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Abstract
In many engineering applications, it is necessary to minimize smooth functions plus
penalty (or regularization) terms that violate smoothness and convexity. Specific
algorithms for this type of problems are available in recent literature. Here, a smooth
reformulation is analyzed and equivalence with the original problem is proved both
from the points of view of global and local optimization. Moreover, for the cases in
which the objective function is much more expensive than the constraints, model-
intensive algorithms, accompanied by their convergence and complexity theories, are
introduced. Finally, numerical experiments are presented.
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1 Introduction

We are concerned with mathematical problems in which the objective is to find a
point x ∈ X such that:

F(D(x), E(x)) = 0. (1)

In general, X is a subset of a finite-dimensional space. Constrained and uncon-
strained minimization problems may be formulated in this way, with D(x) and
E(x) representing objective functions and constraints. Problems of the form (1) are
almost always solved by means of iterative methods. This means that, given an
approximation xk to a solution, the approximation xk+1 is obtained by solving:

MF,xk (MD,xk (x), ME,xk (x)) = 0, (2)

where MF,xk , MD,xk , and ME,xk are models of F , D, and E built using knowledge
available at xk . For example, if we deal with the constrained optimization problem:

Minimize f (x) subject to g(x) ≤ 0, (3)

we may identify, say, f with D, g with E and F with the difference between f (x)

and the minimum for each feasible point x, in such a way that problem (2) may
consist on the minimization of the quadratic Taylor approximation of f (perhaps plus
a Lagrangian term) subject to the linearization of the constraints. This is, essentially,
the idea of sequential quadratic programming methods [29].

In many cases, the arguments of F involve a function that is difficult to evaluate
(D(x)) and a function that is easy to evaluate (E(x)). In these cases, the computer
work associated with the solution of (2) may be overwhelmingly dominated by the
evaluation of D(xk) (including, possibly, its derivatives). Moreover, even

MF,xk (MD,xk (x), E(x)) = 0 (4)

and
F(MD,xk (x), E(x)) = 0 (5)

may be solvable with a computational cost essentially equal to the cost of computing
D(xk). For example, in the constrained optimization problem, the evaluation of the
objective function could involve a huge collection of data whereas the constraints
may be easy to evaluate. In this case, it is probably convenient to employ an iterative
scheme based on (5) by means of which we solve, at each iteration, a powerful model
of the objective function subject to the true constraints. This is the point of view of
[26], where the complexity of a general scheme for constrained optimization based
on high-order models of the objective function is analyzed.

The objective of this paper is to exploit the modeling idea (5) with respect to the
minimization of nonconvexly regularized problems. The equivalence of this problem
with a constraint optimization problem in which the objective function is generally
much more expensive than the constraints will be exploited and it will be proved that,
for some Taylor-like models with mild assumptions, the resulting method enjoys the-
oretical convergence and complexity properties that suggest a good computational
behavior. Some illustrative examples will be shown that tend to corroborate this
hypothesis.
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Given C ⊂ R
n, continuously differentiable functions f : Rn → R and g : Rn →

R
d , a penalty function π : R → R+ such that π(t) = 0 if t ≤ 0, and a regularization

parameter σ > 0, we consider the constrained optimization problem given by:

Minimize f (x) + σ

d∑
j=1

π(gj (x))

subject to x ∈ C. (6)

Problem (6) may arise in the process of solving problem:

Minimize f (x) subject to g(x) ≤ 0, x ∈ C (7)

by means of penalization with respect to the constraints g(x) ≤ 0. In this case,
we expect that a solution to (7) should emerge when σ is sufficiently large or, at
least, when σ → ∞ (see, for example, [29]). Many times, the objective function
of (6) is smooth and π ′(0) = 0. However, we are especially interested in the case
in which π ′(0) > 0 and, above all, in the case in which π ′(0) does not exist and
limt→0+ π ′(t) = ∞.

For several reasons, solutions to (6) for different values of σ may be meaningful
independently of its connection with (7). In fact, many times, the solution to (6)
when σ → ∞ is not relevant and the fulfillment of all the constraints gj (x) ≤ 0 is
not desirable or, perhaps, impossible. Instead, the ideal asymptotic problem that one
wishes to solve is, roughly speaking:

Minimize f (x) subject to x ∈ C (8)

with the compromise that the number of indices j such that gj (x) > 0 should be
small. For example, a typical portfolio problem could require the minimization of the
expected loss f (x) subject to standard constraints x ∈ C and the additional require-
ment that the number of scenarios under which shortfall occurs should be as small as
possible [12]. We expect to achieve this objective employing penalty functions that
are concave for t ≥ 0 and such that limt→0+ π ′(t) > 0.

The case in which C is polyhedral and π(t) = tq if t ≥ 0, with q ∈ (0, 1), has
been considered in [5, 24]. The problem:

Minimize f (x) + σ

n∑
j=1

|xj |q subject to x ∈ C, (9)

called Lq -regularized optimization problem, has been the object of many studies
starting from Tikhonov [30] and the enormous literature on inverse problems. The
case q = 2 corresponds to the most classical regularization, intended to handle prob-
lems in which the mere minimization of f (x) onto C is very ill-conditioned and,
so, its exact solution is, frequently, meaningless. The case q = 1 preserves the
possible convexity of f (x) and has been shown to induce sparse regularized mini-
mizers of f (x) (see [13]). With q < 1 possible convexity of the objective function
is lost but the tendency to find sparse solutions x is even more emphatic. Writ-
ing gj (x) = xj and gn+j (x) = −xj for j = 1, . . . , n and defining π(t) = tq

for all t ≥ 0 problem (9) takes the form (6); so (9) is a particular case of the
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problem studied in this paper. Practical applications of problems of the form (6)
include machine learning [18], information theory [20], image restoration [5], signal
processing [4], variable selection [19], and others. Interesting examples were given
in [24, Appx.1].

The rest of this paper is organized as follows. In Section 2, we introduce a smooth
reformulation of (6) and we prove its equivalence with the original problem. In
Section 3, we derive optimality conditions using the reformulation. In Section 4,
we introduce a model-intensive algorithm for solving the problem and we prove
its convergence and complexity. In Section 5, we introduce a specific algorithm
for the case in which the constraints are linear. In Section 6, we present numer-
ical experiments. Finally, in Section 7, we state conclusions and lines for future
research.

Notation ‖·‖ denotes an arbitrary norm. R+ denotes the set of nonnegative elements
of R. The ith component of a vector v is denoted vi or [v]i . If v ∈ R

n is a vector with
components vi , v+ is the vector with components max{0, vi}, i = 1, . . . , n.

2 Reformulation

A smooth reformulation of problem (6) will be introduced in this section. The penalty
functions employed in this work will be required to satisfy the assumptions below.

