger
protection of the encapsulated compound, lower sustained
release rate, safety, biodegradability, and biocompatibility.16,17

This review aims to provide a comprehensive analysis of
Pickering emulsions with essential oils (EOPE) as innovative
active additives for sustainable packaging films, highlighting
their potential to improve food safety and quality. By
integration of a bibliometric assessment, the current research
landscape and trends in the field of EOPE-functionalized
packaging are contextualized. In this study, the role of essential
oils as natural antimicrobial and antioxidant agents, the
stabilization mechanisms of Pickering emulsions with different
particle stabilizers, and the physicochemical properties and
bioactive performance of EOPE-based packaging systems are
discussed. The paper briefly outlines some legal and regulatory
considerations for innovative packaging solutions, emphasizing
compliance with safety regulations. It also provides valuable
insights into current research, highlighting the potential of
these solutions as sustainable alternatives for active food
packaging systems.

2. METHODS
2.1. Search Strategy and Selection Criteria. In order to

analyze recently published studies on EOPE, stabilizer
particles, and their performance in sustainable functionalized
food packaging films, bibliometric analysis was carried out. The
data for this research were collected on March 23, 2024, from
the Web of Science (WoS) and Scopus databases.18,19 The
searches were conducted using the following keywords: (“Bio-
based film” OR “Biobased film” OR “Active film” OR
“Biopolymer” OR “Sustainable packaging” OR “Biodegradable
film” OR “Active packaging film” OR “Edible film” OR
“Bioactive film”) AND (“Essential oil” OR “Essential-oil”)
AND (“Pickering Emulsion”). Initially, articles published in the
last 5 years, from 2020 to 2024 up to the research date, were
selected. The articles were then screened by title and abstract,
followed by full-text analysis, to identify which studies should
be included in the bibliometric analysis. To this end, exclusion
criteria comprised undergraduate works, dissertations, theses,
and works presented in congresses or symposia, as well as
those included in Annals. In addition, studies in languages
other than English, reviews, and case studies such as economic
evaluations, studies that did not use essential oils, studies that
did not use EO to develop PE, or studies that developed only
coatings instead of films were also excluded. Thus, the articles
selected for this bibliometric study included (a) original
research articles and (b) research that focused on the addition
of PE based on EO in the formulation of sustainable films.

3. RESULTS AND DISCUSSION
3.1. Pickering Emulsions Containing Essential Oils as

Active Additives for Sustainable Packaging Film:
Contextualization and Bibliometric Assessment. Incor-
porating Pickering emulsions containing essential oils (EOPE)
with core−shell structures can be a feasible alternative to
produce active food packaging films.20 These films can be used
to release bioactive compounds in a controlled manner,
enhancing antimicrobial and antioxidant properties to fulfill the
requirements of food packaging systems for storage, trans-
portation, and preservation.21

The Web of Science (WoS) database identified 85 articles
from which 47 articles were selected. Similarly, the Scopus
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database identified 37 articles, of which 30 were selected. After
the selection criteria were applied, 51 articles, excluding
duplicates, from 122 records in WoS and Scopus databases
were included in the bibliometric analysis. Among the 51
articles published over the last five years and included in the
bibliometric data combination, cinnamon (13) was the most
studied EO, followed by clove (9) and oregano (7). In
addition, the most used solid particle Pickering stabilizer was
cellulose (17), followed by zein (6) and the whey protein
isolate (WPI)-inulin complex (6). On the other hand, chitosan
(10), konjac (6), and gelatin (6) were the most used polymer
matrices to which EOPE was added (Figure 1).
3.2. Essential Oils and Their Potential Use for Food

Safety and Quality Assurance. EOs are concentrated,
volatile, hydrophobic liquids derived from various parts of
aromatic plants or fruits as secondary metabolites.22,23 These
parts include roots, stems, seeds, bark, leaves, and flowers.22,24

Chemically, EOs are a complex mixture of secondary
metabolites such as monoterpenes, terpenes, terpenoids,
aliphatic compounds, alkaloids, isoflavones, flavonoids, phe-
nolic acids, aldehydes, and carotenoids23,25 with potent
antimicrobial properties against foodborne pathogens such as
Salmonella sp, Listeria sp., and Escherichia coli (E. coli).26−28 A
possible mechanism of action is that these metabolites target
protein groups in the bacterial membrane, altering its
permeability and causing bacterial death.29

The United States Food and Drug Administration has
classified most natural EOs and their extracts as Generally
Recognized as Safe or GRAS due to their nontoxic character-
istics and safety.30 Therefore, due to their strong, wide-
spectrum activity against microorganisms, EOs are widely used
in the food industry as natural preservatives to increase the
shelf life of food products such as meat, fruits, vegetables, and
dairy.31 Examples of EOs with antimicrobial and antioxidant
activities are listed in Table 1.
3.3. Pickering Emulsions and Particle Stabilizers.

