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Abstract

In many engineering applications, it is necessary to minimize smooth functions plus
penalty (or regularization) terms that violate smoothness and convexity. Specific
algorithms for this type of problems are available in recent literature. Here, a smooth
reformulation is analyzed and equivalence with the original problem is proved both
from the points of view of global and local optimization. Moreover, for the cases in
which the objective function is much more expensive than the constraints, model-
intensive algorithms, accompanied by their convergence and complexity theories, are
introduced. Finally, numerical experiments are presented.
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Numerical Algorithms

1 Introduction

We are concerned with mathematical problems in which the objective is to find a
point x € X such that:

F(D(x), E(x)) = 0. (1

In general, X is a subset of a finite-dimensional space. Constrained and uncon-
strained minimization problems may be formulated in this way, with D(x) and
E(x) representing objective functions and constraints. Problems of the form (1) are
almost always solved by means of iterative methods. This means that, given an
approximation x* to a solution, the approximation x**! is obtained by solving:

Mp (Mp ok (x), Mg 4k (x)) =0, )

where Mg ik, Mp (&, and Mg .« are models of F, D, and E built using knowledge
available at x*. For example, if we deal with the constrained optimization problem:

Minimize f(x) subjectto g(x) <0, 3)

we may identify, say, f with D, g with E and F with the difference between f(x)
and the minimum for each feasible point x, in such a way that problem (2) may
consist on the minimization of the quadratic Taylor approximation of f (perhaps plus
a Lagrangian term) subject to the linearization of the constraints. This is, essentially,
the idea of sequential quadratic programming methods [29].

In many cases, the arguments of F involve a function that is difficult to evaluate
(D(x)) and a function that is easy to evaluate (E(x)). In these cases, the computer
work associated with the solution of (2) may be overwhelmingly dominated by the
evaluation of D(x¥) (including, possibly, its derivatives). Moreover, even

Mg (Mp i (x), E(x)) =0 “)

and
F(Mp . (x), E(x)) =0 &)

may be solvable with a computational cost essentially equal to the cost of computing
D(x*). For example, in the constrained optimization problem, the evaluation of the
objective function could involve a huge collection of data whereas the constraints
may be easy to evaluate. In this case, it is probably convenient to employ an iterative
scheme based on (5) by means of which we solve, at each iteration, a powerful model
of the objective function subject to the true constraints. This is the point of view of
[26], where the complexity of a general scheme for constrained optimization based
on high-order models of the objective function is analyzed.

The objective of this paper is to exploit the modeling idea (5) with respect to the
minimization of nonconvexly regularized problems. The equivalence of this problem
with a constraint optimization problem in which the objective function is generally
much more expensive than the constraints will be exploited and it will be proved that,
for some Taylor-like models with mild assumptions, the resulting method enjoys the-
oretical convergence and complexity properties that suggest a good computational
behavior. Some illustrative examples will be shown that tend to corroborate this
hypothesis.
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Given C C R”, continuously differentiable functions f : R* — Rand g : R" —
RY, a penalty function r : R — R such that 7 (¢) = 0if ¢t < 0, and a regularization
parameter o > 0, we consider the constrained optimization problem given by:

d
Minimize f(x) +o Z w(g;(x))
Jj=1
subjectto  x € C. (6)

Problem (6) may arise in the process of solving problem:
Minimize f(x) subjectto g(x) <0, x € C @)

by means of penalization with respect to the constraints g(x) < 0. In this case,
we expect that a solution to (7) should emerge when o is sufficiently large or, at
least, when 0 — oo (see, for example, [29]). Many times, the objective function
of (6) is smooth and 7’/(0) = 0. However, we are especially interested in the case
in which 7/(0) > 0 and, above all, in the case in which 7’(0) does not exist and
lim;_, oy 7' (¢) = o0.

For several reasons, solutions to (6) for different values of o may be meaningful
independently of its connection with (7). In fact, many times, the solution to (6)
when o — o0 is not relevant and the fulfillment of all the constraints g;(x) < 0is
not desirable or, perhaps, impossible. Instead, the ideal asymptotic problem that one
wishes to solve is, roughly speaking:

Minimize f(x) subjecttox € C ®)

with the compromise that the number of indices j such that g;(x) > 0 should be
small. For example, a typical portfolio problem could require the minimization of the
expected loss f(x) subject to standard constraints x € C and the additional require-
ment that the number of scenarios under which shortfall occurs should be as small as
possible [12]. We expect to achieve this objective employing penalty functions that
are concave for ¢ > 0 and such that lim;_, o4 7/ (¢) > 0.

The case in which C is polyhedral and 7 (¢t) = ¢4 if t > 0, with ¢ € (0, 1), has
been considered in [5, 24]. The problem:

n
Minimize f(x) + o Z |x;|? subject to x € C, ©))
j=1

called L,-regularized optimization problem, has been the object of many studies
starting from Tikhonov [30] and the enormous literature on inverse problems. The
case g = 2 corresponds to the most classical regularization, intended to handle prob-
lems in which the mere minimization of f(x) onto C is very ill-conditioned and,
so0, its exact solution is, frequently, meaningless. The case ¢ = 1 preserves the
possible convexity of f(x) and has been shown to induce sparse regularized mini-
mizers of f(x) (see [13]). With ¢ < 1 possible convexity of the objective function
is lost but the tendency to find sparse solutions x is even more emphatic. Writ-
ing gj(x) = x; and g,4;j(x) = —x; for j = 1,...,n and defining w(t) = 19
for all + > 0 problem (9) takes the form (6); so (9) is a particular case of the
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problem studied in this paper. Practical applications of problems of the form (6)
include machine learning [18], information theory [20], image restoration [5], signal
processing [4], variable selection [19], and others. Interesting examples were given
in [24, Appx.1].

The rest of this paper is organized as follows. In Section 2, we introduce a smooth
reformulation of (6) and we prove its equivalence with the original problem. In
Section 3, we derive optimality conditions using the reformulation. In Section 4,
we introduce a model-intensive algorithm for solving the problem and we prove
its convergence and complexity. In Section 5, we introduce a specific algorithm
for the case in which the constraints are linear. In Section 6, we present numer-
ical experiments. Finally, in Section 7, we state conclusions and lines for future
research.

