Proceedings of the

Linux Audio Conference 2019

March 23 - 26" 2019

Center for Computer Research in
Music and Acoustics (CCRMA)

Stanford University, USA

N

“In Ping(uins) we trust”

Published by

CCRMA, Stanford University, California, US
March 2019

All copyrights remain with the authors
http://lac.linuxaudio.org/2019

ISBN 978-0-359-46387-9

Credits

Layout: Frank Neumann and Romain Michon

Typesetting: BIEX and pdfLaTeX

Logo Design: The Linuxaudio.orglogo and its variations copyright Thorsten Wilms (©2006,
imported into "LAC 2014" logo by Robin Gareus

Thanks to:
Martin Monperrus for his webpage "Creating proceedings from PDF files"

ii

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

CPU CONSUMPTION FOR AM/FM AUDIO EFFECTS

Antonio Jose Homsi Goulart

University of Sao Paulo
Sdo Paulo, Brazil
ag@ime.usp.br

Joseph Timoney

Maynooth University
Maynooth, Ireland
joseph.timoney@mu.ie

ABSTRACT

In this paper we present an assessment of the computational perfor-
mance regarding the use of the AM/FM decomposition framework
for the design and implementation of audio effects. The equations
and intuitions are reviewed and audio examples are provided, along-
side Csound code for real-time implementation. Two types of hard-
ware and several computer music techniques were considered for
the comparisons. We also introduce sqENVerb, a novel inexpensive
reverb-enhancer effect.

1. INTRODUCTION

Following studies in areas like modulation vocoder [1] [2] [3] and
modulation filtering [4] [5] [6], in our previous studies [7] [8] the
non-coherent mono-component AM/FM paradigm was presented as
a framework for the development of new audio effects. The theory
was thoroughly revised and treated in [9], however, the computa-
tional effort required to run different types of effects was not ad-
dressed.

In this paper we present an assessment of the performance con-
sidering different computational systems and different audio pro-
cessing techniques. Two kinds of computers were used, namely a
RaspberryPi model 2B and a Lenovo ThinkPad x220. The former
was chosen because it represents the category of low cost program-
ming platforms, that can be used, among other applications, for audio
processing; the later represents a more powerful and relatively pop-
ular computational system. Netbooks and old laptops might loosely
fall in a category between these two examples. Notice also that many
programming platforms similar to the Pi actually outperform it, in
the same way that many computers assembled for gaming purposes
outperform the ThinkPad. So the assessment presented here repre-
sents a somewhat conservative scenario; anything running satisfac-
torily on the Pi and ThinkPad should also run in these more powerful
computers.

Beyond the CPU consumption, while our previous papers em-
phasised manipulations on the instantaneous frequency component
of the AM/FM decomposition, now we also address an effect ob-
tained by manipulating the envelope of the signal.

In Section 2 we will briefly review the AM/FM Hilbert-based
framework and code for real-time implementation. In Section 3 a
new reverb-like effect is introduced and evaluated with a brief objec-
tive assessment based on audio descriptors. Then we proceed in Sec-
tion 4 to a presentation and discussion of the required computational

71

Marcelo Queiroz

University of Sdo Paulo
Séo Paulo, Brazil
mgz@ime.usp.br

Victor Lazzarini

Maynooth University
Maynooth, Ireland
victor.lazzarini@mu.ie

power in order to run the AM/FM framework and effects. Finally,
we conclude and point our current and future work. Audio examples
will be referenced in the paper with the symbol [»filename] and are
available alongside Csound code for download'.

2. THE AM/FM FRAMEWORK

The AM/FM decomposition unravels a signal z(¢) to a pair of com-
ponents: an envelope a(t) and an instantaneous frequency signal
f(t). Together these signals can modulate a sinusoid both in am-
plitude and frequency in order to obtain the original signal back, so

(1) = a(t) cos (/0 t f(T)dT>.

We can also think of phasors and interpret the argument for the co-
sine as an instantaneous phase, which is given by regular increments
(the sum represented by the integral) depending of the instantaneous
frequency. For instance, a regular sinusoid is the projection on the
x-axis of a phasor in which the increments are always the same (tied
to its frequency).

In contrast to additive synthesis, where we think globally about
the signal, the local aspect of the signals in the AM/FM framework
tracks local dynamics in the envelope case, while the instantaneous
frequency represents the frequency of a sinusoid that best fits the
original signal at each instant.

One of the possibilities for implementing the decomposition is
by means of an analytic signal

ey

2(1) = a(t) + (1), @
where i = \/—1 and £(t) is the Hilbert Transform of x(%).