Emulsions are colloidal systems composed of at least two
immiscible fluids, with one dispersed in the other as small
droplets.16,17 Traditionally, emulsion systems have been

composed of oil and water, which can form three types of
emulsions: oil-in-water (O/W), water-in-oil (W/O), and
complex or multiple emulsions, with O/W emulsions being
the most common.51 However, due to the high surface energy
between the two immiscible phases, emulsion systems are
considered thermodynamically unstable and susceptible to
coalescence over time. Therefore, to ensure that the emulsion
remains stable, a surface-active agent or stabilizer such as a
chemical surfactant is needed.52 Most of the surfactants
commonly used in traditional emulsions, such as hexadecyl-
trimethylammonium bromide, benzalkonium chloride, alkyl-
benzene linear sulfonate,53 Tween 20, Tween 80, Span 20, and
Span 80,54 present a considerable environmental challenge,
particularly in terms of soil and water pollution. Their
nondegradability in the environment gives rise to considerable
concerns regarding sustainability and the health of ecosystems.
Additionally, the potential adverse health effects of these
emulsifiers are dependent on the dosage required to stabilize
the emulsion.53,55 As demand for more sustainable systems
increases, so does interest in using natural and clean-label
ingredients instead of synthetic surfactants.56

PEs are stabilized by solid particles (nano- and micro-
particles) and have been demonstrated to have no toxic effects,
particularly when developed using food-grade biopolymer
particles,14,15 lower cost, and easier recovery properties
compared to conventional surfactants (Figure 2). Solid
colloidal particles can replace surfactants to stabilize oil/
water interfaces.52,56,57 One significant advantage of using
these particles is that they can irreversibly adsorb to an oil/
water interface and prevent droplet coalescence. This property
means that once a particle is at an interface, it will not detach
from it spontaneously, even if there are temperature changes.
This outstanding stability and encapsulation efficiency are
highly desirable and make PE a suitable technology for the
protection and controlled release of bioactive compounds that
are fixed in a given matrix.12,58

Currently, there are several ongoing research studies on the
manufacturing strategy of food-grade particles that can stabilize
PE systems.59 To be feasible as a PE stabilizer, the particle

Figure 1. Schematic overview of bibliometric data on the addition of Pickering emulsions based on essential oils in the formulation of sustainable
films.
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must be partially wettable by both the continuous and
dispersed phases of the system, remain insoluble, present a
low surface charge, and be much smaller than the emulsion
size.52 These particles are classified into single and composite
particles. Although each solid particle has unique inherent
characteristics, such as wettability, size, and shape, which affect
the necessary processing conditions differently, single solid
particles used as stabilizers for PE can be categorized into three
groups based on their origin. These three groups are biological,
inorganic, and organic particles. (i) Biological particles are
derived from natural biopolymers and are usually renewable,
biodegradable, and biocompatible. Examples include cellulose
nanocrystals, carboxymethyl chitosan, pea protein nano-
particles, starch, zein, pectin, and gliadin nanoparticles. These
particles are particularly attractive for the development of
sustainable food packaging due to their functional properties
such as film-forming capacity, mechanical reinforcement,
antioxidant, and antimicrobial activity. In contrast, (ii)
inorganic particles are synthesized from minerals and other
nonorganic sources, such as hydrophilically modified silica,
halloysite clay nanotubes, kaolinite, and shigaite-like layered
double hydroxide particles. These particles offer excellent
thermal stability and barrier properties, making them good
candidates for improving the structural integrity and shelf life
of packaging materials. (iii) Organic particles are usually
synthetic polymers such as poly(caprolactone) block-poly-
(ethylene oxide) diblock copolymers and oligoimide particles.
The choice of the appropriate particle type depends on the
specific functional requirements of the packaging system as
well as sustainability, regulatory compliance, and end-of-life
disposal considerations.55

Due to their hydrophilic nature and other inherent
properties, certain food-grade biopolymer particles, such as
starch, chitosan, and cellulose, exhibit low surface activity at
the oil/water interface, which reduces their applicability.59,60