Notation | - || denotes an arbitrary norm. R denotes the set of nonnegative elements
of R. The ith component of a vector v is denoted v; or [v];. If v € R" is a vector with
components v;, v4 is the vector with components max{0, v;},i =1, ..., n.

2 Reformulation

A smooth reformulation of problem (6) will be introduced in this section. The penalty
functions employed in this work will be required to satisfy the assumptions below.

Assumption Al 7 is continuous, concave, strictly increasing fort > 0. Moreover,
7' (t) exists and is continuous for all t > 0.

Assumption A2 The restriction of w to Ry admits an inverse 1=' : Ry — R,
the derivative (1 ~') (t) exists for all t > 0, and the right derivative (x =)’ (0)+ also
exists.

Assumptions Al and A2 are satisfied by penalty functions in practical applica-
tions such as ridge regression [21], smoothly clipped absolute deviation penalization
(SCAD) [19], minimax concave penalties (MCP) [31], fraction penalty optimiza-
tion [28], and log-penalty minimization [13]. Note that assumptions Al and A2 do
not require lim;_ o4+ 7'(f) = oo, although this property will be interesting for the
purpose of minimizing the number of indices j such that g;(x) > 0.

The possible lack of smoothness of (6) is due to the nonsmoothness of 7 (t) when
t = 0. Therefore, standard methods based on gradient information for solving (6)
may be inappropriate. In order to avoid this inconvenience, several approaches were
proposed. Among them, we can mention smoothing approximation methods [5, 16,
241, iterative reweighted algorithms [17, 23, 25], and interior point methods [6,
22]. Our proposal, based on a smooth reformulation, has the advantage that stan-
dard well-established algorithms for constrained optimization based on first-order
or higher-order derivative information on the derivatives may be used. This is pos-
sible thanks to the fact that the function #=! : R, — R, is continuously
differentiable.
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Problem (6) is obviously equivalent to:

d
Minimize f(x) + o ny subjectto y; = m(g;j(x)) for j=1,...,dand x € C.
j=1
(10)
If y; > m(g;(x)), taking §; = 7(g;(x)), we obtain that f(x) + o Y 9_, 5; <
fx)+o 27:1 y;. Therefore, (10) is equivalent to:

d
Minimize f(x) + o ny subjectto y; > m(gj(x)) for j=1,...,dand x € C.
j=1
(11D
Asm(t) =0ifr <0, (11) is equivalent to:

d

Minimize f(x) +oZyj subjecttoy; >0, y; > w(gj(x)) forj=1,...,d
j=1

and x € C. (12)

If y; > O and y; > m(g;(x)), since both y; and 7(g;(x)) belong to Ry and the
inverse of 7 onto R, is increasing, we obtain 7! (y i) = gj(x). Reciprocally, if
n_l(yj) > gj(x)and y; > 0, we obtain y; > m(g;(x)) or g;(x) < 0in which case
yj = m(g;(x)) also holds. Therefore, (12) is equivalent to:

d
Minimize ®(x,y):= f(x)+o Zyj
j=1
subjectto x €C,
gi(x) —n_l(yj) <Oforj=1,...,d,
y >0. (13)

The theorem below shows that a solution to the original problem (6) can be found
by solving its smooth reformulation (13). (The reciprocal is also true, as shown in the
following theorem.)

Theorem 2.1 Suppose that (x*, y*) is a local (global) minimizer of (13). Then,
y;‘.‘ =n(gj(x*) forall j = 1,...,d and x* is a local (global) minimizer of (6).
Reciprocally, if x* is a local (global) minimizer of (6) and y;‘ = m(g;(x*) for all
i=1,...,d, then (x*, y*) is a local (global) minimizer of (13).

Proof Suppose that (x*, y*) is a local minimizer of (13). If y;" > m(g;j(x*) and
y > y; = mw(g;j(x*)), we have w~ 1(y*) > 1(y]) > g;(x*). Therefore, if y; =
y; foralli # j, we have that (x*, y) is a feasible point of (13) and ®(x*, y) <
®(x*, y*). Therefore, (x*, y*) would not be a local minimizer of (13). This implies
that, necessarily, y}‘ =m(gj(x®) forall j=1,...,d.
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Let & > 0 be such that for all (x, y) suchthatx € C,y > 0, g;(x) < n_l(yj),
j=1....d |x—x*| <eand |y — y*|loo <&, wehavethat f(x)+0o Y I_  y; =
f&xH 4o Z?:l y;’f. By the first part of the proof, y;’f = m(g;(x*)); therefore, f(x)+
o Y4 1y = f*)+o Y9 w(g;(x*)). Lete; € (0, €] be such that [lx —x*|| < &
implies that |7 (g;(x)) —n(g;(x*))| < eforall j =1, ..., d. Then,if |[x —x*| < e,
fx) +o Zj(jzl m(gj(x)) = f(x*) + o Y9_; w(g;(x*)). This implies that x* is a
local minimizer of (6).

Reciprocally, suppose that x* is a local minimizer of (6). Therefore, there
exists ¢ > O such that for all x € C such that ||x — x*|| < ¢, f(*) +

o Y9 m(gi(xM) < f(¥) + 0 Y9, w(g;(x)). Therefore, f(x*) + o Y9_; yi <
f(x)+o Z?:l m(gj(x)) for all x € C such that ||x — x*|| < e. Thus, f(x*) +
o Z?:l y;‘ <fx)+o Z?:l y;j forall x € C such that ||x —x*|| < eif y; > 0 and
yj = m(gj(x)) forall j =1,...,d.But, due to the increasing property of 77! onto
Ry,y; > 0and y; > m(g;(x)) is equivalent to y; > 0 and n_l(yj) > gj(x). There-
fore, f(x*) + o Z‘;zl ¥} is less than or equal to f(x) + o Z?:l y;j for all (x,y)
satisfying x € C, ||x — x*|| < &, and the constraints of (13).

