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Remarks on the spectrum of a non-local Dirichlet problem

Rafael D. Benguria and Marcone C. Pereira

Abstract

In this paper, we analyse the spectrum of non-local Dirichlet problems with non-singular kernels
in bounded open sets. The novelty is twofold. First we study the continuity of eigenvalues with
respect to domain perturbation via Lebesgue measure. Next, under additional smooth conditions
on the kernel and domain, we prove differentiability of simple eigenvalues computing their first
derivative discussing extremum problems for eigenvalues.

1. Introduction

In this note, we discuss the spectrum set of a non-local equation with non-singular kernels
and Dirichlet conditions in bounded open sets Ω ⊂ R

N . We consider the non-local eigenvalue
problem {

(J ∗ u)(x) − u(x) = −λu(x), x ∈ Ω,

u(x) = 0, x ∈ R
N \ Ω,

(1.1)

where J ∗ u stands for the usual convolution

(J ∗ u)(x) =
∫
RN

J(x− y)u(y)dy

with a kernel J . Throughout this article the function J satisfies the hypotheses

(H)
J ∈ C(RN ,R) is a non-negative function, spherically symmetric and radially

decreasing with J(0) > 0 and
∫
RN J(x) dx = 1.

Our main goal is to study the continuity of the spectrum set with respect to the variation of
the domain Ω. Next, assuming J and Ω are C1-regular, we also show differentiability of simple
eigenvalues computing an expression for their first derivative allowing Ω to vary in the set of
open sets which are C1-diffeomorphic.

Note that analysing the spectral properties of (1.1) is equivalent to study the spectrum of
the linear operator BΩ : WΩ �→ WΩ where WΩ = {u ∈ L2(RN ) : u(x) ≡ 0 in R

N \ Ω} and

BΩu(x) ≡ u(x) −
∫

Ω

J(x− y)u(y)dy, x ∈ Ω. (1.2)

Moreover, one has that the operator BΩ is the sum of the identity on the Hilbert space WΩ

minus the compact and self-adjoint operator ĴΩ : WΩ �→ WΩ which is defined by

ĴΩ = EΩ ◦ JΩ ◦RΩ, (1.3)
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where JΩ : L2(Ω) �→ L2(Ω) is the linear operator defined by the convolution

JΩu(x) = (J ∗ u)(x), x ∈ Ω, (1.4)

RΩ : WΩ �→ L2(Ω) is the restriction to Ω and EΩ : L2(Ω) �→ WΩ is the standard extension by
zero

EΩu(x) =

{
u(x), if x ∈ Ω
0, otherwise.

We will see that there exists a precise relationship between the spectrum of the operators
BΩ and JΩ. Indeed, the continuity properties for the eigenvalues of BΩ will be obtained by an
accurate analysis of the spectrum of JΩ via perturbation theory for linear operators developed
in [21]. The convergence of the eigenvalues is obtained assuming that the Lebesgue measure
of the symmetric difference of open sets goes to zero.

Along the whole paper, we say that a family of measurable sets {Ωn}n∈N ⊂ R
N converges in

measure to Ω ⊂ R
N as n → ∞, if the symmetric difference |Ωn \ Ω| + |Ω \ Ωn| → 0. Note that

|O| denotes the Lebesgue measure of any measurable set O ⊂ R
N . Here, we mention one of the

main results in this direction.

Theorem 1.1. Let D be a bounded set in R
N and Ωn ⊂ D be a family of open bounded

sets with μk(Ωn) denoting the kth eigenvalue of the operator JΩn
. Assume Ωn → Ω in measure

as n → ∞ for some Ω ⊂ D.
Then, there exist positive constants C and δ, depending only on the domain Ω, such that, if

μk(Ω) is the kth eigenvalue of the operator JΩ, then

|μk(Ωn) − μk(Ω)| � C‖J‖L∞(RN )[|Ωn \ Ω| + |Ω \ Ωn|]1/2

whenever |Ωn \ Ω| + |Ω \ Ωn| < δ. In particular,

|μk(Ωn) − μk(Ω)| → 0 as n → ∞.

Moreover, if λk(Ωn) is the kth eigenvalue of the operator BΩn
, we have

|λk(Ωn) − λk(Ω)| � C‖J‖L∞(RN )[|Ωn \ Ω| + |Ω \ Ωn|]1/2

as |Ωn \ Ω| + |Ω \ Ωn| < δ with

|λk(Ωn) − λk(Ω)| → 0 as n → ∞
where λk(Ω) is the kth eigenvalue of the operator BΩ.

Next, we follow the approach introduced in [18] to perturb Ω in order to take derivatives of
simple eigenvalues with respect to the domain. More precisely, if Ω ⊂ R

N is a C1-regular open
bounded set, and h : Ω �→ R

N is a C1-diffeomorphism to its image, we define the composition
map

h∗v(x) = (v ◦ h)(x), x ∈ Ω,

for any v set on h(Ω). h∗ : L2(h(Ω)) �→ L2(Ω) is an isomorphism with (h∗)−1 = (h−1)∗.
For such imbedding h and bounded region Ω, one can introduce the non-local Dirichlet

operator Bh(Ω) on the perturbed open set h(Ω) by

(Bh(Ω)v
)
(y) = v(y) −

∫
h(Ω)

J(y − w)v(w)dw, y ∈ h(Ω), (1.5)
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with Bh(Ω) : Wh(Ω) �→ Wh(Ω). On the other hand, we can use h∗ to set h∗Bh(Ω)h
∗−1 : WΩ �→ WΩ

by

h∗Bh(Ω)h
∗−1u(x) =

∫
h(Ω)

J(h(x) − w)(u ◦ h−1)(w)dw, ∀x ∈ Ω. (1.6)

It is known that expressions (1.5) and (1.6) are the customary manner to describe motion or
deformation of regions. Form (1.5) is called the Lagrangian description, and (1.6) the Eulerian
one. The former is written in a fixed coordinate system while the Lagrangian does not. Also,

h∗Bh(Ω)h
∗−1u(x) = v(y) −

∫
h(Ω)

J(y − w)v(w)dw =
(Bh(Ω)v

)
(y)

if we take y = h(x) and v(y) = (u ◦ h−1)(y) = h∗−1u(y) for y ∈ h(Ω).
In this way, we perturb our eigenvalue problem (1.1). We take imbeddings h : Ω �→ R

N

varying in the set of diffeomorphisms Diff1(Ω) studying the eigenvalues of the operators (1.5)
and (1.6) which are the same. We have the following result concerning the derivative of simple
eigenvalues.