The Hilbert Transform shifts all the components in a signal by
90° [10], so it might be implemented by using a set of all-pass fil-
ters, as is done in the hilbert Csound opcode. The important
characteristic of the analytic signal is the absence of the negative fre-
quencies; its spectrum resembles the original spectrum of x(t) on
the positive frequencies, while the negative components are void, so

1 [t

:ﬁo

z(t) X(w)e™ dw, 3)

Inttps://www.ime.usp.br/~ag/dl/lacl9.zip

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

where X (w) is the Fourier Transform of z(¢) [11]. In such a way we
can interpret the analytic signal as a superposition of infinite phasors
with different frequencies and radii, as shown in Figure 1.

t A
| P —
- | |
—
y(©) ‘)
=

=

Figure 1: Analytic signal as a superposition of phasors. The origi-
nal signal is the projection of the analytic signal onto the real axis.
Source: reproduced from [9]

In Csound the AM/FM decomposition might be implemented
with the following code:

opcode Udiff,a,a
setksmps 1
asig xin
/+ differentiation =/
asig diff asig
ksig = downsamp (asig)
/* phase unwrapping =*/
if ksig >= $M_PI then
asig —-= 2x$M_PI
elseif ksig < -$M_PI then
asig += 2xSM_PI
endif

xout asig
endop

opcode AmFmAna,aa,a
asig xin

aim,are hilbert asig /* xhat and x =/

a_am = sqgrt (are”2 + aim”2) /* envelope =/
aph = taninv2(aim, are) /+ inst. phase «*/
/* inst. freq. =*/

a_fm = Udiff (aph)xsr/ (2«$SM_PTI)

xout a_fm

endop

a_am,

Notice that the hilbert opcode is used in order to obtain the an-
alytic signal, and also that the phase needs to be unwrapped. This
opcode works in the time domain using 6*"-order recursive filters
to keep signals in quadrature. Alternatively, we could also employ
the hilbert2 opcode, which implements the same process using a

72

frequency-domain approach implementing a finite impulse response
filter (FIR) using a Fast Fourier Transform (FFT) algorithm. How-
ever, for this paper we have concentrated on using the former method
due to the fact that the FIR approach introduces a latency between in-
put and output that is proportional to the analysis window, and there-
fore it might not be as well suited to hard real-time applications.
In the tests section, we will compare the costs of the time-domain
AM/FM process against the application of FFT analysis-synthesis to
a signal.

In order to design AM/FM effects we proceed to manipulations
in a(t) and/or f(t) followed by a resynthesis step considering the
modified signals, as represented in the following code:

opcode AmFmRes, a, aa

a_am_p,a_fm p xin

xout a_am_p+cos (integ(a_fm_p) *2+xSM_PI/sr)
endop

Notice that a_am_p and a_ fm_p represent the potentially processed
versions of the estimated a_am and a_ fm (remember that Csound’s
audio variables names must start with “a”).

3. SQENVERB: A NEW AM/FM EFFECT

In our previous papers different families of manipulations were de-
scribed and thoroughly explained. For instance, the octIFer [8], a
beautiful sounding octaver-like effect might be obtained by multi-
plying the instantaneous frequency signal by 0.5 [»octifer-half] or
even by 0.25 [»octifer-quarter]. We emphasize, though, that these
manipulations are not directly altering frequencies in the spectrum
of the original signal, but are actually changing the increments that
drive the phasor in the resynthesis process.

Now we describe an effect not yet considered in our previous
studies. The manipulation is based on extracting the square root
of the estimated envelope signal. The analytic signal envelope lies
within the [0,1] range, and considering this interval as our domain
for the square root function, we can affirm that the sqrt will al-
ways return values greater than the argument. Notice that

Vi1

x T
so the closer the argument is to 0, the greater will be the relative gain.
As a consequence, moments of low-intensity sound will be empha-
sized, leading to pronounced tails. Albeit reverberation is charac-
terized by both early and late reflections [12], the reverberation is
arguably more noticeable in the tail of the sound. In such a way the
effect can be seen as a sort of compressor/expander [13] which in this
case acts extending an already present reverberant tail in the sound.

Differently than a regular gain operation that multiplies the whole
signal by the same amount, the square root application results in a se-
lective gain along the signal duration, directly influencing its decay
and thus the perception of length. In Figure 2 we can actually check
the influence of the Root Mean Square in both the original signal
[»original] and the one with sgENVerb [»sqenverb]. The RMS is
an audio descriptor related to the perception of level in a sound.

As we would expect, the spectral information is not considerably
altered by extracting the envelope’s square root. In Figure 3 we can
check the spectral centroid for the original audio and the sqgENVerb
edition. The spectral centroid [14] is an audio descriptor related to
the perception of brightness in a sound. Both the RMS and spectral
centroid evaluation were realized with the Essentia [15] library.

“)

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

<,
.......

Amplitude

100 150 200
Time

Figure 2: RMS of dry (solid blue) and processed (dashed magenta)
signals. Low intensity moments are greatly influenced by the square
root operation.