Assumption A1 π is continuous, concave, strictly increasing for t ≥ 0. Moreover,
π ′(t) exists and is continuous for all t > 0.

Assumption A2 The restriction of π to R+ admits an inverse π−1 : R+ → R+,
the derivative (π−1)′(t) exists for all t > 0, and the right derivative (π−1)′(0)+ also
exists.

Assumptions A1 and A2 are satisfied by penalty functions in practical applica-
tions such as ridge regression [21], smoothly clipped absolute deviation penalization
(SCAD) [19], minimax concave penalties (MCP) [31], fraction penalty optimiza-
tion [28], and log-penalty minimization [13]. Note that assumptions A1 and A2 do
not require limt→0+ π ′(t) = ∞, although this property will be interesting for the
purpose of minimizing the number of indices j such that gj (x) > 0.

The possible lack of smoothness of (6) is due to the nonsmoothness of π(t) when
t = 0. Therefore, standard methods based on gradient information for solving (6)
may be inappropriate. In order to avoid this inconvenience, several approaches were
proposed. Among them, we can mention smoothing approximation methods [5, 16,
24], iterative reweighted algorithms [17, 23, 25], and interior point methods [6,
22]. Our proposal, based on a smooth reformulation, has the advantage that stan-
dard well-established algorithms for constrained optimization based on first-order
or higher-order derivative information on the derivatives may be used. This is pos-
sible thanks to the fact that the function π−1 : R+ → R+ is continuously
differentiable.
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Problem (6) is obviously equivalent to:

Minimize f (x) + σ

d∑
j=1

yj subject to yj = π(gj (x)) for j = 1, . . . , d and x ∈ C.

(10)
If yj > π(gj (x)), taking ȳj = π(gj (x)), we obtain that f (x) + σ

∑d
j=1 ȳj ≤

f (x) + σ
∑d

j=1 yj . Therefore, (10) is equivalent to:

Minimize f (x) + σ

d∑
j=1

yj subject to yj ≥ π(gj (x)) for j = 1, . . . , d and x ∈ C.

(11)
As π(t) = 0 if t < 0, (11) is equivalent to:

Minimize f (x) + σ

d∑
j=1

yj subject to yj ≥ 0, yj ≥ π(gj (x)) for j = 1, . . . , d

and x ∈ C. (12)

If yj ≥ 0 and yj ≥ π(gj (x)), since both yj and π(gj (x)) belong to R+ and the
inverse of π onto R+ is increasing, we obtain π−1(yj ) ≥ gj (x). Reciprocally, if
π−1(yj ) ≥ gj (x) and yj ≥ 0, we obtain yj ≥ π(gj (x)) or gj (x) ≤ 0 in which case
yj ≥ π(gj (x)) also holds. Therefore, (12) is equivalent to:

Minimize �(x, y) := f (x) + σ

d∑
j=1

yj

subject to x ∈ C,

gj (x) − π−1(yj ) ≤ 0 for j = 1, . . . , d,

y ≥ 0. (13)

The theorem below shows that a solution to the original problem (6) can be found
by solving its smooth reformulation (13). (The reciprocal is also true, as shown in the
following theorem.)

Theorem 2.1 Suppose that (x∗, y∗) is a local (global) minimizer of (13). Then,
y∗
j = π(gj (x

∗)) for all j = 1, . . . , d and x∗ is a local (global) minimizer of (6).
Reciprocally, if x∗ is a local (global) minimizer of (6) and y∗

j = π(gj (x
∗) for all

i = 1, . . . , d, then (x∗, y∗) is a local (global) minimizer of (13).

Proof Suppose that (x∗, y∗) is a local minimizer of (13). If y∗
j > π(gj (x

∗) and

y∗
j > yj ≥ π(gj (x

∗)), we have π−1(y∗
j ) > π−1(yj ) ≥ gj (x

∗). Therefore, if yi =
y∗
i for all i �= j , we have that (x∗, y) is a feasible point of (13) and �(x∗, y) <

�(x∗, y∗). Therefore, (x∗, y∗) would not be a local minimizer of (13). This implies
that, necessarily, y∗

j = π(gj (x
∗) for all j = 1, . . . , d.
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Let ε > 0 be such that for all (x, y) such that x ∈ C, y ≥ 0, gj (x) ≤ π−1(yj ),
j = 1, . . . , d, ‖x − x∗‖ ≤ ε and ‖y − y∗‖∞ ≤ ε, we have that f (x) + σ

∑d
j=1 yj ≥

f (x∗)+σ
∑d

j=1 y∗
j . By the first part of the proof, y∗

j = π(gj (x
∗)); therefore, f (x)+

σ
∑d

j=1 yj ≥ f (x∗)+σ
∑d

j=1 π(gj (x
∗)). Let ε1 ∈ (0, ε] be such that ‖x−x∗‖ ≤ ε1

implies that |π(gj (x))−π(gj (x
∗))| ≤ ε for all j = 1, . . . , d. Then, if ‖x−x∗‖ ≤ ε1,

f (x) + σ
∑d

j=1 π(gj (x)) ≥ f (x∗) + σ
∑d

j=1 π(gj (x
∗)). This implies that x∗ is a

local minimizer of (6).
Reciprocally, suppose that x∗ is a local minimizer of (6). Therefore, there

exists ε > 0 such that for all x ∈ C such that ‖x − x∗‖ ≤ ε, f (x∗) +
σ

∑d
j=1 π(gj (x

∗)) ≤ f (x) + σ
∑d

j=1 π(gj (x)). Therefore, f (x∗) + σ
∑d

j=1 y∗
j ≤

f (x) + σ
∑d

j=1 π(gj (x)) for all x ∈ C such that ‖x − x∗‖ ≤ ε. Thus, f (x∗) +
σ

∑d
j=1 y∗

j ≤ f (x) + σ
∑d

j=1 yj for all x ∈ C such that ‖x − x∗‖ ≤ ε if yj ≥ 0 and

yj ≥ π(gj (x)) for all j = 1, . . . , d. But, due to the increasing property of π−1 onto
R+, yj ≥ 0 and yj ≥ π(gj (x)) is equivalent to yj ≥ 0 and π−1(yj ) ≥ gj (x). There-
fore, f (x∗) + σ

∑d
j=1 y∗

j is less than or equal to f (x) + σ
∑d

j=1 yj for all (x, y)

satisfying x ∈ C, ‖x − x∗‖ ≤ ε, and the constraints of (13).
The equivalence proof with respect global minimizers is similar.