The equivalence proof with respect global minimizers is similar. O

3 Optimality conditions

Assume that:
C={xeR"| H(x) =0and G(x) <0}, (14)

where H : R" — R"™ and G : R" — R"G are continuously differentiable. If
a local minimizer (x*, y*) of (13) satisfies a constraint qualification then the KKT
conditions hold at (x*, y*). By Theorem 2.1, if x* is a local minimizer of (6),
y* =m(gj(x*)) foralli = 1,...,d, and a constraint qualification for (13) is ful-
filled, the KKT conditions are satisfied too. The KKT conditions for (13) obviously
involve both x* and y*. Since y is merely an auxiliary variable, it is interesting to
derive KKT-like conditions in which only the primal variables x* are involved. This
is the objective of Theorem 3.1 below, which, in turn, generalizes [15, Corollary 2.2]
and [24] using straightforward optimization arguments.

Theorem 3.1 Let x* be a local minimizer of (6) and assume that 7 satisfies
Assumptions Al and A2. Define:

T(x*) = {j | &™) <0}, J(x™):={j|gj(x") =0}, and

K(x*) == {j|gi(x*) >0} (15)
Then, x* is a local minimizer of the problem:
Minimize f(x) + o Z w(gj(x)) subjecttox € Cand gj(x) <0Vj € J(x™).

JEK (x*)
(16)
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Moreover, if C is defined by H(x) = 0 and G(x) < 0, where H : R" — R" and
G : R" — RS are continuously differentiable, and the system of equalities and
inequalities:

H(x) =0, G(x) <0, gj(x) <0, Vj € J(x¥) a7

satisfies a constraint qualification at x* then we have that x* satisfies the KKT
conditions of problem (16).

Proof Let y* > 0 be such that (x*, y*) is a local minimizer of (13). By Theorem 2.1,
y;‘ =mn(gj(x*) forall j =1,...,d.If j € I(x*), we have that g;(x) < O for all x
in a neighborhood of x*. Moreover, yj = 0 in this case. Therefore, (x*, y*) is a local
minimizer of:
Minimize f(x)+o Z yj subjecttox €C, y;j>m(g;j(x))and y; >0V ¢ I(x™).
JEI(x*)
So, (x*, y*) is a local minimizer of
Minimize f(x)+o Z yj subjecttox € C, yj=m(gj(x)) and y; >0V ¢I(x").
JEI(x*)
If j € K(x*), we have that g;(x) > 0 in a neighborhood of x* and 7 (g;(x))

is continuous and differentiable on that neighborhood. Therefore, x* is a local
minimizer of the locally smooth problem given by:

Minimize f(x) + o Z yj+ Z m(gj(x))
JEJ(x*) JEK (x*)
subjecttox € C, yj =m(gj(x))and y; > 0Vj € J(x¥).

Since g;(x*) < Oforall j € J(x*), x* is also a local minimizer of:

Minimize f(x) + o Z yj+ Z (g;(x))
JEJ(x*) JEK (x*)
subjecttox € C, gj(x) <0, yj =mn(gj(x))andy; > 0Vj € J(x*).
Moreover, since y;‘ =O0forall j € J(x*), x* is a local minimizer of:

Minimize f(x) + o Z m(g;(x)) subjecttox € C, g;(x) <0,
JEK (x*)
yj =n(gj(x)andy; > 0Vj e J@x™).
Clearly, the variables y; for j € J(x*) play no role in this problem, so x* is a
local minimizer of:
Minimize f(x) 4+ o Z m(gj(x)) subjecttox € Cand gj(x) <0Vj e J(x¥).
JEK (x*)

Then, if the constraints that define C together with the constraints g;(x) < 0, j €

J (x*) satisfy a constraint qualification at x*, the KKT conditions of (16) hold at x*.
This completes the proof. O

@ Springer



Numerical Algorithms

Observe that (16) is a constrained optimization problem of the form
Minimize fonj(w) subject to 2g(w) = 0 and Ar(w) < 0, (18)

where fopj : R" — R, hg : R" — R, and A1 : R" — R"™ are continuously dif-
ferentiable. It is well known that, independently of constraint qualifications, every
local minimizer w* of (18) satisfies the Approximate KKT (AKKT) optimality con-
dition [2, 7], which means that, given &5o1 > 0, exxt > 0, &feas > 0, and ecomp > 0,
there exist w € R", A € R"E, and ueRY! such that [w — w*|| < &g,

lhE(W) lloo < &feass I1h1(W) 1 lloo < Efeas, (19)
Mj < &comp for all j such that [Ar(w)]; < —&feas, (20)

and
IV fobj(w) + VAE(W)A + VA(w) ) < kit (21

If w € R” is such that there exist A € R and MGR'J'FI fulfilling (19), (20), and (21),
we say that w is an (&feas/Ecomp/kk)-AKKT point of (18).

Applying the AKKT definition to (16), we obtain the following result, indepen-
dently of constraint qualifications.

Theorem 3.2 Let x* be a local minimizer of (6) and assume that 7 satisfies Assump-
tions Al and A2. Let C be defined by H(x) = 0 and G (x) < 0, where H : R" — R"™
and G : R" — R"G are continuously differentiable. Assume that g551 > 0, exx¢ > O,
gteas > 0, and ecomp > 0 are arbitrary. Then, there exist x € R", Ay € R™,
UG € R’f, and nj € Ry forall j such that g;j(x*) = 0, such that:

lx — x*|| < ésol,
1H G < &feas, 1G4l < &feas,

8j(X) < éfeas for all j such that g ;(x*) =0,

Vi@ +o Y w'(gj(x)Vgi(x) + VH@)AIn + VG ()G
gj(x*)>0

+ Z wiVgi(x)| < ékke
gj(x*)=0
(Gl < ecomp for all j suchthat G ;(x) < —&feas,

and

Wi < &comp for all j such that g;(x) < —&feas-

Proof By Theorem 3.1, x* is a local minimizer of (16). Then, the thesis follows
from (19), (20), and (21). O]
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4 Model-intensive algorithms

As we mentioned in Section 2, problem (13) can be solved using standard methods for
smooth constrained optimization. In many applications, the cost of evaluating f(x)
exceeds, by far, the cost of evaluating the constraints. For these situations, “model
intensive” (MI) methods are recommendable. At each iteration of such an algorithm,
a model of the objective function is built and this model is minimized using the orig-
inal constraints (instead of their linear approximations as in SQP and other popular
approaches). The idea is to exploit the model as much as possible so that, hopefully,
it will not be necessary to evaluate the expensive function many times.