To overcome such limitations of single particles, composite
particles have become a popular area of research, since they
generally exhibit superior functionality, particularly in terms of
wettability and adsorption behavior, resulting in long-term
stability and providing controlled release, making them more
useful.61,62 Composite particle formations can be achieved

using proteins, polysaccharides, phenolic compounds, or lipids
through solvent mediation and interactions based on the
functional properties of biopolymers, particles, and conditions.
Examples of composite particles include the following: (I)
water-soluble protein-polysaccharide particles, pea protein
isolate-high methoxyl pectin and whey protein isolate-dextran;
(II) water-insoluble protein-polysaccharide particles, zein-gum
arabic and zein-propylene glycol alginate; (III) water-soluble
protein-water insoluble polysaccharide particles, soy protein
isolate-bacterial cellulose nanofibers, soy protein isolate-
chitosan, and pea protein isolate-chitosan; (IV) water-insoluble
protein-water insoluble polysaccharide particles: zein-chitosan
and gliadin-chitosan.63

3.4. Properties and Applications of Pickering
Emulsions Containing Essential Oils Functionalized
Packaging. Among the 51 papers included in this
bibliometric analysis published in the last five years, cinnamon,
clove, and oregano EO were the most studied, with 13, 9, and
7 studies, respectively. The growing interest in cinnamon and
clove oils is due to their remarkable bioactive properties, which
make them attractive candidates for use in active food
packaging. Both oils are recognized as safe food additives
and are known for their strong antioxidant capacity and broad-
spectrum antimicrobial activity against a variety of food-borne
microorganisms. Their classification as “Generally Recognized
as Safe” (GRAS) increases their appeal as a natural alternative
to synthetic preservatives, responding to consumer demand for
environmentally friendly packaging solutions.4,65,67,68 The
incorporation of essential oils such as cinnamon, clove, and
oregano into packaging films has the potential to improve both
bioactivity and functional properties. These oils can contribute
to improved mechanical strength and reduced water vapor
permeability, which could help protect food by limiting
moisture transfer and microbial contamination.4,64,68,69

The incorporation of PE based on cinnamon EO (CEO)
into collagen films, coupled with oxidized mulberry extract
(OME) as a functional enhancer, significantly improved the
mechanical and barrier properties of the films. The tensile
strength increased from 79.18 to 106.35 MPa, which increased
the durability of the films, while the water vapor permeability
decreased from 2.82 to 2.30 × 10−11 g/(m s Pa) and the water

Figure 2. Schematic representation of particle stabilizers in Pickering emulsions.
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absorption was reduced from 524.57% to 201.28%, reflecting
better moisture resistance. The films also exhibited improved
light-blocking, antioxidant, and antimicrobial properties and
effectively inhibited Escherichia coli and Pseudomonas fluo-
rescens. Applied to fish fillets, the CEO PE/OME film extended
the shelf life of the product by 4 days and preserved its quality
and safety. The film also served as a freshness indicator: it
changed color from red on day 0 to black-green on day 12 (ΔE
> 5), allowing a visual assessment of the freshness of the fish.
These results underline the potential of CEO-based Pickering
emulsion collagen films as multifunctional packaging materials
that combine longer food preservation with real-time freshness
monitoring.4

Wu et al.64 reported that cinnamon EOPE was incorporated
into films made from chayote tuber starch, resulting in
significant changes in film properties. As the concentration of
cinnamon EOPE increased, the tensile strength (TS)
decreased from 5.44 to 2.59 MPa, while the elongation at
break (EB) increased, reaching 70.8% at 4% EOPE. This
decrease in TS is due to the disruption of the structural
integrity of the film, which impaired the formation of hydrogen
bonds between the starch molecules. The increase in the EB is
probably due to the plasticizing effect of the free cinnamon
EO, which increases the flexibility of the polymer chains. The
water resistance of the films improved with the addition of
cinnamon EOPE, especially at concentrations below 2%. This
improvement was attributed to the formation of hydrogen
bonds between the hydrophilic starch matrix and the
hydrophobic particles. The moisture content (MC) of the
films decreased slightly from 21.20% to 19.49% due to the
hydrophobic properties of cinnamon-EO. However, at higher
concentrations (3% and 4%), a slight increase in water
solubility was observed, which is probably due to the leaching
of the EO. The water vapor permeability (WVP) of the films
was reduced by the addition of cinnamon EOPE, with the
lowest value (1.24 × 10−10 g/(m s Pa)) observed at 2%. This
was attributed to the increased resistance to the movement of
water molecules due to changes in the internal structure of the
film. These results suggest that cinnamon EOPE can
significantly improve the functional properties of starch-based
films, contributing to their effectiveness in food packaging.