Theorem 1.2. Let λ0 be a simple eigenvalue for BΩ with corresponding normalized
eigenfuction u0 and J ∈ C1(RN ,R) satisfying (H). Then, there exists a neighbourhood V
of the inclusion iΩ ∈ Diff1(Ω), and C1-functions (uh, λh) from V into L2(Ω) × R which
satisfy h∗Bh(Ω)h

∗−1uh(x) = λhu(x), x ∈ Ω, with uh ∈ C1(Ω). Also, λh is a simple eigenvalue,
(λiΩ , uiΩ) = (λ0, u0), and the domain derivative is given by

∂λ

∂h
(iΩ) · V = −(1 − λ0)

∫
∂Ω

u2
0 V ·NΩdS for all V ∈ C1(Ω,RN ), (1.7)

where ∂Ω denotes the boundary of Ω and NΩ its normal vector.

At this point, it is worth noticing that we are improving here results from [16] where the
domain perturbation to the first eigenvalue of (1.1) was considered and formula (1.7) was first
obtained. There, the authors have used the variational formulation of the first eigenvalue and
the positivity of the corresponding eigenfunction which holds just in this particular case. Our
result is more general since it holds for any simple eigenvalue also showing smooth persistence.

We mention some authors as [1, 15, 19] which associate J under conditions (H) to a radial
probability density calling equation (1.1) a non-local analogous to the Dirichlet boundary
conditions problem to the Laplacian. Indeed, several continuous models for species and human
mobility have been proposed using such non-local approach, in order to look for more realistic
dispersion equations [3, 8, 11]. Recall that hostile surroundings are modeled by the Dirichlet
condition as in (1.1).

As one can see, for instance, in [7, 8, 13, 16, 20], that such kind of non-local models with
non-singular kernels exhibit different properties when compared to their local and non-local
analogs which are associated to singular kernels. The local and non-local analogs for (1.1) are
given by unbounded operators with compact resolvent which guarantees the regularizing effect
for the solutions. Hence, besides the applied models with non-singular kernels, the mathematical
interest is mainly due to the fact that, in general, there is no regularizing effect and therefore
no general compactness tools are available making their study different.

Finally, let us note that Theorem 1.1 is not true for standard local operators like the
Laplacian. In the classical paper [12], the authors consider the Laplacian with Dirichlet
boundary condition in a bounded domain from where a big number of periodic small balls
(the holes) is removed. They consider Ωε = Ω \ ∪iBrε(xi) where Brε(xi) is a ball centred in
xi ∈ Ω of the form xi ∈ 2εZN with radius 0 < rε < ε < 1 and ε → 0. It is shown that there is
a critical size of the holes (that is, a critical order of rε in ε) such that the resolvent operator
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of the Dirichlet–Laplacian is not continuous at ε = 0. Assuming N � 3, for instance, we have
that the critical size of the holes is given by aε ∼ ε

N
N−2 . Hence, if we take rε � aε, then the

continuity of the spectral set does not hold. We also mention [9] where the authors discuss
capacity constrains to guarantee certain continuity of the spectra.

The paper is organized as follows: in Section 2, we show some preliminary results concerning
to the spectrum of JΩ and BΩ also discussing isoperimetric inequalities for BΩ. Such inequalities
are an analogue of Rayleigh–Faber–Krahn and Hong–Krahn–Szegö inequalities and have been
recently obtained for JΩ in [24]. For a recent review on isoperimetric inequalities, we refer to
[6].

In Section 3, we study the continuity of eigenvalues with respect to Ω. We also take into
account recent results concerning the convergence of eigenvalues posed in oscillating and
perforated domains. Finally, in Section 4, we obtain the stability of a simple eigenvalue with
respect to the variation of smooth domains performed by imbeddings, proving Theorem 1.2.

2. Basic facts and preliminary results

Let us first discuss the operator JΩ : L2(Ω) �→ L2(Ω) given by the convolution (1.4). Note JΩ

is bounded, compact and self-adjoint satisfying

‖JΩ‖L2(Ω) � |Ω|‖J‖L∞(RN ).

Such a proof is straightforward and can be found, for instance, in [13, 23]. In the sequel, we
mention other properties with respect to its spectral set which are also consequence of classical
results from functional analysis.

Remark 2.1. Since JΩ is compact and self-adjoint, one may obtain, for instance, from [21,
Chapter V, Theorem 2.10], that the spectrum σ(JΩ) consists of at most a countable number
of real eigenvalues with finite multiplicities, possible excepting zero. Let us enumerate their
eigenvalues in decreasing order of magnitude

|μ1| � |μ2| � . . .

If P1, P2, . . . are the associated eigenprojections of JΩ, then Pi are orthogonal and self-adjoint
with finite dimensional range. Also, we have the spectral representation

JΩ =
∑
i�0

μiPi

in the sense of convergence in norm with projections forming a complete orthogonal family
together with the orthogonal projection P0 on the null space of JΩ.

Remark 2.2. From [21, Chapter V, Theorem 2.10], we have that 0 ∈ σ(JΩ). Also, if there
exists an infinite sequence of distinct eigenvalues μi, then μi → 0 as i → +∞, and then, zero
belongs to the essential spectrum σess(JΩ). On the other hand, if the set of eigenvalues is finite,
its null space is not trivial, indeed, it is an infinite dimensional subspace of L2(Ω).

Remark 2.3. We note that |μ1| is equal to the spectral radius of JΩ which coincides with
its norm

|μ1| = lim
n→+∞ ‖J n

Ω ‖1/n = ‖JΩ‖.

Moreover, it is known from [23, 24], that the first eigenvalue μ1 is positive, simple, whose
corresponding eigenfunction u1 can be chosen strictly positive in Ω.
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Since the eigenvalues μi have finite multiplicity, we can set them in a decreasing order
of magnitude also taking account their multiplicity. Hence, we denote by u1, u2, . . . the
corresponding eigenfunctions for each eigenvalue μi setting

JΩui(x) = μi(Ω)ui(x).

Now, let us denote the range of JΩ by R(JΩ). Since JΩ is self-adjoint, R(JΩ) is orthogonal
to the kernel of JΩ, ker(JΩ), setting a useful decomposition for L2(Ω). From Remark 2.1, one
gets

L2(Ω) = R(JΩ) ⊕ ker(JΩ).

We still have the following result concerning R(JΩ).

Lemma 2.1. Assume R(JΩ) is finite dimensional.
Then, there exist a set of normalized eigenfunctions {u1, . . . , um} ⊂ L2(Ω), associated to

non-zero eigenvalues μi(Ω), such that

J(x− y) =
m∑
i=1

μi(Ω)ui(x)ui(y), a.e. Ω. (2.8)

In particular, J(x) =
∑m

i=1 μi(Ω)ui(x)ui(0) a.e. Ω, and J(0)|Ω| =
∑m

i=1 μi(Ω).

Proof. First, we recall that L2(Ω) is the direct sum of R(JΩ) and ker(JΩ). Thus, if R(JΩ)
is finite dimensional, by 2.1 again, there exist {u1, . . . , um} ⊂ L2(Ω) given by orthogonal and
normalized eigenfunctions of JΩ, associated to non-zero eigenvalues μi(Ω) such that

R(JΩ) = [u1, . . . , um].

