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Remarks on the spectrum of a non-local Dirichlet problem

Rafael D. Benguria and Marcone C. Pereira

ABSTRACT

In this paper, we analyse the spectrum of non-local Dirichlet problems with non-singular kernels
in bounded open sets. The novelty is twofold. First we study the continuity of eigenvalues with
respect to domain perturbation via Lebesgue measure. Next, under additional smooth conditions
on the kernel and domain, we prove differentiability of simple eigenvalues computing their first
derivative discussing extremum problems for eigenvalues.

1. Introduction

In this note, we discuss the spectrum set of a non-local equation with non-singular kernels
and Dirichlet conditions in bounded open sets 2 C RY. We consider the non-local eigenvalue
problem

(1.1)

(J xu)(z) —u(z) = —Au(x), z€Q,
u(z) =0, zeRN\Q,

where J * u stands for the usual convolution
(@) = [ Ty
with a kernel J. Throughout this article the function J satisfies the hypotheses
J € C(RY,R) is a non-negative function, spherically symmetric and radially
decreasing with J(0) > 0 and [,y J(z)dx = 1.

Our main goal is to study the continuity of the spectrum set with respect to the variation of
the domain Q. Next, assuming J and €2 are C'-regular, we also show differentiability of simple
eigenvalues computing an expression for their first derivative allowing 2 to vary in the set of
open sets which are C!-diffeomorphic.

Note that analysing the spectral properties of (1.1) is equivalent to study the spectrum of
the linear operator Bq, : Wq, — W where Wo, = {u € L*(RY) : u(xz) =0 in RV \ Q} and

Bou(z) = u(x) — / J(xz—yu(y)dy, =e. (1.2)
Q
Moreover, one has that the operator Bg is the sum of the identity on the Hilbert space Wq

minus the compact and self-adjoint operator jg : Wq — Wq which is defined by

Jo = Eq o Jg o Rg, (1.3)
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where Jo : L?(Q) — L?(€) is the linear operator defined by the convolution
Jou(x) = (J xu)(x), z€Q, (1.4)

Rq : Wq + L?(Q) is the restriction to Q and Eq : L2(Q2) — Wy, is the standard extension by

Zero
u(z), ifze
Equ(x) = (@) )

0, otherwise.

We will see that there exists a precise relationship between the spectrum of the operators
Bq and Jq. Indeed, the continuity properties for the eigenvalues of By will be obtained by an
accurate analysis of the spectrum of Jq via perturbation theory for linear operators developed
n [21]. The convergence of the eigenvalues is obtained assuming that the Lebesgue measure
of the symmetric difference of open sets goes to zero.

Along the whole paper, we say that a family of measurable sets {Q,, },,en C RY converges in
measure to 0 C RY as n — oo, if the symmetric difference [, \ Q| + |\ Q,| — 0. Note that
|O| denotes the Lebesgue measure of any measurable set O C RY. Here, we mention one of the
main results in this direction.

THEOREM 1.1. Let D be a bounded set in RY and Q,, C D be a family of open bounded
sets with pg(Q2,) denoting the kth eigenvalue of the operator Jq, . Assume €,, — § in measure
as n — oo for some Q2 C D.

Then, there exist positive constants C' and ¢, depending only on the domain ), such that, if
wx(Q) is the kth eigenvalue of the operator Jq, then

|15 (2) = (D] < ClLT oo am [19\ 9 + 2\ 2]
whenever |Q, \ Q|+ |Q\ Q,| < . In particular,
i () — k()] = 0 asn — .

Moreover, if A\ (£2,,) is the kth eigenvalue of the operator Bg,,, we have

n?

M) = M(@)] < Cl [l oe @y [0\ O + 2\ 2]/
as |, \ Q| + |2\ Q| < 0 with
Ae () — A ()] =0 asn— oo

where A (§2) is the kth eigenvalue of the operator Bg.

Next, we follow the approach introduced in [18] to perturb € in order to take derivatives of
simple eigenvalues with respect to the domain. More precisely, if @ € RY is a C'-regular open
bounded set, and h : Q — RY is a C'-diffeomorphism to its image, we define the composition
map

ho(z) = (voh)(z), =€,

for any v set on k(). h* : L2(h(2)) + L?(£2) is an isomorphism with (h*)~! = (h=1)*.
For such imbedding h and bounded region €2, one can introduce the non-local Dirichlet
operator Bj,(q) on the perturbed open set 2(£2) by

(Buayo) () = v(y) — / o W,y < ho), (15)
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with B, (o) : Wiq) = Wh(q). On the other hand, we can use h* to set h*Bh(Q)h*_l : Wa — Wo
by

h*Bh(Q)h*ilu(.ﬁ) = /’(Q) J(h(z) —w)(uwoh ) (w)dw, Yz (1.6)

It is known that expressions (1.5) and (1.6) are the customary manner to describe motion or
deformation of regions. Form (1.5) is called the Lagrangian description, and (1.6) the Eulerian
one. The former is written in a fixed coordinate system while the Lagrangian does not. Also,

B By h™ u(z) = v(y) - /h o P W = (Bua)w)

if we take y = h(z) and v(y) = (uo h™")(y) = h* u(y) for y € h(Q).