The most popular model for an arbitrary sufficiently smooth function f : R” — R
comes from considering its pth Taylor approximation:

p

) 1 . R
Ty (%, x) = ; 7 ((x —R) gt —maxn) @, @2
so that:
f) = fE) + Ty, x) + o(llx — ¥)7T). (23)

Observe that 71 (%, x) = Vf(©)T(x — ¥) and To(¥,x) = VF(®)T (x — %) + $(x —
DIV (@) (x —%). Consequently, the model for f(x) 4+ o Z?:l y; will be f(x) +
Tp(x,x) +o Z(}lzl Vj-

In this section, Mz 5(x, y) will be a model of ®(x, y) — ®(x, y) forall x, x € R"
and y,y € R?. Therefore, & (x, y) & ®(x,y) + Mz 5(x, y). Let us define, for all
5> 0:

Cs={x € R" | |[H®)lloo < 8 and [G(x)4loo < 8}, (24)
Ds ={(x,y) e R"xR? | x € G5, y > 0, and g;(x)—7~'(yj) <8, j=1,....d)},
(25)

and D = Dy. The following algorithm is similar to Algorithm 3.1 of [11].

Algorithm 4.1 Assumethatp € {1,2,3,...},n >0, > 0, pmin > 0,720 > 71 > 1,
6 > 0, and (x9, yo) € D4 are given with y? =m(g; (x%), j=1,...,d. Initialize
k < 0.

Step 1. Setp < 0. _
Step 2. Compute x"@ € R” and y"ial € R? such that

. . k+1
trial _ trial :

, eD thn, = —_— 26
7y me With 1k n<k+2) (26)

and ) _ . _
Mxk’yk (xtrlal’ ytl‘lal) + p”(xtt‘lal _ xk’ ytl‘lal _ yk)”p-‘rl S O (27)

Step 3. Test the condition

q)(xtl‘ial’ ytrial) S CD(xk, yk) _ a”(xtrial _ )Ck, ytrial _ yk)||p+l. (28)
If (28) holds, accept the trial point (xtrial ytialy “define pp = p, xKFH1 = xuial
yktl = ytial "ot & « k 4+ 1, and go to Step 1. Otherwise, update p <«

max{pmin, TP} With T € [71, 2], and go to Step 2.
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Under the model-intensive strategy, conditions (26) and (27) may be obtained by
solving the subproblem:

Minimize M« i (x, y) + pll(x — x*, y — y5)[|”*! subject to (x, y) € D, (29)

with rather high precision, since we assume that the cost of evaluating the model
is negligible with respect to the cost of evaluating f. Note that the feasibility
required at x"1! is Jooser than the precision with which x satisfies those constraints.
Therefore, it is plausible to require the fulfillment of (26) and (27) by means of a stan-
dard constrained optimization algorithm. This means that, although conditions (27)
and (28) are trivially satisfied by x"a = x* and y"a = yk it is reasonable to
expect that a nontrivial solution with decrease of ® could be obtained with non-null
increments.

Complexity results for Algorithm 4.1 are presented below. Before that, the
standard assumptions (see, for example, [10, 14]) are given.

Assumption A3 For all (x*, y*) generated by Algorithm 4.1, we have that
VO K,y = VM (6, ) (xyy= ek k-

Assumption A4 There exists L1 > 0 such that, for every (x*, y*Y calculated by
Algorithm 4.1 and for every (x™ y"aly satisfying (27), we have that:

CI)(xmal, ymal) < CD(xk, yk) + Mxk’yk (xtrlal’ ymal) + Lyl (x — xtrlal’ y— ytrlal)”p-H_

Assumption A4 is valid if M is obtained using the pth Taylor approximation and
the derivatives of order p of f are Lipschitz continuous. See [3, 10, 14].
Assumption A5 There exists Ly > 0 such that, for every x*, y*, x**1, and y*+!
obtained by Algorithm 4.1, we have that:

IV y @FTE YA — Vo Mo e EFE yETh || < Ly (R — 2k, yf T — yhy e,

As in the case of Assumption A4, Assumption A5 also holds if we use Taylor pth
approximations for computing M and the pth order derivatives of f are Lipschitz-
continuous.

Assumption A6 below says that (29) must be approximately solved. Before stating
this assumption let us recall that, assuming that || (x — x¥, y — y¥)||?*! is continuosly
differentiable with respect to (x, y), (29) is a constrained optimization problem of
the form (18).

Assumption A6 We say that this assumption holds at iteration k of Algorithm 4.1
if the function ||(x — XK,y — YO PTY is continuously differentiable with respect to
(x, y) and (x'", y") is an (eteas/ ecomp/exk)-AKKT point of (29) with efeas = 1
Ecomp = 1, and ey = 9”(xtr1al _ Xk, ytrlal _ yk)”p

@ Springer



Numerical Algorithms

Theorem 4.2 Assume that the sequence {(x*, y*)} is generated by Algorithm 4.1,
Diarget € R, € > 0, and L = max{L1, Ly}. Define:

K(XO’ yo, Drarget, @, p, L, 12, 0)

o 0 aP/ (D g ~(Hbip
= | (20, 3") = Puargr) . (30
(6" = P | T T (o 5150 (30)

Suppose that Assumptions A3, A4, AS, and A6 hold for all:
k< K6y, Qurger, @, p. L, 12, 0).
Then, the number of iterations k such that:
B (KT, yhH) o Brarger

and (xk'H, ka) is not an (ni/n/e)-AKKT point of (13) is bounded above by
K(xo, yO, DPrarget, @, p, L, 12, 0). Moreover, the number of functional evaluations per
iteration is bounded above by:

Llogrl <M>J + 1
Pmin

Proof The desired result follows as in [11, Thm.3.1]. O]

Theorem 4.3 Suppose that Assumptions A3, A4, and AS hold, and the function
I(x —x*, y — y) 1P is continuously differentiable with respect to (x, y). Assume,
moreover, that for all k = 0,1,2, ... and gfeas > 0, ecomp > 0, and exe > 0, we
are able to compute, using a suitable algorithm, an (&teas/Ecomp/Exkt)-AKKT point
of (29) such that (27) holds. Then, there are two possibilities:

1. Assumption A6 holds for all k < K(xo, yo, Darget, @, p, L, 12, 0).
2. There exists k < K(xo, yo, Drarget, @, p, L, 12, 0) such that (xk, yk) is an AKKT
point of (13).