3 Optimality conditions

Assume that:

C = {x ∈ R
n | H(x) = 0 and G(x) ≤ 0}, (14)

where H : R
n → R

nH and G : R
n → R

nG are continuously differentiable. If
a local minimizer (x∗, y∗) of (13) satisfies a constraint qualification then the KKT
conditions hold at (x∗, y∗). By Theorem 2.1, if x∗ is a local minimizer of (6),
y∗ = π(gj (x

∗)) for all i = 1, . . . , d, and a constraint qualification for (13) is ful-
filled, the KKT conditions are satisfied too. The KKT conditions for (13) obviously
involve both x∗ and y∗. Since y is merely an auxiliary variable, it is interesting to
derive KKT-like conditions in which only the primal variables x∗ are involved. This
is the objective of Theorem 3.1 below, which, in turn, generalizes [15, Corollary 2.2]
and [24] using straightforward optimization arguments.

Theorem 3.1 Let x∗ be a local minimizer of (6) and assume that π satisfies
Assumptions A1 and A2. Define:

I (x∗) := {j | gj (x
∗) < 0}, J (x∗) := {j | gj (x

∗) = 0}, and

K(x∗) := {j | gj (x
∗) > 0}. (15)

Then, x∗ is a local minimizer of the problem:

Minimize f (x) + σ
∑

j∈K(x∗)
π(gj (x)) subject to x ∈ C and gj (x) ≤ 0 ∀j ∈ J (x∗).

(16)
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Moreover, if C is defined by H(x) = 0 and G(x) ≤ 0, where H : Rn → R
nH and

G : R
n → R

nG are continuously differentiable, and the system of equalities and
inequalities:

H(x) = 0, G(x) ≤ 0, gj (x) ≤ 0, ∀j ∈ J (x∗) (17)

satisfies a constraint qualification at x∗ then we have that x∗ satisfies the KKT
conditions of problem (16).

Proof Let y∗ ≥ 0 be such that (x∗, y∗) is a local minimizer of (13). By Theorem 2.1,
y∗
j = π(gj (x

∗)) for all j = 1, . . . , d. If j ∈ I (x∗), we have that gj (x) < 0 for all x

in a neighborhood of x∗. Moreover, y∗
j = 0 in this case. Therefore, (x∗, y∗) is a local

minimizer of:

Minimize f (x)+σ
∑

j /∈I (x∗)
yj subject to x ∈C, yj ≥π(gj (x)) and yj ≥0 ∀j /∈ I (x∗).

So, (x∗, y∗) is a local minimizer of

Minimize f (x)+σ
∑

j /∈I (x∗)
yj subject to x ∈ C, yj =π(gj (x)) and yj ≥0 ∀j /∈I (x∗).

If j ∈ K(x∗), we have that gj (x) > 0 in a neighborhood of x∗ and π(gj (x))

is continuous and differentiable on that neighborhood. Therefore, x∗ is a local
minimizer of the locally smooth problem given by:

Minimize f (x) + σ

⎡
⎣ ∑

j∈J (x∗)
yj +

∑
j∈K(x∗)

π(gj (x))

⎤
⎦

subject to x ∈ C, yj = π(gj (x)) and yj ≥ 0 ∀j ∈ J (x∗).
Since gj (x

∗) ≤ 0 for all j ∈ J (x∗), x∗ is also a local minimizer of:

Minimize f (x) + σ

⎡
⎣ ∑

j∈J (x∗)
yj +

∑
j∈K(x∗)

π(gj (x))

⎤
⎦

subject to x ∈ C, gj (x) ≤ 0, yj = π(gj (x)) and yj ≥ 0 ∀j ∈ J (x∗).
Moreover, since y∗

j = 0 for all j ∈ J (x∗), x∗ is a local minimizer of:

Minimize f (x) + σ
∑

j∈K(x∗)
π(gj (x)) subject to x ∈ C, gj (x) ≤ 0,

yj = π(gj (x)) and yj ≥ 0 ∀j ∈ J (x∗).
Clearly, the variables yj for j ∈ J (x∗) play no role in this problem, so x∗ is a

local minimizer of:

Minimize f (x) + σ
∑

j∈K(x∗)
π(gj (x)) subject to x ∈ C and gj (x) ≤ 0 ∀j ∈ J (x∗).

Then, if the constraints that define C together with the constraints gj (x) ≤ 0, j ∈
J (x∗) satisfy a constraint qualification at x∗, the KKT conditions of (16) hold at x∗.
This completes the proof.
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Observe that (16) is a constrained optimization problem of the form

Minimize fobj(w) subject to hE(w) = 0 and hI(w) ≤ 0, (18)

where fobj : Rn → R, hE : Rn → R
nE , and hI : Rn → R

nI are continuously dif-
ferentiable. It is well known that, independently of constraint qualifications, every
local minimizer w∗ of (18) satisfies the Approximate KKT (AKKT) optimality con-
dition [2, 7], which means that, given εsol > 0, εkkt > 0, εfeas > 0, and εcomp > 0,
there exist w ∈ R

n, λ ∈ R
nE , and μ∈RnI+ such that ‖w − w∗‖ ≤ εsol,

‖hE(w)‖∞ ≤ εfeas, ‖hI(w)+‖∞ ≤ εfeas, (19)

μj ≤ εcomp for all j such that [hI(w)]j < −εfeas, (20)

and

‖∇fobj(w) + ∇hE(w)λ + ∇hI(w)μ‖ ≤ εkkt. (21)

If w ∈ R
n is such that there exist λ ∈ R

nE and μ∈RnI+ fulfilling (19), (20), and (21),
we say that w is an (εfeas/εcomp/εkkt)-AKKT point of (18).

Applying the AKKT definition to (16), we obtain the following result, indepen-
dently of constraint qualifications.

Theorem 3.2 Let x∗ be a local minimizer of (6) and assume that π satisfies Assump-
tions A1 and A2. Let C be defined by H(x) = 0 and G(x) ≤ 0, where H : Rn → R

nH

and G : Rn → R
nG are continuously differentiable. Assume that εsol > 0, εkkt > 0,

εfeas > 0, and εcomp > 0 are arbitrary. Then, there exist x ∈ R
n, λH ∈ R

nH ,
μG ∈ R

nG+ , and μj ∈ R+ for all j such that gj (x
∗) = 0, such that:

‖x − x∗‖ ≤ εsol,

‖H(x)‖ ≤ εfeas, ‖G(x)+‖ ≤ εfeas,

gj (x) ≤ εfeas for all j such that gj (x
∗) = 0,

∥∥∥∥∥∥∇f (x) + σ
∑

gj (x∗)>0

π ′(gj (x))∇gj (x) + ∇H(x)λH + ∇G(x)μG

+
∑

gj (x∗)=0

μj∇gj (x)

∥∥∥∥∥∥ ≤ εkkt,

[μG]j ≤ εcomp for all j such that Gj(x) < −εfeas,

and

μj ≤ εcomp for all j such that gj (x) < −εfeas.