Hence, we can take the orthogonal projections Pi as

Piu(x) =
(∫

Ω

ui(y)u(y)
)
ui(x), x ∈ Ω.

For all u ∈ L2(Ω), we have

JΩu(x) =
∫

Ω

J(x− y)u(y)dy =
m∑
i=1

μi(Ω)
(∫

Ω

ui(y)u(y)dy
)
ui(x), x ∈ Ω.

Consequently,

0 =
∫

Ω

(
J(x− y) −

m∑
i=1

μi(Ω)ui(x)ui(y)

)
u(y)dy, ∀u ∈ L2(Ω) and ∀x ∈ Ω,

completing the proof. �

Now, let us consider the operator BΩ : WΩ �→ WΩ defined by (1.2). Since BΩ is a scalar
combination of the identity and the self-adjoint operator ĴΩ, BΩ is also a bounded self-adjoint
operator in L2(Ω).

Remark 2.4. We note that:

(a) λ(Ω) ∈ σ(BΩ) is an eigenvalue, if and only if, there exists u ∈ L2(Ω), u �= 0, with u(x) ≡ 0
in R

N \ Ω, satisfying equation (1.1) for this same λ(Ω);
(b) u ∈ L2(Ω) is a fixed point of BΩ, if and only if, u belongs to the null set of JΩ;
(c) λ(Ω) ∈ σ(BΩ) is an eigenvalue, if and only if, 1 − λ(Ω) is an eigenvalue of the compact

operator JΩ. Hence, the eigenvalues of BΩ are enumerated according to the eigenvalues of
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JΩ setting λk(Ω) = 1 − μk(Ω) for k � 1. Also, 0 ∈ σess(JΩ), if and only if, 1 ∈ σess(BΩ),
and zero is an eigenvalue of JΩ, if and only if, 1 ∈ σ(JΩ);

(d) from Remark 2.3, we know that the first eigenvalue of BΩ, which is given by λ1(Ω) =
1 − μ1(Ω), it is associated to a strictly positive eigenfunction which is also simple with

λ1(Ω) = 1 − ‖JΩ‖ < 1;

(e) Further, since we are assuming
∫
RN J(y)dy = 1, we have

1
2

∫
RN

∫
RN

J(x− y)(u(y) − u(x))2dydx = ‖u‖2
L2(RN ) −

∫
RN

∫
RN

J(x− y)u(y)u(x) dy dx,

and then, we get from (d) that

λ1(Ω) = inf
u�=0 in WΩ

1
2

∫
RN

∫
RN J(x− y)(u(y) − u(x))2dydx

‖u‖2
L2(RN )

. (2.9)

For more details, see [1, 16].

Let us take u1, the first positive eigenfunction of BΩ. It follows from (1.1) that

−λ1(Ω)
∫

Ω

(u1(x))2dx =
∫

Ω

u1(x)
∫

Ω

J(x− y)(u1(y) − u1(x))dy

= −1
2

∫
Ω

∫
Ω

J(x− y)(u1(y) − u1(x))2dydx � 0.

Thus, 0 � λ1(Ω) < 1 with λ1(Ω) = 0, if and only if, u1 is a positive constant. Now, due to [1,
Proposition 2.2], one can get that J ∗ u(x) − u(x) ≡ 0 in Ω with u(x) ≡ 0 in R

N \ Ω, if and
only if, u(x) ≡ 0 in R

N . Hence, we conclude that

0 < λ1(Ω) < 1 and 0 < ‖JΩ‖ < 1 (2.10)

for any bounded open set Ω.
Consequently, we obtain from (2.10) that BΩ is a perturbation of the identity being an

invertible operator with continuous inverse given by B−1
Ω u = (I − ĴΩ)−1u =

∑∞
n=0 Ĵ n

Ωu.

Remark 2.5. Others informations and properties concerning the operators JΩ and BΩ, and
their spectrum set, can be seen, for instance, in [13, 20, 23] and references therein. Moreover,
it is important to know that all the results discussed to this point remain valid substituting
the radial condition on the function J with the even one, that is, assuming J(−x) = J(x).

Finally, let us just mention some isoperimetric inequalities for the first and second eigenvalues
of BΩ. Due to the symmetric condition imposed on the kernel J , an analogue of Rayleigh–
Faber–Krahn and Hong–Krahn–Szegö inequalities for JΩ have been shown in [24]. Hence,
since Remark 2.4 gives a precise relationship between the spectrum of JΩ and BΩ, we can
easily extend the results from [24] to the Dirichlet problem (1.1).

Concerning the Rayleigh–Faber–Krahn inequality, we have the following result:

Corollary 2.1. Let Ω∗ denote an open ball with same measure as Ω. Then, under
conditions (H), the ball Ω∗ is a minimizer for the first eigenvalue of BΩ, that is,

λ1(Ω) � λ1(Ω∗).

Proof. It has been seen at [24, Theorem 2.1] that the first eigenvalue μ1(Ω) of JΩ achieves
its maximum among open sets of given volume at the ball Ω∗. That is, μ1(Ω) � μ1(Ω∗). Hence,
we get the result from expression λ1(Ω) = 1 − μ1(Ω) given by Remark 2.4. �
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In Section 4, we give an example which shows that the first eigenvalue of (1.1) does not
possess a maximizer among open bounded sets even with a fixed measure. Now we consider
the minimizer of the second eigenvalue of BΩ among open sets of given volume. As we are
going to see, the minimizer is no longer one ball, but the union of two identical balls whose
mutual distance is going to infinity. It is an analogue of the Hong–Krahn–Szegö inequality [17]
and it has been proven in [24, Theorem 2.3] for the compact operator JΩ. First, we prove the
existence of λ2(Ω) (and μ2(Ω)) for any Ω ⊂ R

N .

Proposition 2.1. Under conditions (H), we have dim(R(JΩ)) � 2. In particular, there
exists λ2(Ω) for any bounded open domain Ω ⊂ R

N .

Proof. Let us suppose that JΩ is a one-dimensional linear space. Then, by Lemma 2.1, taking
x = y in (2.8), we have that J(0) = μ1(Ω)(u1(x))2 in Ω where μ1(Ω) is the first eigenvalue
of JΩ with corresponding normalized eigenfunction u1 ∈ L2(Ω). Hence, we conclude that u1

is a strictly positive constant which is a contradiction, since it satisfies (2.9) with λ1(Ω) =
1 − μ1(Ω) > 0. Finally, as λ1(Ω) is a simple eigenvalue, it follows that there exists at least
another larger eigenvalue of BΩ. �

Now, let us optimize the second eigenvalue.

Corollary 2.2. Under hypothesis (H), the minimum of the second eigenvalue of (1.1)
among all bounded open sets with given volume is achieved by the disjoint union of two
identical balls with mutual distance attaching to infinity.