Proof Assume that (xX¢, y%-¥) is a sequence generated by an algorithm that, when
applied to the problem:

Minimize M« i (x, y) + pll(x — x*, y — y5)|”*! subject to (x, y) € Dy, ;. (31)
satisfies the hypotheses of the theorem. By construction, (x*, y¥) e Dy, _, . Therefore
the minimum of M« . (x, y) + p[l(x — xk, y — y5||P+! onto Dy, _, is non-positive,

as well as the minimum of Mk yi(x,y) + pll(x — xk, y — y5) 71! onto Dy, .
By the fulfillment of the AKKT optimality conditions, we have two possibilities:

1. There exists an iterate (x%¢, y“) which is an (&feas/€comp/Exkt)-AKKT point
Of (29) With £feas = 1k £comp = 7, and eggq = O[] (xk¢ — XK, Ykt — 3y )P,
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2. There exist infinitely many iterates (xkt, yk’e) that are (&feas/Ecomp/kkt)-AKKT
points of (29) with &feas = 1/€ < g, €comp = 1/£ < 1, and ey = 1/£ but

0| (x*t — xk, yEt —xfy ) < 1/¢. (32)

= yk¢, satisfying

trial trial

In the first case, we can choose x = xkt and y
Assumption A6 and (27). In the second case, (32) implies that:

lim (%, y0 = (%, ).
£—00

Therefore, (x*, y¥) satisfies the AKKT optimality condition for (31). Since the first
derivatives of ®(x, y) at (x*, y¥) coincide with the first derivatives of the objective
function of (31), it turns out that (x¥, yk) was an AKKT point for (31). In other words,
Assumption A6 did not hold because (x*, y¥) already was an approximate solution
of the original problem. This completes the proof. O

Theorems 4.2 and 4.3 say that after at most the number of iterations given by (30),
one finds an iterate that satisfies the constraints of (13) with tolerance n such that
the objective function value is smaller than or equal t0 @¢ager; oOr, alternatively, we
find an iterate that satisfies KKT conditions with tolerance 5 for feasibility, toler-
ance 71 for complementarity, and tolerance ¢ for optimality. The conclusion of these
theorems is that, ultimately, Assumption A6 is not necessary since, if it holds for
al k < K (xo, yo, Darget» @, p, L, 12, 0), it guarantees that an approximate solu-
tion is found for some k < K(xo, yo, Drarget, @, p, L, 72, 0). But, if Assumption A6
does not hold for some £ < K(xo, yo, Drarget, @, p, L, 72, 0), the iterate x* is an
approximate solution. This is stated in the following corollary.

Corollary 4.4 Suppose that the hypotheses of Theorem 4.3 hold. Then, one of the
following statements is true:
1. There exists k < K(xo, yO, Drarget, &, p, L, 12, 0), such that

@(xk-i-l, yk+l) =< Drarget

and (x**1, y¥+ 1y is (e /n/€)-AKKT point of (13).
2. There exists k < K(xo, yo, DPrarget, @, p, L, 12, 0) such that (xk, yk) is an AKKT
point of (13).

5 Linearly constrained problems

In this section, we consider the case in which G(x), H(x),and g;(x), j =1,...,d,
are affine functions. Thus, their first derivatives are constant. Consequently, we
denote:
Ac=G'(), Ap=H'(x), a] =gj(x), j=1.....d,
for all x € R". Therefore, for all x € R”,
G(x) = Ag(x —X) + G(x), H(x) = Ag(x —x) + H(X),
gix) =a] (x —®) +gj®), j=1,....d.
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The constraints H (x) = 0 and G(x) < 0 are now linear but the constraints g; (x)—
x! (¥j) < 0 of (13) are not, due to the nonlinearity of 7L, Therefore, the set C is a
polytope but the set Dy, defined by (24) and (25), is not.

Of course, we may use Algorithm 4.1 for solving (13) in this case, but the pres-
ence of linearity suggests that linear constraints could be satisfied exactly at the
solution of each subproblem; and that subproblems might be tackled by a linear-
constraints optimization method. For achieving this improvement, the nonlinear
constraints g;(x) —m -1 v;j) < 0 must be linearized. This amounts to replace, at each
subproblem, each constraint g (x) — 7 Ny i) < 0 with:

g =[x ONH+ @M -yl <o (33)

By the convexity of the function 71, the fulfillment of (33) implies that g; (x) —
n_l(yj) < 0. Therefore, the feasible set defined by H(x) = 0, G(x) < 0, and (33)
for j = 1,...,d is contained in Dy.

Algorithm 5.1 This algorithm is identical to Algorithm 4.1 except that condi-
tion (26) is replaced by:

"y e Cand gj(x) — [ GH + @Y GHoy —yh1 =<0, j=1....4.
(34)
Of course, the parameter 7 is not necessary anymore since we assume that linear
constraints can be satisfied exactly using well-established constrained optimization
methods.
Assumptions A3, A4, and A5 stand exactly in the same way as in Section 4.
However, Assumption A6 needs to be replaced in order to take into account that

now the subproblem has only linear constraints and that d constraints are linear
approximations of the true ones.