Proof By Theorem 3.1, x∗ is a local minimizer of (16). Then, the thesis follows
from (19), (20), and (21).
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4 Model-intensive algorithms

As we mentioned in Section 2, problem (13) can be solved using standard methods for
smooth constrained optimization. In many applications, the cost of evaluating f (x)

exceeds, by far, the cost of evaluating the constraints. For these situations, “model
intensive” (MI) methods are recommendable. At each iteration of such an algorithm,
a model of the objective function is built and this model is minimized using the orig-
inal constraints (instead of their linear approximations as in SQP and other popular
approaches). The idea is to exploit the model as much as possible so that, hopefully,
it will not be necessary to evaluate the expensive function many times.

The most popular model for an arbitrary sufficiently smooth function f : Rn → R

comes from considering its pth Taylor approximation:

Tp(x̄, x) :=
p∑

j=1

1

j !
(

(x − x̄1)
∂

∂x1
+ · · · + (x − x̄n)

∂

∂xn

)j

f (x̄), (22)

so that:
f (x) = f (x̄) + Tp(x̄, x) + o(‖x − x̄‖p+1). (23)

Observe that T1(x̄, x) = ∇f (x̄)T (x − x̄) and T2(x̄, x) = ∇f (x̄)T (x − x̄) + 1
2 (x −

x̄)T ∇2f (x̄)(x − x̄). Consequently, the model for f (x) + σ
∑d

j=1 yj will be f (x̄) +
Tp(x̄, x) + σ

∑d
j=1 yj .

In this section, Mx̄,ȳ(x, y) will be a model of �(x, y) − �(x̄, ȳ) for all x̄, x ∈ R
n

and ȳ, y ∈ R
d . Therefore, �(x, y) ≈ �(x̄, ȳ) + Mx̄,ȳ(x, y). Let us define, for all

δ ≥ 0:
Cδ = {x ∈ R

n | ‖H(x)‖∞ ≤ δ and ‖G(x)+‖∞ ≤ δ}, (24)

Dδ = {(x, y) ∈ R
n×R

d | x ∈ Cδ, y ≥ 0, and gj (x)−π−1(yj ) ≤ δ, j = 1, . . . , d},
(25)

and D = D0. The following algorithm is similar to Algorithm 3.1 of [11].

Algorithm 4.1 Assume that p ∈ {1, 2, 3, . . . }, η > 0, α > 0, ρmin > 0, τ2 ≥ τ1 > 1,
θ > 0, and (x0, y0) ∈ Dη/4 are given with y0

j = π(gj (x
0)), j = 1, . . . , d. Initialize

k ← 0.

Step 1. Set ρ ← 0.
Step 2. Compute xtrial ∈ R

n and ytrial ∈ R
d such that

(xtrial, ytrial) ∈ Dηk
with ηk = η

(
k + 1

k + 2

)
(26)

and
Mxk,yk (x

trial, ytrial) + ρ‖(xtrial − xk, ytrial − yk)‖p+1 ≤ 0. (27)

Step 3. Test the condition

�(xtrial, ytrial) ≤ �(xk, yk) − α‖(xtrial − xk, ytrial − yk)‖p+1. (28)

If (28) holds, accept the trial point (xtrial, ytrial), define ρk = ρ, xk+1 = xtrial,
yk+1 = ytrial, set k ← k + 1, and go to Step 1. Otherwise, update ρ ←
max{ρmin, τρ} with τ ∈ [τ1, τ2], and go to Step 2.
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Under the model-intensive strategy, conditions (26) and (27) may be obtained by
solving the subproblem:

Minimize Mxk,yk (x, y) + ρ‖(x − xk, y − yk)‖p+1 subject to (x, y) ∈ D, (29)

with rather high precision, since we assume that the cost of evaluating the model
is negligible with respect to the cost of evaluating f . Note that the feasibility
required at xtrial is looser than the precision with which xk satisfies those constraints.
Therefore, it is plausible to require the fulfillment of (26) and (27) by means of a stan-
dard constrained optimization algorithm. This means that, although conditions (27)
and (28) are trivially satisfied by xtrial = xk and ytrial = yk , it is reasonable to
expect that a nontrivial solution with decrease of � could be obtained with non-null
increments.

Complexity results for Algorithm 4.1 are presented below. Before that, the
standard assumptions (see, for example, [10, 14]) are given.

Assumption A3 For all (xk, yk) generated by Algorithm 4.1, we have that

∇�(xk, yk) = ∇Mxk,yk (x, y)|(x,y)=(xk,yk).

Assumption A4 There exists L1 > 0 such that, for every (xk, yk) calculated by
Algorithm 4.1 and for every (xtrial, ytrial) satisfying (27), we have that:

�(xtrial, ytrial) ≤ �(xk, yk) + Mxk,yk (x
trial, ytrial) + L1‖(x − xtrial, y − ytrial)‖p+1.

Assumption A4 is valid if M is obtained using the pth Taylor approximation and
the derivatives of order p of f are Lipschitz continuous. See [3, 10, 14].

Assumption A5 There exists L2 > 0 such that, for every xk , yk , xk+1, and yk+1

obtained by Algorithm 4.1, we have that:

‖∇x,y�(xk+1, yk+1) − ∇x,yMxk,yk (x
k+1, yk+1)‖ ≤ L2‖(xk+1 − xk, yk+1 − yk)‖p.

As in the case of Assumption A4, Assumption A5 also holds if we use Taylor pth
approximations for computing M and the pth order derivatives of f are Lipschitz-
continuous.

Assumption A6 below says that (29) must be approximately solved. Before stating
this assumption let us recall that, assuming that ‖(x −xk, y −yk)‖p+1 is continuosly
differentiable with respect to (x, y), (29) is a constrained optimization problem of
the form (18).

Assumption A6 We say that this assumption holds at iteration k of Algorithm 4.1
if the function ‖(x − xk, y − yk)‖p+1 is continuously differentiable with respect to
(x, y) and (xtrial, ytrial) is an (εfeas/εcomp/εkkt)-AKKT point of (29) with εfeas = ηk ,
εcomp = η, and εkkt = θ‖(xtrial − xk, ytrial − yk)‖p.
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Theorem 4.2 Assume that the sequence {(xk, yk)} is generated by Algorithm 4.1,
�target ∈ R, ε > 0, and L = max{L1, L2}. Define:

K(x0, y0, �target, α, p, L, τ2, θ)

=
⎢⎢⎢⎣(

�(x0, y0) − �target

) (
αp/(p+1)ε

L + τ2 (L + α) (p + 1) + θ

)−(p+1)/p
⎥⎥⎥⎦ . (30)

Suppose that Assumptions A3, A4, A5, and A6 hold for all:

k ≤ K(x0, y0, �target, α, p, L, τ2, θ).