Spectral centroid

Normalized Frequency

o 50 100 150 200
Time

Figure 3: Spectral centroid of dry (solid blue) and processed (dashed
magenta) signals. The operation on the envelope does not consider-
ably influence the spectral centroid.

4. AM/FM CPU CONSUMPTION

The CPU consumption assessment in important both for artistic con-
siderations (e.g. maximum tolerated latencies to avoid difficulties in
musical performance) and also technical reasons (e.g. hardware siz-
ing). In order to evaluate the computational effort to run the different
effects, the software t ime? was used. It is executed from the shell
with the command

time csound amfmdafx.csd

Here amfmdafx . csd refers to a Csound code with an AM/FM ef-
fect implemented. The default t ime execution returns three mea-
sures:

e real: total duration of the process under analysis;
e user: time taken to work directly on the process;

e sys: time taken to work on system tasks related to the process.

user+sys
real

The CPU consumption is then given as

The results® are shown in Table 1, which is divided in several
parts:

2http://manpages.ubuntu.com/manpages/xenial/manl/
time.l.html

3In order to give more meaning to the numbers, the hardware specifica-
tions are: RaspberryPi 2B / quad-core ARM Cortex-A7 @ 900 MHz 32 bits
/1 GB SD-RAM @ 400 MHz / Raspbian / Csound 6.08; ThinkPad x220 /
dual-core 15-2520M @ 2.5 GHz 64 bits / 8 GB RAM DDR3 @ 1333 MHz
/ Debian / Csound 6.09.1. The sample rate considered was always 44100
samples per second.

73

o in the first part of the table some simple and inexpensive com-
puter music tasks are evaluate just to set the scale for the com-
parisons;

e the second part shows the consumption for realising a FFT
and an inverse FFT, considering different windows and hop
sizes (shown as number of samples);

e the performance for classic octaver and reverb implementa-
tions are then shown;

e then the raw AM/FM framework performance is presented
(decomposition followed by resynthesis, with no effects im-
plemented);

e the second to last part shows the performance for some AM/FM
effects explored in [9];

e the last part shows the performance considering the octIFer
and the sqENVerb cases.

Table 1: CPU consumption for different types of effects. *The Rasp-
berryPi could not handle a 5000-sample long convolution reverb.

CPU consumption (%)
RaspberryPi 2B | ThinkPad x220
looped audio 9.49 4.69
clip distortion 10.77 5.06
FFT pair (1024/512) 26.35 8.52
FFT pair (1024/256) 37.38 10.37
FFT pair (1024/128) 45.76 12.31
FFT pair (512/256) 26.05 8.68
FFT pair (512/128) 33.68 10.47
FFT octaver (1024/128) 48.00 12.41
convolution reverb 2500 88.98 14.73
convolution reverb 5000 —* 22.97
simulation reverb 26.13 7.67
[AM/FM framework | 25.23 | 7.53 |
AM/FM TF filtering 29.72 7.73
AM/FM IF compression 33.21 7.78
AM/FM IF modulation 29.23 7.92
AM/FM octlIFer 29.87 7.81
AM/FM sqENVerb 28.51 7.77

The FFT algorithm [16] is used widely for the design of audio
effects, therefore we adopt it here as a benchmark against which we
can measure the computing costs of the AM/FM framework. From
the table we can check that both the FFT and AM/FM schemes are
computationally accessible, and also that the AM/FM framework is
lighter than the FFT/iFFT in all its cases. Another observation is
that, in both frameworks, the implementation of a manipulation in
the alternative domain does not cause a large increase in the CPU
consumption, in comparison to the case where the raw frameworks
are applied without any actual effects.

The octIFer effect delivers a high quality sonority [»octifer-half]
for a cost considerably lower than the classic contender [»octaver],
bearing good resemblance in the sonority.

The sqENVerb effect shows a similar consumption in relation
to the simulated reverb case [»simu-reverb], and a huge economy
in relation to the convolution reverb. We emphasize that the 5000-
sample impulse response convolution [»conv-reverb5000] required
almost twice CPU as the heaviest FFT case; it was not even possible

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

to run in the RaspberryPi, so another IR with 2500 samples was con-
sidered [»conv-reverb2500]. The sonority obtained in this case was
not bad, but such a limitation might be questionable, and even with
the short IR the Raspberry CPU was almost entirely taken. All the
tested AM/FM examples leave considerable CPU headroom so other
effects might be applied concurrently.

5. CONCLUSIONS

In this paper we presented, for the first time, a computational perfor-
mance assessment of the AM/FM audio effects framework. The new
AM/FM effect sqENVverb was also developed and compared to the
established reverb techniques.