Proof. The result is a direct consequence of the expression λ2(Ω) = 1 − μ2(Ω) and [24,
Theorem 2.3] where it has been proved that the maximum of μ2(Ω) is achieved in a disjoint
union of identical balls with mutual distance going to infinity. �

3. Continuity of eigenvalues

In this section, we discuss the continuity of the eigenvalues with respect to Ω ⊂ R
N . Note that

this is not a trivial task since any change of Ω causes a change on the operator domain. In
order to overcome this problem, we extend JΩ into a L2(D) for a larger bounded set D ⊂ R

N .
Let us take Ω ⊂ D. We define J̃Ω : L2(D) �→ L2(D) by

J̃Ωu(x) =
{JΩu(x) x ∈ Ω

0 x ∈ D \ Ω .

Note that J̃Ωu(x) = JΩu(x) for all x ∈ Ω, and then, J̃Ω is an extension of JΩ into L2(D). In
fact, J̃Ω is somehow similar to the operator ĴΩ introduced in (1.3) since J̃Ω = ED ◦ JΩ ◦RD

where ED : L2(Ω) �→ L2(D) is the extension by zero operator

EDu(x) =
{
u(x), if x ∈ Ω
0, otherwise (3.11)

and RD : L2(D) �→ L2(Ω) is the restriction to Ω. Hence, since JΩ is compact and self-adjoint,
it follows from [21, Theorem 4.8 Chapter 3] that J̃Ω is also a compact and self-adjoint operator
acting on L2(D) with

‖J̃Ω‖L2(D) � |Ω|‖J‖L∞(RN ).

Thus, we can argue as in Remark 2.1 getting from [21, Theorem 2.10 Chapter V] that σ(J̃Ω)
consists of at most a countable number of real eigenvalues with finite multiplicities, possibly



8 RAFAEL D. BENGURIA AND MARCONE C. PEREIRA

excepting zero. We also enumerate their eigenvalues in decreasing order of magnitude

|μ̃1| � |μ̃2| � . . .

If P̃1, P̃2, . . . are the associated eigenprojections, then P̃i are orthogonal and self-adjoint with
finite dimensional range. Finally, we also get a spectral representation

J̃Ω =
∑
i�0

μ̃iP̃i

in the sense of convergence in norm with projections forming a complete orthogonal family
together with the orthogonal projection P̃0 on the null space of J̃Ω.

In the sequel, we first get conditions, in order to guarantee the continuity of the operators J̃Ω

with respect to Ω. Next, we note that the non-zero eigenvalues of J̃Ω and JΩ are equal. Here
we study continuity via abstract results concerning perturbations for linear operators dealt in
[21].

Lemma 3.1. Let Ω1, Ω2 be two bounded open sets in D ⊂ R
N . Then, there exists C > 0

depending only on the measure of the set D such that

‖J̃Ω1 − J̃Ω2‖D � C‖J‖L∞(RN )[|Ω1 \ Ω2| + |Ω2 \ Ω1|]1/2.
In particular, if Ωn ⊂ D is a sequence of domains with Ωn → Ω in measure for some Ω ⊂ D

as n → ∞, then

‖J̃Ωn
− J̃Ω‖L2(D) → 0.

Proof. Note that

J̃Ω1u(x) − J̃Ω2u(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω1

J(x− y)u(y)dy − ∫
Ω2

J(x− y)u(y)dy, x ∈ Ω1 ∩ Ω2,∫
Ω1

J(x− y)u(y)dy, x ∈ Ω1 \ Ω2,

− ∫
Ω2

J(x− y)u(y)dy, x ∈ Ω2 \ Ω1.

Hence, if x ∈ Ω1 ∩ Ω2, we get

|J̃Ω1u(x) − J̃Ω2u(x)| �
∫

Ω1\Ω2

J(x− y)|u(y)|dy +
∫

Ω2\Ω1

J(x− y)|u(y)|dy

� ‖J‖L∞(RN )‖u‖L2(D)

[
|Ω1 \ Ω2|1/2 + |Ω2 \ Ω1|1/2

]
.

On the other hand, if x ∈ (Ω1 \ Ω2) ∪ (Ω2 \ Ω1),

|J̃Ω1u(x) − J̃Ω2u(x)| � ‖J‖L∞(RN )‖u‖L2(D)

(
|Ω1|1/2 + |Ω2|1/2

)
.

Consequently,∫
D

|J̃Ω1u(x) − J̃Ω2u(x)|2dx �
∫

Ω1∪Ω2

|J̃Ω1u(x) − J̃Ω2u(x)|2dx

� ‖J‖2
L∞‖u‖2

L2(D)

(
|Ω1 \ Ω2|1/2 + |Ω2 \ Ω1|1/2

)2

|Ω1 ∩ Ω2|

+‖J‖2
L∞‖u‖2

L2(D)

(
|Ω1|1/2 + |Ω2|1/2

)2

(|Ω1 \ Ω2| + |Ω2 \ Ω1|)

� 2‖J‖2
L∞‖u‖2

L2(D)(|Ω1 \ Ω2| + |Ω2 \ Ω1|)(|Ω1 ∪ Ω2| + |Ω1| + |Ω2|)
proving the result. �
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Next, let us see that the sets of non-zero eigenvalues of J̃Ω and JΩ are equal.

Lemma 3.2. A non-zero value μ is an eigenvalue of the operator J̃Ω, if and only if, it is a
non-zero eigenvalue for JΩ. Furthermore, we have that their multiplicity is preserved.

Proof. We have that μ �= 0 is an eigenvalue of J̃Ω, if and only if, there exists ũ �= 0 in L2(D)
with

J̃Ωũ(x) = μũ(x), x ∈ D ⊂ R
N .

Thus, from definition of J̃Ω, we get

JΩũ(x) = μũ(x), x ∈ Ω,

with ũ(x) ≡ 0 in D \ Ω since μ �= 0. Consequently, μ is also an eigenvalue of JΩ with
corresponding eigenfunction u(x) := ũ(x) for x ∈ Ω. On the other hand, if μ �= 0 is an eigenvalue
of JΩ with corresponding non-zero u(x) ∈ L2(Ω), we have that the extension by zero of u into
L2(D) is also an eigenfunction of J̃Ω associated to μ, completing the proof. �

Now, let sT = {λp1 , . . . , λpk
} be a collection of finite eigenvalues of a compact and self-adjoint

operator T and Pp1 , . . . , Ppk
their associated orthogonal eigenprojections. We say that sT is

a finite system of eigenvalues with multiplicity m ∈ N, if the range R(Ppi
) of Ppi

is finite and
satisfies

k∑
i=1

dim(R(Ppi
)) = m.

Note we can associate to sT an orthogonal projection PsT given by PsT =
∑

i Ppi
. If in addition,

all eigenvalues of sT are simple, we call sT a finite system of simple eigenvalues.
Our next result shows the persistence of a finite system of eigenvalues for J̃Ω when we

perturb Ω. As we shall see, this is a direct consequence of the continuity of the operators with
respect to Ω in norm and abstract results from perturbation theory of linear operators shown
in [21].