Yao et al.66 investigated the effects of cinnamon EOPE
stabilized with zein and carboxymethyl tamarind gum on the
properties of hydroxypropyl methylcellulose films, also
examining the influence of the degree of carboxymethylation.
The influence of packaging on the shelf life of cherry tomatoes
was also investigated. The droplet size of cinnamon-EOPE
decreased significantly from about 93.03 to 10.59 μm as the
degree of substitution of carboxymethyl-tamarind gum
increased, which promoted a more uniform distribution of
droplets in the film matrix. The incorporation of cinnamon
EOPE into the hydroxypropyl methylcellulose films resulted in
a significant increase in TS from 8.46 to 25.41 MPa, while the
water vapor permeability decreased from 6.18 × 10−10 to 4.24
× 10−10 g/(m s Pa), indicating improved barrier properties.
The films also showed improved UV protection without
compromising transparency, making them ideal for use in food
packaging. The films enriched with cinnamon EOPE also
showed antibacterial activity against Escherichia coli and
Staphylococcus aureus compared to pure HPMC films. The
antioxidant activity was also significantly increased. The
EOPE-added films helped to reduce the weight loss of cherry
tomatoes compared with unpackaged control tomatoes while

slowing the decrease in total soluble solids and titratable
acidity, indicating improved preservation. The films con-
tributed to an extended shelf life of the tomatoes by effectively
delaying spoilage over a 20 day storage period.

In a study by Zhao et al.,67 antimicrobial films were
produced by incorporating clove EOPE into a matrix of potato
starch and poly(vinyl alcohol). The clove EOPE exhibited a
zeta potential of −21.7 mV, a droplet size of 186 nm, a
polydispersity index of 0.104, and an encapsulation efficiency
of 57.9%. These results confirm the successful formation of the
emulsion. The clove EOPE was uniformly distributed in the
matrix of potato starch and poly(vinyl alcohol), resulting in a
smooth and homogeneous film structure. The mechanical
properties of the films were significantly affected by the
hydrogen bonding and electrostatic interactions between the
emulsion and the matrix, resulting in a decrease in TS from
22.4 to 6.80 MPa and a decrease in EB from 375.3% to 91.6%.
The films were used for the preservation of pork and were
found to provide an extended preservation time of 6 to 10 days
and exhibit greater inhibition of Escherichia coli compared to
Staphylococcus aureus. The incorporation of clove EOPE into
the films showed a significant antimicrobial effect and potential
to improve the preservation of pork.

Bangar et al.68 explored the potential of cellulose nanocryst-
als (CNCs) derived from kudzu (Pueraria montana) vine,
combined with clove essential oil Pickering emulsions
(EOPE), to enhance the properties of starch-based films.
The incorporation of clove EOPE into a composite film of
pearl millet starch and kudzu CNCs led to significant
improvements in mechanical properties, with TS increasing
from 4.02 to 16.2 MPa, Young’s modulus rising from 84 to 398
MPa, and EB decreasing from 48.9% to 30.4%. Moreover, the
composite film demonstrated excellent antimicrobial activity
against Staphylococcus aureus and Escherichia coli and was
highly effective in extending the shelf life of red grapes,
maintaining freshness for up to 15 days at 5 °C.

In another study,69 the development of films based on
konjac glucomannan activated by oregano EOPE stabilized
with zein-pectin nanoparticles was investigated. The results
showed that the hydrophilicity and hydrophobicity of the
konjac glucomannan films can be modulated by adjusting the
oregano-EOPE concentration, which has a significant effect on
the mechanical and barrier properties of the films. The films
with oregano-EOPE to konjac glucomannan ratios of 50:50
and 60:40 exhibited the highest tensile strength (30.98 MPa)
and water contact angle (93.56°), respectively, indicating
better mechanical properties and higher hydrophobicity. The
films showed an effective slow release of the EO for up to 21
days, which underlines their potential for food preservation.
The water vapor permeability of the pure konjac-glucomannan
films was 5.30 × 10−1 g/(m s Pa), while the oregano-EOPE-
added films, especially those containing 60% oregano-EOPE
content, showed a significant decrease in WVP to 1.16 × 10−1

g/(m s Pa), indicating an improved water vapor barrier.
Increasing the oregano EOPE concentration from 0% to 60%
resulted in a steady decrease in WVP, which was attributed to
the formation of a more compact network and a higher
crystallinity of the films. The addition of oregano EOPE to
konjac-glucomannan films resulted in suitable films for fruit
preservation.