In this way, we perturb our eigenvalue problem (1.1). We take imbeddings h : Q > RV
varying in the set of diffeomorphisms Diff*(Q) studying the eigenvalues of the operators (1.5)
and (1.6) which are the same. We have the following result concerning the derivative of simple
eigenvalues.

THEOREM 1.2. Let Ao be a simple eigenvalue for Bq with corresponding normalized
eigenfuction uy and J € C1(RV R) satisfying (H). Then, there exists a neighbourhood V
of the inclusion iq € Diff'(Q), and C'-functions (un,),) from V into L*(Q) x R which
satisfy h*Bh(Q)h*fluh(az) = Mou(x), x € Q, with uj, € CH(). Also, )\, is a simple eigenvalue,
(Nigys tig) = (Mo, uo), and the domain derivative is given by

%(m) V=—(1-X) /aQ ud V- NodS for all V € C'(,RY), (1.7)

where 0N denotes the boundary of Q) and Nq its normal vector.

At this point, it is worth noticing that we are improving here results from [16] where the
domain perturbation to the first eigenvalue of (1.1) was considered and formula (1.7) was first
obtained. There, the authors have used the variational formulation of the first eigenvalue and
the positivity of the corresponding eigenfunction which holds just in this particular case. Our
result is more general since it holds for any simple eigenvalue also showing smooth persistence.

We mention some authors as [1, 15, 19] which associate J under conditions (H) to a radial
probability density calling equation (1.1) a non-local analogous to the Dirichlet boundary
conditions problem to the Laplacian. Indeed, several continuous models for species and human
mobility have been proposed using such non-local approach, in order to look for more realistic
dispersion equations [3, 8, 11]. Recall that hostile surroundings are modeled by the Dirichlet
condition as in (1.1).

As one can see, for instance, in [7, 8, 13, 16, 20], that such kind of non-local models with
non-singular kernels exhibit different properties when compared to their local and non-local
analogs which are associated to singular kernels. The local and non-local analogs for (1.1) are
given by unbounded operators with compact resolvent which guarantees the regularizing effect
for the solutions. Hence, besides the applied models with non-singular kernels, the mathematical
interest is mainly due to the fact that, in general, there is no regularizing effect and therefore
no general compactness tools are available making their study different.

Finally, let us note that Theorem 1.1 is not true for standard local operators like the
Laplacian. In the classical paper [12], the authors consider the Laplacian with Dirichlet
boundary condition in a bounded domain from where a big number of periodic small balls
(the holes) is removed. They consider Q¢ = Q\ U; By<(z;) where B,<(z;) is a ball centred in
x; € Q of the form z; € 2¢ZY with radius 0 < r° < € < 1 and € — 0. It is shown that there is
a critical size of the holes (that is, a critical order of r€ in €) such that the resolvent operator
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of the Dirichlet—Laplacian is not continuous at € = 0. Assuming N > 3, for instance, we have
that the critical size of the holes is given by a¢ ~ evz Hence, if we take r¢ > a°, then the
continuity of the spectral set does not hold. We also mention [9] where the authors discuss
capacity constrains to guarantee certain continuity of the spectra.

The paper is organized as follows: in Section 2, we show some preliminary results concerning
to the spectrum of Jq and B, also discussing isoperimetric inequalities for Bg,. Such inequalities
are an analogue of Rayleigh-Faber—Krahn and Hong—Krahn—Szego inequalities and have been
recently obtained for Jq in [24]. For a recent review on isoperimetric inequalities, we refer to
(6].

In Section 3, we study the continuity of eigenvalues with respect to 2. We also take into
account recent results concerning the convergence of eigenvalues posed in oscillating and
perforated domains. Finally, in Section 4, we obtain the stability of a simple eigenvalue with
respect to the variation of smooth domains performed by imbeddings, proving Theorem 1.2.