Lemma 3.3. Let sJ̃Ω
⊂ σ(J̃Ω) be a finite system of eigenvalues with multiplicity m ∈ N

and V ⊂ R a neighbourhood of sJ̃Ω
. Then, for all ε > 0, there exist δ > 0 and a neighbourhood

Vε ⊂ V of sJ̃Ω
depending on sJ̃Ω

, V and J̃Ω, such that, if Ω̃ ⊂ D ⊂ R
N satisfies

|Ω \ Ω̃| + |Ω̃ \ Ω| < δ (3.12)

then, J̃Ω̃ also has a finite system of eigenvalues sJ̃Ω̃
with multiplicity m and sJ̃Ω̃

⊂ Vε.

Furthermore, the orthogonal projections PsJ̃Ω
and PsJ̃Ω̃

associated to the finite systems sJ̃Ω

and sJ̃Ω̃
satisfy ‖PsJ̃Ω

− PsJ̃Ω̃
‖L2(D) < ε.

Proof. Since sJ̃Ω
is a finite collection of eigenvalues and V is a given neighbourhood, we

can construct a finite collection of disjoint open disks Bi in C with radius ri > 0 such that
sJ̃Ω

⊂ (∪iB̄i) ∩ R ⊂ V and Bi ∩ sJ̃Ω
= μ̃i(Ω) for some eigenvalue μ̃i(Ω) of J̃Ω. For each i,

let us consider the circle Γi given by the boundary ∂Bi of Bi. Hence, for each i, we can
separate σ(J̃Ω) in two natural parts σi,1(J̃Ω) and σi,2(J̃Ω) where σi,1(J̃Ω) = σ(J̃Ω) ∩Bi and
σi,2(J̃Ω) = σ(J̃Ω) ∩ B̄c

i , and L2(Ω) = M1,i ⊕Mi,2 where M1,i is the range of the orthogonal
projection associated to μ̃i(Ω) ∈ Bi, and M2,i is the enumerate union of all ranges given by
the others eigenprojections and kernel of J̃Ω.

It follows from Lemma 3.1, [21, Theorem 2.23, p. 206] and [21, Theorem 3.16, p. 212] that,
for all ε > 0, there exist δi and ri > 0 depending just on J̃Ω and Γi such that, if Ω̃ satisfies
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(3.12), then σ(J̃Ω̃) can be likewise separated by Γi in two parts σi,1(J̃Ω̃) and σi,2(J̃Ω̃) with
associated decomposition L2(Ω) = M̃1,i ⊕ M̃i,2. M̃1,i and M̃i,2 are, respectively, isomorphic
with M1,i and Mi,2 and corresponding orthogonal projections ε-closed in operator norm. In
particular, dim(M̃1,i) = dim(M1,i) and dim(M̃2,i) = dim(M2,i) and both σi,1(J̃Ω̃) and σi,2(J̃Ω̃)
are non-empty if this is true for J̃Ω. Since we are considering a finite collection of eigenvalues,
the result follows taking δ = mini{δi} and Vε = (∪iBi) ∩ V. �

As a direct consequence of Remark 2.4 and Lemmas 3.2 and 3.3, we obtain the continuity
of a finite system of eigenvalues for the operators JΩ and BΩ. We have the following result.

Theorem 3.1. Let sJΩ ⊂ σ(JΩ) be a finite system of eigenvalues with multiplicity m ∈ N

and V ⊂ R a neighbourhood of sJΩ .
Then, for all ε > 0, there exist δ > 0 and a neighbourhood Vε ⊂ V of sJΩ depending on sJΩ ,

V and JΩ such that, if Ω̃ ⊂ D ⊂ R
N satisfies

|Ω \ Ω̃| + |Ω̃ \ Ω| < δ (3.13)

then JΩ̃ also has a finite system of eigenvalues sJΩ̃
with multiplicity m and sJΩ̃

⊂ Vε.
Furthermore, if sBΩ is also a finite system of eigenvalues with multiplicity m ∈ N for the

operator BΩ, we have, under the same condition (3.13), the existence of a finite system of
eigenvalues sBΩ̃

⊂ Vε with multiplicity m.

Remark 3.1. In the proof of Lemma 3.2, we obtain a relationship between the eigenprojec-
tions of the operators J̃Ω and JΩ, and then, between the eigenprojections of the operators J̃Ω

and BΩ. Indeed, if P̃i and Pi are the eigenprojections of J̃Ω and JΩ, respectively, we have that
Pi = RD ◦ P̃i ◦ ED and P̃i = ED ◦ Pi ◦RD for any i � 1 where RD is the restriction operator
to Ω and ED is the extension by zero previously introduced in (3.11). Thus, by the action of
the operator ED, we obtain from Lemma 3.3 the continuity of the eigenspaces of BΩ associated
to non-zero eigenvalues since they vanish outside of Ω.

We also note the persistence of a finite system of simple eigenvalues.

Corollary 3.1. Let sJΩ = {μ1(Ω), . . . , μk(Ω)} ⊂ σ(JΩ) be a finite system of simple
eigenvalues with sJΩ ⊂ V for some open set V ⊂ R.

Then, for all ε > 0, there exist δ > 0 and a neighbourhood Vε ⊂ V of sJΩ depending on sJΩ ,
V and JΩ such that, if Ω̃ ⊂ D ⊂ R

N satisfies (3.13), the operator JΩ̃ also possesses a finite

system of simple eigenvalue sJΩ̃
= {μ1(Ω̃), . . . , μk(Ω̃)} ⊂ Vε.

Respectively, if sBΩ = {λ1(Ω), . . . , λk(Ω)} ⊂ V is a finite system of simple eigenvalues for BΩ,
then there exists a finite system of simple eigenvalues sBΩ̃

= {λ1(Ω̃), . . . , λk(Ω̃)} ⊂ Vε.

Proof. Let us apply Lemma 3.3 to each single system {μi(Ω)} ⊂ sJΩ . Since μi(Ω) is simple,
for each i = 1, 2, . . . , k, there exists δi > 0 such that {μi(Ω̃)} ⊂ σ(JΩ̃) is also a simple eigenvalue
whenever Ω̃ satisfies (3.13) substituting δ with δi. Hence, as sJΩ is a finite collection, the result
follows if we take δ = min{δ1, . . . , δk} setting sJΩ̃

in a natural form. �

Now, we are ready to obtain the convergence of single eigenvalues given by a sequence of
bounded open sets.

Lemma 3.4. Let Ωn ⊂ R
N be a sequence of bounded open sets with

|Ω \ Ωn| + |Ωn \ Ω| → 0, as n → ∞
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Figure 1 (colour online). A family of open sets with rough boundary.

for some bounded open set Ω ⊂ R
N . Then, if μ̃(Ω) is an eigenvalue for J̃Ω, there exists a family

of eigenvalues μ̃(Ωn) ∈ σ(J̃Ωn
) such that

μ̃(Ωn) → μ̃(Ω), as n → ∞.