Some recently published studies on the properties of EOPE-
functionalized films applied to various foods are listed in Table
2.
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As Table 2 shows, EOs are interesting candidates for use as
natural antioxidant and antimicrobial additives for the
functionalization of food packaging.30,83 However, they are
usually highly sensitive to oxidative conditions and elevated
temperatures, which can trigger chemical instability, volatiliza-
tion, oxidation, and susceptibility to degradation,13,31,84

thereby posing several challenges for their incorporation into
the film-forming process.69,85 However, incorporating EO into
biobased films through PE has been shown to enhance their
stability while providing multiple functional benefits, including
improved antioxidant capacity, antimicrobial activity, and
extended shelf life of packaged products (Figure 3).

Ongoing research continues to investigate various methods
for developing food-grade particles that stabilize Pickering
emulsions. From the recent studies in Table 2, individual
particles such as corn nanostarch,65 cellulose nanocrystals71,77

or nanofibers,80,82 zein78 and collagen72,73 are more commonly
used as PE stabilizers, although the benefits of composite
particles have been reported in the literature. Some work has
shown that the combination of polysaccharides and proteins is
more useful, as they generally have higher long-term
stability.59,60

Polysaccharides generally have hydrophilic properties and,
therefore, have limited surface activity at the oil−water
interface. An effective strategy to solve this problem is the
combination of polysaccharides and proteins, which optimizes
the behavior at the interface by balancing their hydrophilic and
hydrophobic properties, thus increasing the stability and
functionality of emulsified systems.59,60 On the other hand,
encapsulation by the PE technique may reduce the
antibacterial activity of the EOs to a certain extent due to
the controlled release of the encapsulated active ingredients.
However, this controlled release may also help to maintain
functional activity during long-term storage.20,64

Li et al.59 modified pea protein and chitosan to produce
composite particles that effectively stabilize a Pickering
emulsion with a high-volume fraction of oil phase (75% corn
oil). The incorporation of polysaccharides such as chitosan
into proteins such as pea protein significantly improved the
emulsifying properties and resulted in a stable emulsion with a
low susceptibility to coalescence and phase separation. This
stability is attributed to the strong interactions and steric
repulsion by the polysaccharide-protein complexes at the oil−
water interface, which improves the structural integrity of the

emulsion. The optimized stability of these emulsions allows
them to be used as effective fat substitutes in various foods,
such as pork sausages, without compromising texture or
sensory properties.

In addition, the use of such emulsion systems allows the
encapsulation and controlled release of bioactive compounds,
which improves their bioavailability and chemical stability
during processing and storage.60 This dual function of
improving emulsion stability and providing nutrients makes
Pickering emulsions of polysaccharides and proteins highly
beneficial for the development of healthier foods with
improved quality characteristics. The blending of polysacchar-
ides and proteins in Pickering emulsions is therefore a
promising strategy for innovative food packaging and
formulation solutions.60

3.5. Legal Requirements for the Market Entry of
Innovative Packaging Concepts Containing Pickering
Emulsion. Due to their antioxidant and antimicrobial
potential, the PE described in this paper are promising
resources for the design of innovative active packaging
concepts. However, before an active packaging concept can
be successfully introduced to the market, it must be safe and
comply with regulatory requirements.86 In Europe, the central
regulation governing materials that come into direct contact
with food is regulation (EC) No. 1935/2004. This regulation
aims to oversee materials such as packaging that directly touch
food and their introduction to the market while also ensuring
the protection of human health (Reg (EC) No. 1935/2004).
The European Union allows the use of active packaging as long
as it is safe, effective, and complies with all the requirements of
regulations No. 1935/2004 and No. 450/2009, which concerns
“active and intelligent materials and articles intended to come
into contact with food” (Reg (EC) No. 450/2009).