Then, the number of iterations k such that:

�(xk+1, yk+1) > �target

and (xk+1, yk+1) is not an (ηk/η/ε)-AKKT point of (13) is bounded above by
K(x0, y0, �target, α, p, L, τ2, θ). Moreover, the number of functional evaluations per
iteration is bounded above by:⌊

logτ1

(
τ2(L + α)

ρmin

)⌋
+ 1.

Proof The desired result follows as in [11, Thm.3.1].

Theorem 4.3 Suppose that Assumptions A3, A4, and A5 hold, and the function
‖(x − xk, y − yk)‖p+1 is continuously differentiable with respect to (x, y). Assume,
moreover, that for all k = 0, 1, 2, . . . and εfeas > 0, εcomp > 0, and εkkt > 0, we
are able to compute, using a suitable algorithm, an (εfeas/εcomp/εkkt)-AKKT point
of (29) such that (27) holds. Then, there are two possibilities:

1. Assumption A6 holds for all k ≤ K(x0, y0, �target, α, p, L, τ2, θ).
2. There exists k ≤ K(x0, y0, �target, α, p, L, τ2, θ) such that (xk, yk) is an AKKT

point of (13).

Proof Assume that (xk,�, yk,�) is a sequence generated by an algorithm that, when
applied to the problem:

Minimize Mxk,yk (x, y) + ρ‖(x − xk, y − yk)‖p+1 subject to (x, y) ∈ Dηk−1 , (31)

satisfies the hypotheses of the theorem. By construction, (xk, yk) ∈ Dηk−1 . Therefore
the minimum of Mxk,yk (x, y) + ρ‖(x − xk, y − yk)‖p+1 onto Dηk−1 is non-positive,
as well as the minimum of Mxk,yk (x, y) + ρ‖(x − xk, y − yk)‖p+1 onto Dηk

.
By the fulfillment of the AKKT optimality conditions, we have two possibilities:

1. There exists an iterate (xk,�, yk,�) which is an (εfeas/εcomp/εkkt)-AKKT point
of (29) with εfeas = ηk , εcomp = η, and εkkt = θ‖(xk,� − xk, yk,� − yk)‖p.
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2. There exist infinitely many iterates (xk,�, yk,�) that are (εfeas/εcomp/εkkt)-AKKT
points of (29) with εfeas = 1/� < ηk , εcomp = 1/� < η, and εkkt = 1/� but

θ‖(xk,� − xk, yk,� − xk)‖ < 1/�. (32)

In the first case, we can choose xtrial = xk,� and ytrial = yk,�, satisfying
Assumption A6 and (27). In the second case, (32) implies that:

lim
�→∞(xk,�, yk,�) = (xk, yk).

Therefore, (xk, yk) satisfies the AKKT optimality condition for (31). Since the first
derivatives of �(x, y) at (xk, yk) coincide with the first derivatives of the objective
function of (31), it turns out that (xk, yk) was an AKKT point for (31). In other words,
Assumption A6 did not hold because (xk, yk) already was an approximate solution
of the original problem. This completes the proof.

Theorems 4.2 and 4.3 say that after at most the number of iterations given by (30),
one finds an iterate that satisfies the constraints of (13) with tolerance η such that
the objective function value is smaller than or equal to �target; or, alternatively, we
find an iterate that satisfies KKT conditions with tolerance η for feasibility, toler-
ance η for complementarity, and tolerance ε for optimality. The conclusion of these
theorems is that, ultimately, Assumption A6 is not necessary since, if it holds for
all k ≤ K(x0, y0, �target, α, p, L, τ2, θ), it guarantees that an approximate solu-
tion is found for some k ≤ K(x0, y0, �target, α, p, L, τ2, θ). But, if Assumption A6
does not hold for some k ≤ K(x0, y0, �target, α, p, L, τ2, θ), the iterate xk is an
approximate solution. This is stated in the following corollary.

Corollary 4.4 Suppose that the hypotheses of Theorem 4.3 hold. Then, one of the
following statements is true:

1. There exists k ≤ K(x0, y0, �target, α, p, L, τ2, θ), such that

�(xk+1, yk+1) ≤ �target

and (xk+1, yk+1) is (ηk/η/ε)-AKKT point of (13).
2. There exists k ≤ K(x0, y0, �target, α, p, L, τ2, θ) such that (xk, yk) is an AKKT

point of (13).

5 Linearly constrained problems

In this section, we consider the case in which G(x), H(x), and gj (x), j = 1, . . . , d,
are affine functions. Thus, their first derivatives are constant. Consequently, we
denote:

AG = G′(x), AH = H ′(x), aT
j = g′

j (x), j = 1, . . . , d,

for all x ∈ R
n. Therefore, for all x̄ ∈ R

n,

G(x) = AG(x − x̄) + G(x̄), H(x) = AH(x − x̄) + H(x̄),

gj (x) = aT
j (x − x̄) + gj (x̄), j = 1, . . . , d.
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The constraints H(x) = 0 and G(x) ≤ 0 are now linear but the constraints gj (x)−
π−1(yj ) ≤ 0 of (13) are not, due to the nonlinearity of π−1. Therefore, the set C is a
polytope but the set D0, defined by (24) and (25), is not.

Of course, we may use Algorithm 4.1 for solving (13) in this case, but the pres-
ence of linearity suggests that linear constraints could be satisfied exactly at the
solution of each subproblem; and that subproblems might be tackled by a linear-
constraints optimization method. For achieving this improvement, the nonlinear
constraints gj (x)−π−1(yj ) ≤ 0 must be linearized. This amounts to replace, at each
subproblem, each constraint gj (x) − π−1(yj ) ≤ 0 with:

gj (x) − [π−1(yk
j ) + (π−1)′(yk)(yj − yk

j )] ≤ 0. (33)

By the convexity of the function π−1, the fulfillment of (33) implies that gj (x) −
π−1(yj ) ≤ 0. Therefore, the feasible set defined by H(x) = 0, G(x) ≤ 0, and (33)
for j = 1, . . . , d is contained in D0.

Algorithm 5.1 This algorithm is identical to Algorithm 4.1 except that condi-
tion (26) is replaced by:

(xtrial, ytrial) ∈ C and gj (x) − [π−1(yk
j ) + (π−1)′(yk

j )(yj − yk
j )] ≤ 0, j = 1, . . . d .

(34)

Of course, the parameter η is not necessary anymore since we assume that linear
constraints can be satisfied exactly using well-established constrained optimization
methods.

Assumptions A3, A4, and A5 stand exactly in the same way as in Section 4.
However, Assumption A6 needs to be replaced in order to take into account that
now the subproblem has only linear constraints and that d constraints are linear
approximations of the true ones.