Proof. We just need to fix a small neighbourhood for the single eigenvalue μ̃(Ω) applying
Lemma 3.3 and Lemma 3.1. �

Next, let us proof Theorem 1.1 which concerns the continuity of the eigenvalues providing
an estimate of their rate of convergence. As one can see, Theorem 1.1 is a direct consequence
of Lemma 3.2 and [17, Theorem 2.3.1].

Proof of Theorem 1.1. Using the spectral representation of J̃Ω, we can have the following
orthogonal decomposition for L2(Ω)

L2(Ω) = L2
+(Ω) ⊕ L2

0(Ω) ⊕ L2
−(Ω),

where L2
+(Ω) and L2

−(Ω) are defined by the eigenprojections associated to positive and negative
eigenvalues, respectively, and L2

0(Ω) denotes the null space of J̃Ω. Note that such linear
subspaces are J̃Ω invariant. Hence, since J̃Ω is a compact and self-adjoint operator, continuous
with respect to Ω ⊂ R

N by Lemma 3.3, we can use the min–max formula for their positive and
negative eigenvalues. The result follows from Lemma 3.2, Remark 2.4 and [17, Theorem 2.3.1]
applied to J̃Ω. �

Finally, let us consider two families of open sets discussing continuity of eigenvalues for the
integral operators JΩ and BΩ. First, we look at a family of open sets with rough boundary.
Next, we analyse a periodically perforated domain. Below, we illustrate each family in Figures 1
and 2, respectively.

Example 3.1 (Open sets with rough boundary). Let us consider the following family of
domains

Ωn =
{

(x, y) ∈ R
2 : x ∈ (0, 1) and 0 < y < 1 +

sin(2πnx)
n

}
.

The family Ωn can be seen as a perturbation of the unit square Ω = (0, 1)2 and has been
studied by many authors; see, for example, [2, 4 10] and references therein.

It is not difficult to see that

|Ω \ Ωn| + |Ωn \ Ω| =
2n

∫ 1/2n

0
sin(2πnx) dx
n

=
2
πn

→ 0 as n → ∞.
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Ωε

Figure 2 (colour online). A periodic perforated domain Ωε = (0, 1)2 \Aε.

Consequently, we may apply Theorem 1.1, Lemma 3.3, and Corollary 3.1 to this family of open
sets evaluating the behaviour of their eigenvalues.

Example 3.2 (Perforated domains). Let Q ⊂ R
N be the following cell

Q = (0, l1) × (0, l2) × . . .× (0, lN ).

We perforate Ω ⊂ R
N removing from it a set Aε of periodically distributed holes set as follows:

Take any open set A ⊂ Q such that Q \A is a measurable set with |Q \A| �= 0. Denote by
τε(A) all translated images of εĀ of the form ε(kl + A) for k ∈ Z

N and kl = (k1l1, . . . , kN lN ).
Now define Aε = Ω ∩ τε(A) introducing our perforated domain as

Ωε = Ω \Aε, ε > 0.

Note that, if the measure of the set A is non-zero, then |Ω \ Ωε| + |Ωε \ Ω| does not converge
to zero as ε → 0. Thus, Theorem 1.1 and Lemma 3.3, as well Corollary 3.1, cannot be applied
to this family of open sets.

Indeed, it follows from [22, Lemma 3.1, Section 4.1] that the first eigenvalue λ1(Ωε) of the
non-local Dirichlet operator BΩε converges to a value β1 as ε → 0 which satisfies β1 ∈ (0, 1),
and

β1

X φ∗(x) = BΩφ
∗(x) +

(1 −X )
X φ∗(x), x ∈ Ω, (3.14)

for a strictly positive function φ∗ ∈ L2(Ω), with φ∗(x) ≡ 0 in R
N \ Ω, and a positive constant

X
X =

|Q \A|
|Q| ,

which is gotten by the limit of the characteristic function of the open sets Ωε as ε → 0.

We have:

Corollary 3.2 (Perforated domains). β1 is the first eigenvalue of BΩ, if and only if, |A| = 0,
that is, when Ω is weakly perforated.

Proof. If β1 is the first eigenvalue of BΩ and satisfies (3.14), taking, φ∗ as a test function in
equation (3.14), we get that

− (1 −X − β1)
X ‖φ∗‖2

L2(Ω) =
1
2

∫
RN

∫
RN

J(x− y)(φ∗(y) − φ∗(x))2dydx � β1‖φ∗‖2
L2(Ω)

and then, β1(1 −X ) � (1 −X ). Since β1 ∈ (0, 1), we obtain X = 1, which implies |A| = 0.
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Reciprocally, if |A| = 0, then |Ω \ Ωε| + |Ωε \ Ω| = 0 for all ε > 0, and then, we can apply
Theorem 1.1 obtaining λ1(Ωε) → λ1(Ω) = β1 as ε → 0, completing the proof. �

Remark 3.2. Finally, we would like to observe that other kinds of perforations could be
considered and similar results could be obtained. In a general framework, the continuity of the
eigenvalues will depend on the limit of the characteristic function χΩε of the perforated domain
Ωε. In fact, one can combine Theorem 1.1 and [22, Theorem 1.1] to show that the eigenvalues
of BΩε are continuous, if and only if, χΩε ⇀ 1 weakly∗ in L∞(Ω).

4. Domain derivative of simple eigenvalues

In this section, we perturb simple eigenvalues of operators JΩ and BΩ getting derivatives with
respect to the domain Ω. We use the approach introduced in [18] perturbing a fixed domain
Ω by diffeomorphisms. As a consequence, we extend the expression obtained to the domain
derivative for the first eigenvalue in [16] for any simple one in the spectral set of JΩ and BΩ.

Let Ω ⊂ R
N be an open bounded set C1-regular. If h : Ω �→ R

N is a C1 imbedding, that is, a
diffeomorphism to its image, we set the composition map h∗ (sometimes called pull-back) by

h∗v(x) = (v ◦ h)(x), x ∈ Ω,

when v is any given function defined on h(Ω). It is not difficult to see h∗ : L2(h(Ω)) �→ L2(Ω)
is an isomorphism with inverse (h∗)−1 = (h−1)∗.