2. Basic facts and preliminary results

Let us first discuss the operator Jq : L?(2) — L?(Q) given by the convolution (1.4). Note Jq
is bounded, compact and self-adjoint satisfying

| Tallzz@) < [QUNT || o @y

Such a proof is straightforward and can be found, for instance, in [13, 23]. In the sequel, we
mention other properties with respect to its spectral set which are also consequence of classical
results from functional analysis.

REMARK 2.1. Since Jq is compact and self-adjoint, one may obtain, for instance, from [21,
Chapter V, Theorem 2.10], that the spectrum o(Jq) consists of at most a countable number
of real eigenvalues with finite multiplicities, possible excepting zero. Let us enumerate their
eigenvalues in decreasing order of magnitude

| 2 el = ...

If P, P,, ... are the associated eigenprojections of Jq,, then P; are orthogonal and self-adjoint
with finite dimensional range. Also, we have the spectral representation

Jo = Z i
i>0

in the sense of convergence in norm with projections forming a complete orthogonal family
together with the orthogonal projection Py on the null space of Jq.

REMARK 2.2. From [21, Chapter V, Theorem 2.10], we have that 0 € o(Jq). Also, if there
exists an infinite sequence of distinct eigenvalues p;, then p; — 0 as ¢ — 400, and then, zero
belongs to the essential spectrum o.5(J). On the other hand, if the set of eigenvalues is finite,
its null space is not trivial, indeed, it is an infinite dimensional subspace of L?((2).

REMARK 2.3. We note that |u1]| is equal to the spectral radius of Jq which coincides with
its norm

| = lim [T = 1| Tl

Moreover, it is known from [23, 24], that the first eigenvalue p; is positive, simple, whose
corresponding eigenfunction u; can be chosen strictly positive in (2.
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Since the eigenvalues p; have finite multiplicity, we can set them in a decreasing order
of magnitude also taking account their multiplicity. Hence, we denote by w1, us, ... the
corresponding eigenfunctions for each eigenvalue p; setting

Joui(z) = pi(Qui(z).

Now, let us denote the range of Jo by R(Jq). Since Jq is self-adjoint, R(Jq) is orthogonal
to the kernel of Jo, ker(Jq), setting a useful decomposition for L?(Q). From Remark 2.1, one
gets

L*(Q) = R(Jq) @ ker(Ja).

We still have the following result concerning R(Jq).

LEMMA 2.1. Assume R(Jq) is finite dimensional.
Then, there exist a set of normalized eigenfunctions {ui,...,u,,} C L*(Q), associated to
non-zero eigenvalues p;()), such that

J(x—y) =Y m@uix)u(y), ae Q. (2.8)
i=1
In particular, J(z) = Y " | pi(Q)u;(z)u;(0) a.e. Q, and J(0)|Q| = 37", ().

Proof. First, we recall that L?(Q2) is the direct sum of R(Jq) and ker(Jq). Thus, if R(Jq)
is finite dimensional, by 2.1 again, there exist {uy,...,u,,} C L?(2) given by orthogonal and
normalized eigenfunctions of Jq, associated to non-zero eigenvalues ;(£2) such that

R(Ja) = [u1, ..., um].

Hence, we can take the orthogonal projections P; as

Pa) = ( [ wtu )t e

For all u € L?(f2), we have

Jou(x) = /QJ(:L” —yuly)dy = iui(ﬁ) (/Q ui(y)u(y)dy> ui(z), x€Q.

Consequently,
(b/<whw—2mmm@m@%@@,WGFQMMWGQ
Q i=1

completing the proof. O

Now, let us consider the operator Bg : Wg — Wq defined by (1.2). Since B, is a scalar
combination of the identity and the self-adjoint operator Jq, Bq is also a bounded self-adjoint
operator in L?(f2).

REMARK 2.4. We note that:

(a) A(Q) € 0(Bgq) is an eigenvalue, if and only if, there exists u € L?(Q), u # 0, with u(z) = 0
in RV \ Q, satisfying equation (1.1) for this same A\(Q);

(b) w € L?(Q) is a fixed point of Bg, if and only if, u belongs to the null set of Jo;

(¢) A(Q) € 0(Bq) is an eigenvalue, if and only if, 1 — A(€) is an eigenvalue of the compact
operator Jq. Hence, the eigenvalues of Bg, are enumerated according to the eigenvalues of
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Ja setting A\ () = 1 — pug(Q) for k > 1. Also, 0 € 0ess(Jq), if and only if, 1 € o.55(Ba),
and zero is an eigenvalue of Jg, if and only if, 1 € o(Jq);

(d) from Remark 2.3, we know that the first eigenvalue of Bg, which is given by A\;(Q) =
1 — 1 (), it is associated to a strictly positive eigenfunction which is also simple with

A () =1—[|Tall < 1;

(e) Further, since we are assuming [, J(y)dy = 1, we have
1
5 [ @)~ ute)dyde =l [ [ I puto)ute) dy de,
RN JRN RN JRN

and then, we get from (d) that

3 Jan Jon J(z — ) (uly) — u(=)) dyda
u7#0 in Wq HUH%Z(RN)

M(Q) =

(2.9)

For more details, see [1, 16].