Assumption A7 At each iteration k of Algorithm 5.1, the function ‖(x − xk, y −
yk)‖p+1 is continuously differentiable with respect to (x, y) and (xk+1, yk+1) sat-
isfies the KKT conditions for the linearly constrained problem that consists of
minimizing Mxk,yk (x, y) + ρ‖(x − xk, y − yk)‖p+1 subject to H(x) = 0, G(x) ≤ 0,
and gj (x) − [π−1(yk

j ) + (π−1)′(yk)(yj − yk
j )] ≤ 0, j = 1, . . . , d.

Assumption A7 is plausible because every minimizer of linearly constrained
optimization problems satisfies KKT conditions.

According to Assumption A7, the increment (xk+1, yk+1) at each iteration of
Algorithm 5.1 must satisfy the following conditions:

∇x

[
Mxk,yk (x

k+1, yk+1) + ρ‖(xk+1 − xk, yk+1 − yk)‖p+1
]

+AT
Hλ + AT

Gμ+
d∑

j=1

ajβj = 0, (35)
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ρ
∂

∂yj

‖(xk+1 −xk, yk+1 −yk)‖p+1 +σj − (π−1)′(yk+1
j )βj −γj = 0, j = 1, . . . , d,

(36)
H(xk+1) = 0, (37)

G(xk+1) ≤ 0, (38)

gj (x
k+1) −

[
π−1(yk

j ) + (π−1)′(yk)(yk+1
j − yk

j )
]

≤ 0, j = 1, . . . , d, (39)

βj = 0 whenever gj (x
k+1) − [π−1(yk

j ) + (π−1)′(yk)(yk+1
j − yk

j )] < 0, (40)

yk+1 ≥ 0, (41)

μj = 0 for all j such that G(xk+1)j < 0, (42)

γj = 0 for all j such that yk+1
j > 0, (43)

μ,β, γ ≥ 0. (44)

Recall that (x, y) satisfies the KKT conditions of (13) if conditions (35)–(44) hold
with (x, y) replacing (xk+1, yk+1), except that (35) and (36) must be replaced by:

∇f (x) + AT
Hλ + AT

Gμ+
d∑

j=1

ajβj = 0 (45)

and
σj − (π−1)′(yj )βj − γj = 0, j = 1, . . . , d, (46)

whereas (39) and (40) must be replaced by:

gj (x) − π−1(yj ) ≤ 0 (47)

and
βj = 0 whenever gj (x) − π−1(yj ) < 0. (48)

Therefore, the question is whether (36)–(44) implies some relaxed version of (45)–
(48) for x = xk+1 and y = yk+1.

As in [11, Lemma 3.2], by Assumption A4, it follows that the values of ρ used
at each subproblem of Algorithm 5.1 are bounded. By Assumption A5, (35) implies
that:

‖∇f (xk+1) + AT
Hλ + AT

Gμ+
d∑

j=1

ajβj‖ ≤ O(‖(xk+1 − xk, yk+1 − yk)‖p). (49)

By the limitation of ρ and the fact that | ∂
∂yj

‖(x − xk, y − yk)‖p+1| ≤ O(‖(xk+1 −
xk, yk+1 − yk)‖p), (36) implies that:

|σj − (π−1)′(yk+1
j )βj −γj | ≤ O(‖(xk+1 −xk, yk+1 −yk)‖p), j = 1, . . . , d. (50)

By (39) and the convexity of π−1, we have that (47) holds with x = xk+1 and
y = yk+1. Thus,

gj (x
k+1) − π−1(yk+1

j ) ≤ 0, j = 1, . . . , d. (51)

For proving approximate complementarity, we need a new assumption regarding
the replacement of π−1 with its linear approximation.
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Assumption A8 There exists cπ > 0 such that, for all z, y ≥ 0,

|π−1(y) −
[
π−1(z) + (π−1)′(z)(z − y)

]
| ≤ cπ |y − z|2.

By Assumption A8, we have that gj (x
k+1) − π−1(yk+1

j ) < −cπ |yk+1
j − yk

j |2
implies that gj (x

k+1)−[π−1(yk
j )+(π−1)′(yk)(yk+1

j −yk
j )] < 0; so, by (40), βj = 0.

Theorem 5.2 Suppose that Assumptions A3, A4, A5, A7, and A8 hold, L =
max{L1, L2}, the sequence {(xk, yk)} is generated by Algorithm 5.1, �target ∈ R,
and ε > 0. Then, the number of iterations k such that:

�(xk+1, yk+1) > �target

and (xk+1, yk+1) is not an (ηk/η/ε)-AKKT point of (13) is not greater than⎢⎢⎢⎣(
(�(x0, y0) − �target)

) (
αp/(p+1)ε

L + τ2 (L + α) (p + 1) + θ

)−(p+1)/p
⎥⎥⎥⎦ . (52)

Moreover, the number of functional evaluations per iteration is bounded above by:⌊
logτ1

(
τ2(L + α)

ρmin

)⌋
+ 1.

Proof As in [11, Lemma 3.1], we obtain that:

lim
k→∞ ‖xk+1 − xk‖ = lim

k→∞ ‖yk+1 − yk‖ = 0.

As in [11, Lemma 3.1], we prove that the sequence of penalty parameters is bounded.
By the arguments presented above, we have that, for all k, there exist λ = λk ∈

R
nH , μ=μk ∈ R

nG+ , β = βk ∈ R
d+, and γ = γ k ∈ R

d+ such that:

‖∇f (xk+1, yk+1) + AT
Hλ + AT

Gμ+
d∑

j=1

ajβj‖ ≤ O(‖(xk+1, yk+1) − (xk, yk)‖p),

(53)
σj − (π−1)′(yk+1

j )βj − γj = 0, j = 1, . . . , d, (54)

H(xk+1) = 0, (55)

G(xk+1) ≤ 0, (56)

gj (x
k+1) − π−1(yk+1

j ) ≤ 0, j = 1, . . . , d, (57)

βj = 0 whenever gj (x
k+1) − π−1(yk+1

j ) < −cπ |yk+1
j − yk

j |2, (58)

yk+1 ≥ 0, (59)

μj = 0 for all j such that G(xk+1)j < 0, (60)

γj = 0 for all j such that yk+1
j > 0, (61)

μ,β, γ ≥ 0. (62)
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By the sufficient descent condition and (53), there exists c∇ > 0 such that, for
all k:

�(xk+1, yk+1) ≤ �(xk, yk)−c∇

∥∥∥∥∥∥∇f (xk+1, yk+1) + AT
Hλ + AT

Gμ+
d∑

j=1

ajβj

∥∥∥∥∥∥
p+1
p

.

(63)
Therefore, given ε > 0, the number of iterations such that �(xk+1, yk+1) > �target
and ∥∥∥∥∥∥∇f (xk+1, yk+1) + AT

Hλ + AT
Gμ+

d∑
j=1

ajβj

∥∥∥∥∥∥ > ε (64)

is, at most,

(�(x0, y0) − �target) × O(ε
p+1
p ).