All the examples we explored are based on the non-coherent
mono-component Hilbert Transform case of AM/FM decomposition.
Different techniques for the decomposition are available, and richer
scenarios might also be considered, for instance a filter bank frame-
work, where the dry signal is separated in bands and the subsequent
decomposition and processing are applied individually to each band,
increasing the computational cost.

The AM/FM decomposition takes the signal to an alternative
representation, where even subtle modifications in the envelope or
instantaneous frequency signals might result in deep effects after the
resynthesis.

The means by which both the octlFer and the sqEN Verb effects
emulate the octaver and reverb effects might not be orthodox, but
the sonorities obtained in both cases resemble the classic techniques,
at a considerably lower computational cost. The octIFer sound is
quite similar to the classic octaver, and the sqENVerb works fine as
a reverb, albeit lacking any control besides a dry/wet mix parameter
(which is actually extremely efficient for tuning a reverb).

While it is true that powerful computational systems are increas-
ingly available at decreasing cost, low-consumption algorithms will
always be on demand: draining the battery of devices like tablets
or smartphones with audio effects might not bring a good user ex-
perience; contemporary small single-board computers are still very
limited in processing power; old laptops and netbooks, nowadays
usually discarded, can instead be harnessed as terrific multi effect
pedals.

Plugins for the octIFer and sqENVerb are currently being devel-
oped, to be released as open-source software.

6. ACKNOWLEDGMENTS

This study was financed in part by the Coordenagdo de Aperfeicoa-
mento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code
001.

7. REFERENCES

[1] Sascha Disch and Bernd Edler, “An amplitude and frequency-
modulation vocoder for audio signal processing,” in Proceed-
ings of the International Conference on Digital Audio Effects
(DAFX-08), Espoo, Finland, September 2008.

[2] Sascha Disch and Bernd Edler, “An iterative segmentation al-
gorithm for audio signal spectra depending on estimated lo-
cal centers of gravity,” in Proceedings of the International
Conference on Digital Audio Effects (DAFX-09), Como, Italy,

September 2009.

74

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

Sascha Disch and Bernd Edler, “An enhanced modulation
vocoder for selective transposition of pitch,” in Proceedings of
the International Conference on Digital Audio Effects (DAFX-
10), Graz, Austria, September 2010.

S. Schimmel and L. Atlas, “Coherent envelope detection for
modulation filtering of speech,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, 2005., March 2005, vol. 1, pp. 221-224.

Qin Li and Les Atlas, “Over-modulated am-fm decomposi-
tion,” in Proceedings of the SPIE - Advanced Signal Processing
Algorithms, Architectures, and Implementations, Bellingham,
WA, 2004, pp. 172-183.

P. Clark and L. Atlas, “Time-frequency coherent modulation
filtering of nonstationary signals,” IEEE Transactions on Sig-
nal Processing, vol. 57, no. 11, Nov 2009.

Antonio José Homsi Goulart, Joseph Timoney, Victor Laz-
zarini, and Marcelo Queiroz, “Psychoacoustic impact assess-
ment of smoothed AM/FM resonance signals,” in Proceedings
of the Sound and Musical Computing Conference, Maynooth,
Ireland, July 2015.

Antonio José Homsi Goulart, Joseph Timoney, and Victor Laz-
zarini, “AM/FM DAFX,” in Proceedings of International Con-
ference on Digital Audio Effects (DAFx), Trondheim, Norway,
December 2015.

Antonio José Homsi Goulart, Marcelo Queiroz, Joseph Ti-
money, and Victor Lazzarini, “Interpretation and control in
AM/FM-based audio effects,” in Proceedings of International
Conference on Digital Audio Effects (DAFx), Aveiro, Portugal,
September 2018.

Stefan Hahn, Hilbert Transforms in Signal Processing, Artech
House, Norwood, MA, 1996.

A.V. Oppenheim and R.W. Schafer, Digital signal processing,
Prentice Hall, New Jersey, USA, 1975.

F. Richard Moore, Elements of computer music, Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1990.

Udo Zolzer, Ed., DAFx: Digital Audio Effects, Wiley & Sons,
2nd edition, 2011.

James Beauchamp, “Synthesis by spectral amplitude and
’brightness’ matching of analyzed musical instrument tones,”
J. Audio Eng. Soc, vol. 30, no. 6, 1982.

Dmitry Bogdanov, Nicolas Wack, E. Gémez, Sankalp Gulati,
Perfecto Herrera, O. Mayor, Gerard Roma, Justin Salamon,
J. R. Zapata, and Xavier Serra, “Essentia: an audio analysis li-
brary for music information retrieval,” in International Society
for Music Information Retrieval Conference (ISMIR), Curitiba,
Brazil, 04/11/2013 2013, pp. 493-498.

Julius Smith, Spectral Audio Signal Processing, W3K Publish-
ing, 2011.