Assumption A7 At each iteration k of Algorithm 5.1, the function ||(x — x¥,y —
yOIPFY is continuously differentiable with respect to (x, y) and (x*T1, y*+1y sar-
isfies the KKT conditions for the linearly constrained problem that consists of
minimizing Mxk’yk x, )+ pll(x — xk, y— yk)||p"'1 subjectto H(x) =0, G(x) <0,

and g;(x) =[x GH + Y O —yDI <0 j=1,....d
Assumption A7 is plausible because every minimizer of linearly constrained
optimization problems satisfies KKT conditions.

According to Assumption A7, the increment (x*T!, y¥*1) at each iteration of
Algorithm 5.1 must satisfy the following conditions:

Vi [ Myt R ) e p (e — by

d
+AfL + ALy Y ajBi =0, (35)
j=1
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ad _ .
pgnak“—x",y"“—yk)||p“+o,-—<n YOS -y =0, j=1,....d,
J

(36)
H(x*h =0, (37)
G(x* 1 <o, (38)

G = [rloh + @ OhO —yh] =0 j=1d (9)

Bj = O whenever g; (") — [z (YD) + @™ GHOFT =PI <0, (40)

Y >0, (41)

;= 0 forall j such that G(x**1); <0, (42)
yj = 0 forall j such that y§*' > 0, (43)
w.B,y =0. (44)

Recall that (x, y) satisfies the KKT conditions of (13) if conditions (35)—(44) hold
with (x, y) replacing (xk+1, yk+1), except that (35) and (36) must be replaced by:

d
V@) +Afh+Afp Y aip; =0 (45)
j=1
and
oj =@ Y GNB -y =0 j=1,....d, (46)
whereas (39) and (40) must be replaced by:
gi) -7 'y <0 (47)
and
Bj = 0 whenever g;(x) —n_l(yj) < 0. 48)

Therefore, the question is whether (36)—(44) implies some relaxed version of (45)—
(48) for x = xF*1 and y = yk+1,

As in [11, Lemma 3.2], by Assumption A4, it follows that the values of p used
at each subproblem of Algorithm 5.1 are bounded. By Assumption A5, (35) implies
that:

d
IVFCEY + A+ Alus Y aiBill < O(IGH — x5 —yhyin). 49
j=1
By the limitation of p and the fact that |aiv’_||(x —xk y = yOIPH < o((xF ! —
xK, yk+H — y6)|17), (36) implies that:
joj — Y OB — il < OUIGH =X Y =07y, j=1,....d. (50)

By (39) and the convexity of 7!, we have that (47) holds with x = xk*1 and
y = y**1. Thus,

gt —x' ot <0, j=1,....d. (51)

For proving approximate complementarity, we need a new assumption regarding
the replacement of 7 ~! with its linear approximation.
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Assumption A8 There exists c; > 0 such that, forall z,y > 0,

7o) = [ @+ @Y @ =01 S ely - 2P

By Assumption A8, we have that g;(x**1) — n’](ny) < —c,,|yfJrl — yj?|2

implies that g (xk'H)—[71_1())?)—i—(JT_l)/(yk)(yf—H —yf)] < 0; 50, by (40), Bj = 0.

Theorem 5.2 Suppose that Assumptions A3, A4, A5, A7, and A8 hold, L =
max{L1, Ly}, the sequence {(xk, yk)} is generated by Algorithm 5.1, ®uyeer € R,
and ¢ > 0. Then, the number of iterations k such that:

k+1 _k+1
D(x + >y + ) > Diarget

and (xk+1, yk'H) is not an (ni/n/€)-AKKT point of (13) is not greater than

=(p+D/p
aP/(P+Dg
(@00, 3) — Pugen)) < L2

L+n(L+a)y(p+1)+0
Moreover, the number of functional evaluations per iteration is bounded above by:
(L + o
\\logr1 <—2( )>J + 1.
Pmin

Proof Asin[11, Lemma 3.1], we obtain that:

lim [l —xF) = tim [y =4 =o0.

k— 00 k— 00

Asin[11, Lemma 3.1], we prove that the sequence of penalty parameters is bounded.
By the arguments presented above, we have that, for all k, there exist 4 = A* €

R,y € RS, B = g e RY, and y = y* € RY such that:

d
IV £ YD + A+ AGps D aiBill < O, Y4 — (5, yom),

j=1

(53)

oj — @ OB —yi =0, j=1,....4 (54)

HxM1h =o, (55)

G(x*th <o, (56)

g —xloh <0, j=1,....4, (57)

B; = 0 whenever g; (x* 1) — nfl(ny) < —cn|y§Jrl — yf|2, (58)

Y >0, (59)

wj = 0for all j such that G(xk+1)j <0, (60)

y;j = 0 forall j such that y§*! > 0, 61)

w.B,y =0. (62)
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By the sufficient descent condition and (53), there exists cy > 0 such that, for
all k:

p+1
d p
O Y < o Y —ev [V YY) + Al + Afus D asB
j=1
(63)

Therefore, given ¢ > 0, the number of iterations such that & (x**+1, yk+1) > Drarget

and
d

VA Y +afin+ Aluy D aiB| > e (64)
j=1

is, at most,
p+1

(@(x°, ¥) — Prarger) X O 7).
Given £ > 0, by the descent condition (28), the number of iterations such that
(kT — Xk pk+l _ ykyp+l S £ cannot exceed the quantity (®(x?, y0) —
Drarget)/ (a€). Therefore, the number of iterations such that || (x*+1 — xk, yk+1 —
Y12 > £2/(P+D cannot exceed the quantity (@0, y0) — DPrarget) /(@&). There-
fore, the number of iterations such that ||(x¥*1 — xk yk+1 — K12 > & cannot
1
exceed the quantity (P(xO, yo) — Drarger)/ (aé%). Therefore, the number of iter-
ations such that ¢ [|(x*T! — xk, yk+1 — 512 > ¢ £ cannot exceed the quan-
1
tity (P(xO, yo) — Pearger)/ (ozé%). Therefore, the number of iterations such that
cn||(xk'H — xk,yk‘H — yk)||2 > & cannot exceed the quantity (CD(xO,yO) —
1
Darger) /(@ (§/ cn)%). Therefore, after at most

(@(x0, y°) — Prarger)
a(Ejen) T

iterations, we have that all the iterates satisfy the approximate complementarity
condition:

B;j = 0 whenever gj(xk+1) - ﬂ_l(yf—H) <—¢

forall j =1, ..., d. This completes the proof. O

6 Numerical experiments

In this section, we present numerical experiments with the penalty function 7 (-) =
/- In Section 6.1, we aim to illustrate in which way the use of this penalty function
promotes sparsity. In Section 6.2, we consider all the minimization problems from
the Moré-Garbow-Hillstrom collection [27], penalized with the term 7 () = /-
Problems are solved in two different ways. On the one hand, reformulated problems
are solved with the nonlinear programming solver Algencan [1, 7]. On the other hand,
problems are solved with Algorithm 4.1. Experiments aim to simulate the situation in
which a model-intensive algorithm is used to solve a problem with a costly objective
function and a nonconvex regularization term.