Given ξ > 0, by the descent condition (28), the number of iterations such that
‖(xk+1 − xk, yk+1 − yk)‖p+1 > ξ cannot exceed the quantity (�(x0, y0) −
�target)/(αξ). Therefore, the number of iterations such that ‖(xk+1 − xk, yk+1 −
yk)‖2 > ξ2/(p+1) cannot exceed the quantity (�(x0, y0) − �target)/(αξ). There-
fore, the number of iterations such that ‖(xk+1 − xk, yk+1 − yk)‖2 > ξ cannot

exceed the quantity (�(x0, y0) − �target)/(αξ
p+1

2 ). Therefore, the number of iter-
ations such that cπ‖(xk+1 − xk, yk+1 − yk)‖2 > cπξ cannot exceed the quan-

tity (�(x0, y0) − �target)/(αξ
p+1

2 ). Therefore, the number of iterations such that
cπ‖(xk+1 − xk, yk+1 − yk)‖2 > ξ cannot exceed the quantity (�(x0, y0) −
�target)/(α(ξ/cπ )

p+1
2 ). Therefore, after at most

(�(x0, y0) − �target)

α(ξ/cπ )
p+1

2

iterations, we have that all the iterates satisfy the approximate complementarity
condition:

βj = 0 whenever gj (x
k+1) − π−1(yk+1

j ) < −ξ

for all j = 1, . . . , d. This completes the proof.

6 Numerical experiments

In this section, we present numerical experiments with the penalty function π(·) =√·. In Section 6.1, we aim to illustrate in which way the use of this penalty function
promotes sparsity. In Section 6.2, we consider all the minimization problems from
the Moré-Garbow-Hillstrom collection [27], penalized with the term π(·) = √·.
Problems are solved in two different ways. On the one hand, reformulated problems
are solved with the nonlinear programming solver Algencan [1, 7]. On the other hand,
problems are solved with Algorithm 4.1. Experiments aim to simulate the situation in
which a model-intensive algorithm is used to solve a problem with a costly objective
function and a nonconvex regularization term.
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6.1 Numerical illustration

In this section, we present numerical experiments that illustrate in which way the
use of the penalty function π(·) = √· promotes sparsity. Three toy problems are
reformulated and solved with the general-use nonlinear programming solver Algen-
can [1, 7] that applies to smooth problems.

Problem 1. Regularized gradient minimization

The continuous version of this problem is to find a function u : [0, 1] → R that
solves the problem:

Minimize ‖∇u‖2 subject to
∫ 1

0
u(t)dt =

∫ 1

0
ū(t),

where ū(t) = 400 if t ∈ [0, 0.5] and ū(t) = 0, otherwise. In addition, we aim u to
coincide with ū in “as much as possible.” After discretization, the problem becomes:

Minimize
1

2

99∑
i=2

(ui−1 − ui+1)
2 subject to

100∑
i=1

ui =
100∑
i=1

ūi ,

where ūi = 400 for i = 1, . . . , 50 and ūi = 0 for i = 51, . . . , 100, with the
additional constraint of having ui = ūi , for i = 1, . . . , 100, as many times as
possible.

Solutions to the discretized version of the problem can be found by solving the
reformulated problem given by:

Minimize
1

2

∑99

i=2
(ui−1 − ui+1)

2 + σ
∑100

i=1
yi

subject to
∑100

i=1
ui =

∑100

i=1
ūi

−y2
i ≤ ui − ūi ≤ y2

i , i = 1, . . . , 100

for different values of σ > 0. Note that the reformulation corresponds to penalizing
π(|ui − ūi |), i = 1, . . . , 100, with π(·) = √·. Figure 1 shows a graphical representa-
tion of solutions to problems with σ ∈ {0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100}. Note
that, the larger σ is, the larger the number of constraints of the form ui = ūi being
satisfied.

Problem 2. Two-dimensional dam

This problem is a two-dimensional version of Problem 1. The discretized version
of the problem is given by:

Minimize
1

2

29∑
i=2

19∑
j=2

(4uij − ui,j−1 − ui,j+1 − ui−1,j − ui+1,j )
2

subject to
30∑
i=1

20∑
j=1

uij =
30∑
i=1

20∑
j=1

ūij ,
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Fig. 1 Graphical representation of solutions to problem 1 for different values of σ

where

uij =
{

400, if j ≤ 30
[

1
2 + 1

10 sin
(

2π
(

i−1
30−1

))]
0, otherwise,

with the additional constraint of having uij = ūij , for i = 1, . . . , 30 and j =
1, . . . , 20, as many times as possible. Solutions to the problem can be found by
solving the reformulated problem given by:

Minimize
1

2

∑99

i=2
(ui−1 − ui+1)

2 + σ
∑100

i=1
yi

subject to
∑100

i=1
ui =

∑30

i=1

∑20

j=1
ūij

−y2
ij ≤ uij − ūij ≤ y2

ij , i = 1, . . . , 30, j = 1, . . . , 20,

for different values of σ > 0. Note that the reformulation corresponds to penal-
izing π(|uij − ūij |), i = 1, . . . , 30, j = 1, . . . , 20, with π(·) = √·. Figure 2
shows a graphical representation of solutions to problems with σ ∈ {108, 107, . . . ,

1, 10−1, . . . , 10−8}. Once again, the larger σ is, the larger the number of constraints
of the form uij = ūij being satisfied.
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Fig. 2 Graphical representation of solutions to Problem 2 for different values of σ
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Problem 3. Mass transportation

Assume that in a rectangle of nx×ny pixels, to each pixel (i, j) there are associated
functions P(i, j) ≥ 0 and Q(i, j) ≥ 0 such that:

nx∑
i=1

ny∑
j=1

P(i, j) =
nx∑
i=1

ny∑
j=1

Q(i, j).

P(i, j) represents white mass and Q(i, j) represents red mass. The goal is to find a
function u((i, j), (k, �)) ≥ 0 that represents the transportation of white mass from
pixel (i, j) to pixel (k, �). There is no transportation of red mass. The function of
transported mass u must be such that, at every pixel, the amount of white mass be
equal to the amount of red mass. Therefore, for every pixel (i, j) ∈ V , we must have
that:

Q(i, j) = P(i, j) +
∑

(k,�)∈V,(k,�) �=(i,j)

u((k, �), (i, j)) − u((i, j), (k, �)),

where V = {{1, 2, . . . , nx} × {1, 2, . . . , ny}}. With these constraints, the objective
is to minimize the number of non-null transports, i.e., to minimize the number of
u((i, j), (k, �)), for (i, j) �= (k, �) ∈ V , that are positive.