As described in this paper, nanoparticles can be used as
stabilizers for PE. The use of substances in nanoform is not
explicitly mentioned in regulation (EC) No. 1935/2004.
Nevertheless, regulation (EU) No. 10/2011, which specifically
regulates plastic materials in direct contact with food, allows
their use as long as they are listed in and used according to a
positive list provided within the regulation (Reg (EU) No. 10/
2011). Nanoform substances have different chemical and
physical properties compared to their conventional counter-
parts, mainly due to their reduced particle size, larger surface
area, and higher reactivity. Recognizing these differences, Reg

Figure 3. Schematic representation of the advantages of using biobased packaging for food with added essential oil by Pickering emulsion.
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(EU) No. 10/2011 requires all nanoscale substances to
undergo a case-by-case risk assessment by the European
Food Safety Authority (EFSA). This tailored assessment
ensures a comprehensive understanding of the unique
toxicological profiles associated with nanomaterials before
they are approved for food contact applications. The
assessment process includes several crucial steps: (i) a detailed
characterization of physicochemical properties, including
particle size, morphology, and surface chemistry; (ii) a
toxicological evaluation to assess potential mutagenic, carcino-
genic, and reproductive toxicity; (iii) migration testing to
quantify the transfer of nanoparticles from the packaging into
the food matrix; (iv) an exposure assessment to establish safe
consumption levels. Only nanoparticles that are classified as
safe after this rigorous assessment will be included in the
Union list of authorized substances, subject to certain
conditions for their use.

4. CONCLUSION AND PERSPECTIVES
Pickering emulsions, stabilized by various solid particles and
macromolecules, have emerged as a promising alternative for
incorporating and ensuring the sustained release of essential
oils into biobased polymer matrices.

To ensure the integrity of the film during storage and
transportation and to prevent the growth of microorganisms,
an effective approach is to increase the microstructural density
of the films by improving the polymer matrix cross-linking.
This improvement can be accomplished through physical,
chemical, or enzymatic methods. Chemical modifications
involve the use of additives to cross-link the polymer chains.
Enzymatic modifications catalyze the binding of natural
mediators to the side chain groups of the polymer matrix
molecules.4 Alternatively, low-pressure plasma (LPP) provides
a nonthermal option for enhancing the adhesion of active
ingredients and the physical properties of packaging materials.
Treatment with LPP has been shown to improve material
properties by introducing new functional groups on the
surface, thereby enhancing mechanical and hydrophilic proper-
ties.76 Therefore, biobased food packaging systems function-
alized with EOPE show significant potential for improving
food preservation. These systems enhance antimicrobial
activity against common food contaminants, including Listeria
monocytogenes, S. aureus, and E. coli. They also exhibit
antioxidant properties, including ABTS and DPPH radical
scavenging abilities. Additionally, they promote sustainability
by reducing the reliance on synthetic materials and effectively
extending the shelf life of packaged foods.

The successful implementation of EOPE-based packaging in
commercial applications requires a multidisciplinary approach
that addresses critical challenges such as scalability, regulatory
compliance, and environmental impact. To bring EOPE film
production from the laboratory to industry, formulation and
processing techniques must be optimized to ensure cost
efficiency and compatibility with existing packaging machinery.
In addition, the development of standardized protocols to
assess the migration of active ingredients and nanoparticles in
food matrices is essential to ensuring consumer safety and
regulatory approval. Collaboration with regulatory authorities
and industry representatives can facilitate the creation of safety
guidelines and speed up the commercialization process.

It is anticipated that the commercial use of antimicrobial and
antioxidant materials derived from natural resources will
increase, leading to enhanced safety and longer shelf life.

Thus, future research endeavors should prioritize the
incorporation of intelligent systems with active compounds
through the utilization of nanotechnological methodologies.
This approach may prove to be an effective means of reducing
the potential negative impact on the polymer matrix structure
and mechanical properties, especially in the case of
biopolymer-based matrices.

Equally important is the assessment of the environmental
footprint of EOPE-based packaging through comprehensive
life cycle assessments (LCA). Such assessments can help
identify opportunities for improvement, such as improving the
biodegradability of the films and integrating circular economy
principles into their design and disposal. Consumer acceptance
studies and market analysis are also critical to understanding
the demand for these sustainable packaging solutions and
matching their characteristics to consumer expectations.

The ongoing advancements in biotechnology, analytical
chemistry, microelectronics, and materials science offer the
potential to create innovative, intelligent packaging solutions.
Furthermore, the migration of packaging constituents,
particularly in the case of nanoparticles, must be subjected to
rigorous toxicological analysis and evaluated against the
established regulatory limits to ascertain their long-term safety
for human health. These developments have the potential to
assist in achieving industrial standards for food safety and
minimizing the environmental impact, thereby facilitating
broader applications of active packaging in the food industry.
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