@ Springer



Numerical Algorithms

6.1 Numerical illustration

In this section, we present numerical experiments that illustrate in which way the
use of the penalty function 7 (-) = /- promotes sparsity. Three toy problems are
reformulated and solved with the general-use nonlinear programming solver Algen-
can [1, 7] that applies to smooth problems.

Problem 1. Regularized gradient minimization

The continuous version of this problem is to find a function u : [0, 1] — R that
solves the problem:

1 1
Minimize || Vu/||? subject to / u(t)dt = f i),
0 0

where u(t) = 400 if ¢ € [0, 0.5] and u(¢) = 0, otherwise. In addition, we aim u to
coincide with # in “as much as possible.” After discretization, the problem becomes:

1 99 100 100
Minimize 3 Z(ui_l — ui+1)2 subject to Zui = Zﬁi,
i=2 i=1 i=1
where u; = 400 fori = 1,...,50 and u; = O fori = 51,...,100, with the
additional constraint of having u; = u;, for i = 1,...,100, as many times as

possible.
Solutions to the discretized version of the problem can be found by solving the
reformulated problem given by:

T B 2 100
Minimize > Zizz(lfii—l —ujt1)"+o Zi:l yi

) 100 100 _
subject to Zi:l u; = Zi:l u;
v <u—i; <y’ i=1,...,100

for different values of o > 0. Note that the reformulation corresponds to penalizing
a(|lu; —i;]),i =1, ..., 100, with w(-) = /. Figure 1 shows a graphical representa-
tion of solutions to problems with o € {0, 1, 2, 3,4, 5, 10, 20, 30, 40, 50, 100}. Note
that, the larger o is, the larger the number of constraints of the form u; = u; being
satisfied.

Problem 2. Two-dimensional dam

This problem is a two-dimensional version of Problem 1. The discretized version
of the problem is given by:

1 29 19
Minimize 3 Z 2(41/!,']' — Ui — Ui jr] — Ui—1,j — u,-+1,j)2
i=2 j=2
30 20 30 20
subject to ZZMU = ZZIZI']‘,
i=1 j=I i=1j=1
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400 | ]
g = —_—
350 | o=1
300 | o=2 — |
oc=3
250 o =4 1
200 7=5 ]
c=10 ——
150 c=20 —— -
100 c=30 ——
oc=40 ——
50 oc=50 — |
o =100
0 1 1 L I 1 I
20 40 60 80 100 120 140

Fig. 1 Graphical representation of solutions to problem 1 for different values of &

where
. 1 1 i—1
= | 400 i =30 [4+ 15sin (27 (4524))]
0, otherwise,
with the additional constraint of having u;; = u;j, fori = 1,...,30 and j =
1,...,20, as many times as possible. Solutions to the problem can be found by

solving the reformulated problem given by:

.o 1 99 ) 100
Mlnllee-E (ui—1 —uiq) +GE Vi
2 i=2 i=1
100

subject to Zi:l u = Z?il Zjozl Uij

—y5 Swij—i; < yh. i=1,...,30, j=1,...,20,

for different values of o > 0. Note that the reformulation corresponds to penal-
izing w(lu;; — u;j), i = 1,...,30, j = 1,...,20, with n(-) = /. Figure 2
shows a graphical representation of solutions to problems with o € {108,107, ...,
1,10°L, ..., 10_8}. Once again, the larger o is, the larger the number of constraints
of the form u;; = u;; being satisfied.
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Fig.2 Graphical representation of solutions to Problem 2 for different values of o
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Problem 3. Mass transportation

Assume that in arectangle of n, xn, pixels, to each pixel (7, j) there are associated
functions P (i, j) > 0 and Q(i, j) > O such that:
ny My ny My
DX PGH=)) 006 ).
i=1 j=1 i=1 j=1

P(i, j) represents white mass and Q(i, j) represents red mass. The goal is to find a
function u((i, j), (k, £)) > 0 that represents the transportation of white mass from
pixel (i, j) to pixel (k, £). There is no transportation of red mass. The function of
transported mass u must be such that, at every pixel, the amount of white mass be
equal to the amount of red mass. Therefore, for every pixel (i, j) € V, we must have
that:

QG. j) = P, j) + Yoo ulk,0), G, ) —ull, ), &, 0),
(k, )€V, (k,)F,J)
where V = {{1,2,...,n,} x {1,2,...,n,}}. With these constraints, the objective
is to minimize the number of non-null transports, i.e., to minimize the number of
u((, j), (k, £)), for (i, j) # (k, £) € V, that are positive.
The reformulated problem is given by:
Minimize o Z(i,j);é(k,()eV Yijke
subjectto QG ) = PG N+ o K0, 6 )
—u((, j), (k,0)), Vi, j) eV
0 < u(G, j), (k, ) < e Y, ) # (k, &) € V.

It corresponds to penalize \/Z(i,j);é(k,aev u((i, j), (k, £)) that represents the cost

of the transportation process, its concavity representing economy of scale (decreasing
marginal cost of transportation). Figure 3 illustrates solutions to a small instance of
Problem 3 with ¢ =0 and o > 0.