The reformulated problem is given by:

Minimize σ
∑

(i,j) �=(k,�)∈V
yijk�

subject to Q(i, j) = P(i, j) +
∑

(k,�)∈V,(k,�) �=(i,j)
u((k, �), (i, j))

−u((i, j), (k, �)), ∀(i, j) ∈ V

0 ≤ u((i, j), (k, �)) ≤ y2
ijk�, ∀(i, j) �= (k, �) ∈ V .

It corresponds to penalize
√∑

(i,j) �=(k,�)∈V u((i, j), (k, �)) that represents the cost

of the transportation process, its concavity representing economy of scale (decreasing
marginal cost of transportation). Figure 3 illustrates solutions to a small instance of
Problem 3 with σ = 0 and σ > 0.

6.2 Numerical comparison

We implemented the model-intensive Algorithm 4.1 in Fortran. At Step 2, a pair
(xtrial, ytrial) satisfying (26) and (27) is computed by tackling problem:

Minimize Mxk,yk (x, y) + ρ‖x − xk, y − yk‖p+1

subject to − y2
i ≤ xi ≤ y2

i for i = 1, . . . , n and y ≥ 0, (65)

where

Mxk,yk (x, y) = Tp(xk, x) − f (xk) +
n∑

i=1

[y − yk]i ,

with the help of Algencan [1, 7]. By definition, ηk ∈ [ 1
2η, η) for all k. Thus, in

order to satisfy (26), it is enough to ask to Algencan to stop at a point satisfying
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Fig. 3 Graphical representation of solutions to a small instance of Problem 3

the constraints with precision εfeas for any εfeas ≤ 1
2η. Algencan also requires tol-

erances εcompl and εopt for complementarity and optimality measures, respectively.
(See [8, §5.1] for details.) Since (27) is satisfied by (x, y) = (0, 0), that is a feasi-
ble point of problem (65), in practice, it is expected to be always satisfied at the final
iterate of Algencan. In the numerical experiments, in Algorithm 4.1, we arbitrarily
set p ∈ {2, 3}, τ1 = τ2 = 100, ρmin = 10−8, α = 10−8, η = 10−6, and θ = 106;
and, in Algencan, εfeas = εcompl = εopt = 10−8. In order to guarantee the fulfillment
of Assumption A6, Algencan should had been modified to accept a tolerance εopt
depending on its current iterate, i.e. not a constant. Instead of doing that, we keep
Algencan as it is and we observed in practice that Assumption A6 would have been
satisfied setting θ = 106, which justifies that choice.

In the numerical experiments, we considered the 18 unconstrained minimization
problems of the Moré-Garbow-Hillstrom collection [27] that consist in minimizing
f (x), penalized with the term σ

∑n
i=1 π(|xi |) with π(·) = √· and σ = 10−8. Note

that, when applying Algorithm 4.1 with p = 3, evaluating Tp(xk, x) requires the
third-order derivatives of f that were taken from [9]. These problems were solved in
two different ways. On the one hand, problems were reformulated as in Section 6.1
and solved with Algencan. On the other hand, they were solved with Algorithm 4.1
with p ∈ {2, 3}. The same stopping criterion was adopted in both cases, namely, the
approximate satisfaction of the optimality conditions given by:

‖g(x)+‖∞ ≤ ε

‖P�

⎛
⎝x −

⎡
⎣∇f (x) +

p∑
j=1

μj∇gj (x)

⎤
⎦

⎞
⎠ − x‖∞ ≤ ε

max
j=1,...,p

{min{−gj (x), μj }} ≤ ε

where p = 2n, gj (x, y) := xj − y2
j and gn+j (x, y) := −xj − y2

j for j = 1, . . . , n,

P� is the projector operator onto �, and � = {
(x, y) ∈ R

2n | y ≥ 0
}
, with ε =

10−6. Emulating the situation to which Algorithm 4.1 is applicable, we considered
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the number of evaluations of f as performance metric. Equivalent solutions were
found with the two approaches in all the problems. Table 1 and Fig. 4 show the
results. Figures show that Algorithm 4.1 with p = 2 and p = 3 used, in average 72%
and 82% of the number of functional evaluations used by Algencan, respectively.
Algorithm 4.1 with p = 2 used a larger number of evaluations than Algencan in 2
problems, the same number in 3 problems, and less evaluations in all the other 13
problems. The apparent inferiority of Algorithm 4.1 with p = 3, with respect to
the case with p = 2, can be attributed to the (lack of) parameter tuning, since the
arbitrary value of the (dimensional) sufficient decrease parameter α = 10−8 in (28)
has a different meaning when p = 2 and p = 3.

7 Final remarks

In this work, we have introduced a smooth reformulation for constrained smooth
problems with nonsmooth regularizations. The reformulation is entirely equivalent to
the original problem both from the global and the local points of view. Moreover, we
were able to prove optimality conditions in which auxiliary variables do not appear
at all.

Table 1 Comparison of the performance of Algencan and Algorithm 4.1 with p ∈ {2, 3} when applied to
solving the Moré-Garbow-Hillstrom minimization problems with the penalty term given by π(·) = √·

Problem f (x∗) Number of functional evaluations

Algencan Alg. 4.1 (2nd) Alg. 4.1 (3rd)

Helical valley 3.00e−05 39 13 9

Biggs EXP6 5.91e−05 211 41 47

Gaussian 3.00e−05 3 3 2

Powell badly scaled 2.00e−05 254 90 85

Box three-dimensional 3.00e−05 49 21 31

Variably dimensioned 1.00e−04 14 15 20

Watson 2.35e−03 13 13 22

Penalty I 6.23e−05 46 38 44

Penalty II 4.86e−05 74 124 9

Brown badly scaled 3.07e−03 487 21 44

Brown and Dennis 8.58e+04 8 9 15

Gulf research and development 2.98e−05 36 35 35

Trigonometric 1.28e−04 15 10 14

Extended Rosenbrock 9.97e−05 34 27 43

Extended Powell singular 1.20e−04 17 18 27

Beale 2.00e−05 28 9 12

Wood 4.00e−05 90 53 72

Chebyquad 3.60e−03 31 19 21
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Fig. 4 Graphical representation of the performance of Algencan and Algorithm 4.1 with p ∈ {2, 3} when
applied to solving the Moré-Garbow-Hillstrom minimization problems with the penalty term given by
π(·) = √·

Our main interest relies now in the application of these techniques to real problems
in which the evaluation of the objective function is overwhelmingly more expen-
sive than the evaluation of the constraints. This type of functions appear when PDE
calculations are involved in the objective function evaluation and when the objec-
tive function is related to some phenomenon that takes place in real time. In these
cases, model-intensive algorithms as the ones introduced in this paper may be use-
ful. So, it is interesting to show that, from the theoretical point of view (convergence
and complexity), these algorithms are well supported. Of course, smooth reformula-
tions are valuable in these cases because one may take advantage of well-established
constrained optimization software.
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