For such imbedding h and a bounded region Ω, one has(Jh(Ω)v
)
(y) =

∫
h(Ω)

J(y − w)v(w)dw, ∀y ∈ h(Ω), (4.15)

setting Jh(Ω) : L2(h(Ω)) �→ L2(h(Ω)). On the other hand, we can use the pull-back operator
h∗ to consider h∗Jh(Ω)h

∗−1 : L2(Ω) �→ L2(Ω) given by

h∗Jh(Ω)h
∗−1u(x) =

∫
h(Ω)

J(h(x) − w)(u ◦ h−1)(w)dw, ∀x ∈ Ω. (4.16)

As we have already mentioned, expressions (4.15) and (4.16) are the customary way to
describe motion or deformation of regions. (4.15) is called the Lagrangian description, and
(4.16) the Eulerian one. The former is written in a fixed coordinate while the Lagrangian does
not. It is easy to see

h∗Jh(Ω)h
∗−1u(x) =

∫
h(Ω)

J(y − w)v(w)dw =
(Jh(Ω)v

)
(y) (4.17)

if we take y = h(x) and v(y) = (u ◦ h−1)(y) = h∗−1u(y) for y ∈ h(Ω).
Note h∗Jh(Ω)h

∗−1 is a compact operator since h∗ and h∗−1 are isomorphisms and Jh(Ω) is
compact. On the other side, h∗Jh(Ω)h

∗−1 is not a self-adjoint operator in L2(Ω) for all h.
In fact, if we change the L2(Ω) measure using the determinant of the Jacobian matrix Dh

of h, we do obtain a self-adjoint operator. As J is even, by a change of variables, we have∫
Ω

ϕ(x)h∗Jh(Ω)h
∗−1u(x)|det(Dh(x))|dx =

∫
h(Ω)

(ϕ ◦ h−1)(y)
∫
h(Ω)

J(y − w)(u ◦ h−1)(w)dwdy

=
∫

Ω

(∫
h(Ω)

J(h(z) − y)(ϕ ◦ h−1)(y)dy

)
u(z)|det(Dh(z))|dz

=
∫

Ω

h∗Jh(Ω)h
∗−1ϕ(z) u(z) |det(Dh(z))|dz.
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Consequently, if we change the measure of L2(Ω) taking

L̂2(Ω) =
{
u : Ω �→ R :

∫
Ω

u2(x)|det(Dh(x))|dx < ∞
}

we have that h∗Jh(Ω)h
∗−1 : L̂2(Ω) �→ L̂2(Ω) is a compact self-adjoint operator in L̂2(Ω). As h

is an imbedding, there exists c > 0 such that |det(Dh)| � c > 0 in Ω, and then, L̂2(Ω) is well
defined. Thus, we can conclude that σ(h∗Jh(Ω)h

∗−1) ⊂ R for any imbedding h : Ω �→ R.
We have the following result:

Proposition 4.1. Let h : Ω �→ R be an imbedding. Then, μ ∈ R is an eigenvalue of
h∗Jh(Ω)h

∗−1, if and only if, is an eigenvalue for Jh(Ω).

Proof. Indeed, it follows from (4.17) that

h∗Jh(Ω)h
∗−1u(x) = μu(x), x ∈ Ω,

if and only if,

Jh(Ω)v(y) = μv(y), y ∈ h(Ω),

for v(y) = (u ◦ h−1)(y) with y ∈ h(Ω). Also, since h∗−1 : L2(Ω) �→ L2(h(Ω)) is an isomorphism,
u �= 0, if and only if, v �= 0. �

Now, let us study differentiability properties of simple eigenvalues μh(Ω) of Jh(Ω) with respect
to h. For this, we denote by Diff1(Ω) ⊂ C1(Ω,RN) the set of C1-functions h : Ω �→ R which are
imbeddings considering the map

F : Diff1(Ω) × R × L2(Ω) �→ L2(Ω) × R

(h, μ, u) �→
((

h∗Jh(Ω)h
∗−1 − μ

)
u,

∫
Ω

u2(x)|det(Dh(x))|dx
)
.

It is not difficult to see that Diff1(Ω) is an open set of C1(Ω,RN ) which denotes the space of
C1-functions from Ω into R

N whose derivatives extend continuously to the closure Ω̄ with the
usual supremum norm. Hence, F can be seen as a map defined between Banach spaces.

Note, if μ0 ∈ R is an eigenvalue for JΩ for some u0 ∈ L2(Ω) with
∫
Ω
u2

0(x)dx = 1, then
F (iΩ, μ0, u0) = (0, 1) where iΩ ∈ Diff1(Ω) denotes the inclusion map of Ω into R

N . On the
other side, whenever F (h, μ, u) = (0, 1), we have from Proposition 4.1 that

Jh(Ω)v(y) = μv(y), y ∈ h(Ω), with
∫
h(Ω)

v2(y)dy = 1,

where v(y) = (u ◦ h−1)(y) for y ∈ h(Ω). In this way, we can use the map F to deal with
eigenvalues and eigenfunctions of Jh(Ω) and h∗Jh(Ω)h

∗−1 perturbing the eigenvalue problem
to the fixed domain Ω by diffeomorphisms h.

Lemma 4.1. Let μ0 be a simple eigenvalue for JΩ with corresponding normalized
eigenfuction u0 and J ∈ C1(RN ,R) satisfying (H). Then, there exists a neighbourhood V of
inclusion iΩ ∈ Diff1(Ω), and C1-functions uh and μh from V into L2(Ω) and R, respectively,
satisfying

h∗Jh(Ω)h
∗−1uh(x) = μhuh(x), x ∈ Ω,

with uh ∈ C1(Ω) for all h ∈ V.
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Moreover, μh is a simple eigenvalue with (μiΩ , uiΩ) = (μ0, u0) and domain derivative

∂μ

∂h
(iΩ) · V = μ0

∫
∂Ω

u2
0 V ·NΩdS ∀V ∈ C1(Ω,RN ).

Proof. Under the additional condition J ∈ C1(RN ,R), we get from [14] that the map F is a
C1-function between Banach spaces (see also [18, Chapter 2]). In fact, F is linear with respect
to the variables μ ∈ R and u ∈ L2(Ω). Also, it is of class C1 with respect to h, since expressions

h∗Jh(Ω)h
∗−1u(x) =

∫
h(Ω)

J(h(x) − w)(u ◦ h−1)(w)dw
=

∫
Ω
J(h(x) − h(z))u(z)|det(Dh(z))|dz, x ∈ Ω,

(4.18)

and
∫
Ω
u2(x)|det(Dh(x))|dx are set by compositions among smooth functions J , det and h

which define C1-maps in the variable h ∈ Diff1(Ω).
Next, since μ0 is a simple eigenvalue with F (iΩ, μ0, u0) = (0, 1), we are in condition to apply

Implicit Function Theorem to F at (iΩ, μ0, u0) ∈ Diff1(Ω) × R × L2(Ω). First, we see

∂F

∂(μ, u)
(iΩ, μ0, u0) : R × L2(Ω) �→ L2(Ω) × R

(μ̇, u̇) �→
(

(JΩ − μ0)u̇ + μ̇u0, 2
∫

Ω

u0 u̇ dx

)

is an isomorphism. In fact, since μ0 is a simple eigenvalue, its eigenfunction u0 is orthogonal
to the image of the operator (JΩ − μ0) satisfying L2(Ω) = R(JΩ − μ0) ⊕ [u0].