6.2 Numerical comparison
We implemented the model-intensive Algorithm 4.1 in Fortran. At Step 2, a pair
(xtial - ytialy qatisfying (26) and (27) is computed by tackling problem:

Minimize M x(x, y) + pllx —x*, y — y*|7¥!

subjectto —y? <x; <y?fori=1,...,nandy >0, (65)
where

n
M i (x,y) = Tp(x* x) = F(5) + > Ty =y,
i=1
with the help of Algencan [1, 7]. By definition, n; € [%n, n) for all k. Thus, in
order to satisfy (26), it is enough to ask to Algencan to stop at a point satisfying
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P12

P11

; " pan
(a) 0 =0, 129 arcs (b) o >0, 11 arcs

Fig.3 Graphical representation of solutions to a small instance of Problem 3

the constraints with precision &feas for any efeas < %n. Algencan also requires tol-
erances £compl and &op for complementarity and optimality measures, respectively.
(See [8, §5.1] for details.) Since (27) is satisfied by (x, y) = (0, 0), that is a feasi-
ble point of problem (65), in practice, it is expected to be always satisfied at the final
iterate of Algencan. In the numerical experiments, in Algorithm 4.1, we arbitrarily
set p e {2,3), 11 = 1 = 100, pmin = 1078, @ = 1078,y = 107%, and 6 = 109;
and, in Algencan, &feas = Ecompl = Eopt = 1078, In order to guarantee the fulfillment
of Assumption A6, Algencan should had been modified to accept a tolerance gopt
depending on its current iterate, i.e. not a constant. Instead of doing that, we keep
Algencan as it is and we observed in practice that Assumption A6 would have been
satisfied setting @ = 10°, which justifies that choice.

In the numerical experiments, we considered the 18 unconstrained minimization
problems of the Moré-Garbow-Hillstrom collection [27] that consist in minimizing
f(x), penalized with the term o Y7, 7(|x;]) with 7(-) = /- and 0 = 1078. Note
that, when applying Algorithm 4.1 with p = 3, evaluating 7), (x*, x) requires the
third-order derivatives of f that were taken from [9]. These problems were solved in
two different ways. On the one hand, problems were reformulated as in Section 6.1
and solved with Algencan. On the other hand, they were solved with Algorithm 4.1
with p € {2, 3}. The same stopping criterion was adopted in both cases, namely, the
approximate satisfaction of the optimality conditions given by:

le()+lleo < &
p

1P | x = | V) + ) nVei) | | —xlls < ¢
j=1

,jrllaxP{min{—gj(x),Mj}} <e

J=1

where p = 2n, g;(x,y) :=x; — yjz. and g,4(x,y) == —x; — yjz. forj=1,...,n,
Pg is the projector operator onto Q, and @ = {(x,y) € R | y > 0}, with ¢ =
107%. Emulating the situation to which Algorithm 4.1 is applicable, we considered
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the number of evaluations of f as performance metric. Equivalent solutions were
found with the two approaches in all the problems. Table 1 and Fig. 4 show the
results. Figures show that Algorithm 4.1 with p = 2 and p = 3 used, in average 72%
and 82% of the number of functional evaluations used by Algencan, respectively.
Algorithm 4.1 with p = 2 used a larger number of evaluations than Algencan in 2
problems, the same number in 3 problems, and less evaluations in all the other 13
problems. The apparent inferiority of Algorithm 4.1 with p = 3, with respect to
the case with p = 2, can be attributed to the (lack of) parameter tuning, since the
arbitrary value of the (dimensional) sufficient decrease parameter o = 1078 in (28)
has a different meaning when p = 2 and p = 3.

7 Final remarks

In this work, we have introduced a smooth reformulation for constrained smooth
problems with nonsmooth regularizations. The reformulation is entirely equivalent to
the original problem both from the global and the local points of view. Moreover, we
were able to prove optimality conditions in which auxiliary variables do not appear
at all.

Table 1 Comparison of the performance of Algencan and Algorithm 4.1 with p € {2, 3} when applied to
solving the Moré-Garbow-Hillstrom minimization problems with the penalty term given by 7 (-) = /-

Problem f(x*) Number of functional evaluations

Algencan Alg. 4.1 (2nd) Alg. 4.1 (3rd)

Helical valley 3.00e—05 39 13 9

Biggs EXP6 5.91e—05 211 41 47
Gaussian 3.00e—05 3 3 2

Powell badly scaled 2.00e—05 254 90 85
Box three-dimensional 3.00e—05 49 21 31
Variably dimensioned 1.00e—04 14 15 20
Watson 2.35e—03 13 13 22
Penalty I 6.23e—05 46 38 44
Penalty II 4.86e—05 74 124 9

Brown badly scaled 3.07e—03 487 21 44
Brown and Dennis 8.58e+-04 8 9 15
Gulf research and development 2.98e—05 36 35 35
Trigonometric 1.28e—04 15 10 14
Extended Rosenbrock 9.97e—05 34 27 43
Extended Powell singular 1.20e—04 17 18 27
Beale 2.00e—05 28 9 12
Wood 4.00e—05 90 53 72
Chebyquad 3.60e—03 31 19 21
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600
500 M Algencan
H Alg. 4.1 (2nd-order model)
Alg. 4.1 (3rd-order model)
400
300

200

100
Ol'l lL-—.I .-.-..nl.lll!

18 9 3 12 25 20 23 24 4 16 11 26 21 22 5 14 35

Problem

Number of functional evaluations

Fig.4 Graphical representation of the performance of Algencan and Algorithm 4.1 with p € {2, 3} when
applied to solving the Moré-Garbow-Hillstrom minimization problems with the penalty term given by

()=~

Our main interest relies now in the application of these techniques to real problems
in which the evaluation of the objective function is overwhelmingly more expen-
sive than the evaluation of the constraints. This type of functions appear when PDE
calculations are involved in the objective function evaluation and when the objec-
tive function is related to some phenomenon that takes place in real time. In these
cases, model-intensive algorithms as the ones introduced in this paper may be use-
ful. So, it is interesting to show that, from the theoretical point of view (convergence
and complexity), these algorithms are well supported. Of course, smooth reformula-
tions are valuable in these cases because one may take advantage of well-established
constrained optimization software.
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