Thus, for any f ∈ L2(Ω), there exists a unique w ∈ R(Jh(Ω) − μ0) such that

(JΩ − μ0)w = f − μ̇u0 with μ̇ =
∫

Ω

fu0

since for such μ̇, f − μ̇u0 is orthogonal to u0 in L2(Ω) belonging to R(JΩ − μ0). Consequently,
for all (f, a) ∈ L2(Ω) × R, we can take unique u̇ = w + a

2u0 and μ̇ =
∫
Ω
fu0 such that

∂F

∂(μ, u)
(iΩ, μ0, u0)(μ̇, u̇) = (f, a).

Therefore, by the Implicit Function Theorem, there exist C1-functions h �→ (μh, uh) such that
F (h, μh, uh) = (0, 1) whenever ‖h− iΩ‖C1(Ω,RN ) is sufficiently small. Thus, we have a family of
simple eigenvalues μh and corresponding eigenfunctions vh = (uh ◦ h−1) for Jh(Ω) defined by
any h in a neighbourhood of iΩ ∈ Diff1(Ω) which is still differentiable with respect to h.

Finally, we compute the derivative of μh at h = iΩ. For this, it is enough to consider a curve
of imbeddings h(t, x) = x + tV (x) for a fixed V ∈ C1(Ω,RN ) taking the Gateaux derivative at
t = 0.

Note that

h(t)∗Jh(t,Ω)h(t)∗−1
uh(t)(x) = μh(t)uh(t), x ∈ Ω,

and then,

∂

∂t

(
h(t)∗Jh(t,Ω)h(t)∗−1

uh(t)(x)
)∣∣∣

t=0
=

∂μiΩ

∂t
u0 + μ0

∂uiΩ

∂t
in Ω. (4.19)

Thus, in order to complete our proof, we need to compute the derivative of the left side of
(4.19). We proceed as in [18] using the anti-convective derivative Dt in the reference region Ω

Dt =
∂

∂t
− U(t, x) · ∂

∂x
with U =

∂h

∂x

−1 ∂h

∂t
.
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By [18, Lemma 2.1], we have

Dt

(
h(t)∗Jh(t,Ω)h(t)∗−1

uh(t)

)
= h(t)∗

∂

∂t

(
Jh(t,Ω)h(t)∗−1

uh(t)

)
in Ω. (4.20)

Now, set v(t, y) = h(t)∗−1
uh(t)(y) = uh(t)(h−1(t, y)), y ∈ h(t,Ω). Then, from (4.17), we get

∂

∂t

(
Jh(t,Ω)h(t)∗−1

uh(t)

)∣∣∣
t=0

=
∂

∂t

(Jh(t,Ω)v
)∣∣∣

t=0

=
∂

∂t

(∫
h(t,Ω)

J(y − w)v(t, w)dw

)∣∣∣
t=0

for y ∈ h(t,Ω).

Due to [18, Theorem 1.11], we can compute domain derivatives for integrals obtaining

∂

∂t

(
Jh(t,Ω)h(t)∗−1

uh(t)

)∣∣∣
t=0

=
∂

∂t

(Jh(t,Ω)v
)∣∣∣

t=0

=
∫

Ω

J(x− w)(Dtu)(0, w) dw +
∫
∂Ω

J(x− z)u0(z) (V ·NΩ)(z) dS(z)

where NΩ is the unitary normal vector to ∂Ω.
Note that the last integral on ∂Ω is well defined. Since J is C1, the eigenfunctions uh and

their derivatives can be continuously extended to the border ∂Ω. Thus, uh ∈ C1(Ω), and we
can take the trace of uh on ∂Ω.

Consequently, from (4.19) and (4.20), we get

∂μiΩ

∂t
u0 + μ0

∂uiΩ

∂t

=
[
U(t, x) · ∂

∂x

(
h(t)∗Jh(t,Ω)h(t)∗−1

uh(t)

)
+ h(t)∗

∂

∂t

(
Jh(t,Ω)h(t)∗−1

uh(t)

)]
t=0

= V · ∂

∂x
(JΩu0) + JΩ(Dtuh(t)|t=0) +

∫
∂Ω

J(· − z)u0(z) (V ·NΩ)(z) dS(z) in Ω.

Hence, multiplying by u0 and integrating on Ω, we obtain

∂μiΩ

∂t
+

∫
Ω

μ0u0
∂uiΩ

∂t
dx =

∫
Ω

μ0u0

(
V · ∇u0 +

∂uiΩ

∂t
− V · ∇u0

)
dx

+
∫
∂Ω

(∫
Ω

J(x− z)u0(x) dx
)
u0(z) (V ·NΩ)(z) dS(z),

which implies

∂μiΩ

∂t
= μ0

∫
∂Ω

u2
0(z) (V ·NΩ)(z) dS(z)

completing the proof. �

Therefore, as a direct consequence of Lemma 4.1 and items (a) and (c) from Remark 2.4, we
get Theorem 1.2 concerning the Dirichlet problem (1.1).

Remark 4.1. From Corollary 2.1, we know λ1(Ω∗) is simple, and a critical point to the
map

h ∈ Diff1(Ω∗) �→ (λ1(h(Ω∗)), |h(Ω∗)| = |Ω∗|).
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Hence, from Theorem 1.2

0 =
∫
∂Ω∗

u2
1 V ·NΩ∗dS for all V ∈ C1(Ω∗,RN ) such that

∫
∂Ω∗

V ·NΩ∗ = 0.

Therefore, the first eigenfunction u1 associated to λ1(Ω∗) satisfies the boundary condition
u1(x) = c on ∂Ω for some constant c � 0.

Remark 4.2. Finally, let us give an example which shows that in general, the first eigenvalue
λ1(Ω) of (1.1) does not possess a maximizer among open bounded sets with |Ω| = constant.

For this, let h : (0, 1)2 �→ (0, a) × (0, 1/a) ⊂ R
2 be the imbedding h(x1, x2) = (ax1, (1/a)x2)

for any a > 0. Note that det(Dh) = 1 and |h((0, 1)2)| = 1 for all a. Also, from (4.18) we have

h∗Jh((0,1)2)h
∗−1u(x) =

∫
(0,1)2

J(a(x1 − y1), (1/a)(x2 − y2))u(y)dy, ∀x ∈ (0, 1)2.

Hence, since J(x) → 0 as |x| → +∞ by hypothesis (H), we obtain that h∗Jh((0,1)2)h
∗−1u(x) →

0 as a → 0, for all x ∈ (0, 1)2 and u ∈ L2(Ω). Therefore, one can get from Proposition 4.1 and
Remark 2.3 that μ1(h((0, 1)2)) → 0 as a → 0 implying that λ1(h((0, 1)2)) → 1 as a → 0. As
1 ∈ σess(BΩ) for any open set Ω, we conclude our assertion.
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