Let us take uq, the first positive eigenfunction of Bg. It follows from (1.1) that

W) /Q (un () = /Q w (&) / I — ) (ua(y) — wi(2))dy

Q
_% /Q /Q J(x — ) (u1(y) — ui(z))*dydx < 0.

Thus, 0 < A1 (2) < 1 with A\;(2) =0, if and only if, u; is a positive constant. Now, due to [1,
Proposition 2.2], one can get that J *u(z) —u(z) =0 in Q with u(z) =0 in RV \ Q, if and
only if, u(x) = 0 in RY. Hence, we conclude that

0<A() <1 and O0<||Jal <1 (2.10)

for any bounded open set 2.
Consequently, we obtain from (2.10) that Bg is a perturbation of the identity being an

invertible operator with continuous inverse given by Bg_zlu ={- jg)*lu =3 Jhu.

REMARK 2.5. Others informations and properties concerning the operators Jg and B, and
their spectrum set, can be seen, for instance, in [13, 20, 23] and references therein. Moreover,
it is important to know that all the results discussed to this point remain valid substituting
the radial condition on the function J with the even one, that is, assuming J(—z) = J(z).

Finally, let us just mention some isoperimetric inequalities for the first and second eigenvalues
of Bg. Due to the symmetric condition imposed on the kernel J, an analogue of Rayleigh—
Faber—Krahn and Hong—-Krahn-Szegé inequalities for Jo have been shown in [24]. Hence,
since Remark 2.4 gives a precise relationship between the spectrum of Jg and Bg, we can
easily extend the results from [24] to the Dirichlet problem (1.1).

Concerning the Rayleigh—Faber—Krahn inequality, we have the following result:

COROLLARY 2.1. Let Q* denote an open ball with same measure as ). Then, under
conditions (H), the ball Q* is a minimizer for the first eigenvalue of Bg, that is,

M) = M (Q9).

Proof. Tt has been seen at [24, Theorem 2.1] that the first eigenvalue pq(Q2) of Jq achieves
its maximum among open sets of given volume at the ball Q*. That is, u1(£2) < p1(€2*). Hence,
we get the result from expression A;(€Q2) =1 — p;(Q) given by Remark 2.4. O
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In Section 4, we give an example which shows that the first eigenvalue of (1.1) does not
possess a maximizer among open bounded sets even with a fixed measure. Now we consider
the minimizer of the second eigenvalue of By among open sets of given volume. As we are
going to see, the minimizer is no longer one ball, but the union of two identical balls whose
mutual distance is going to infinity. It is an analogue of the Hong-Krahn-Szegé inequality [17]
and it has been proven in [24, Theorem 2.3] for the compact operator J,. First, we prove the
existence of \2(2) (and p2(f2)) for any Q C RV,

PROPOSITION 2.1. Under conditions (H), we have dim(R(Jq)) = 2. In particular, there
exists Ao () for any bounded open domain Q C RV,

Proof. Let us suppose that J, is a one-dimensional linear space. Then, by Lemma 2.1, taking
r =1y in (2.8), we have that J(0) = u1(Q)(ui(z))? in Q where u;(Q) is the first eigenvalue
of Jo with corresponding normalized eigenfunction u; € L?(€2). Hence, we conclude that u;
is a strictly positive constant which is a contradiction, since it satisfies (2.9) with A{(Q2) =
1 — p1(Q) > 0. Finally, as A;(Q) is a simple eigenvalue, it follows that there exists at least
another larger eigenvalue of Bg,. (|

Now, let us optimize the second eigenvalue.

COROLLARY 2.2. Under hypothesis (H), the minimum of the second eigenvalue of (1.1)
among all bounded open sets with given volume is achieved by the disjoint union of two
identical balls with mutual distance attaching to infinity.

Proof. The result is a direct consequence of the expression A2(2) =1 — p2(2) and [24,
Theorem 2.3] where it has been proved that the maximum of us(€?) is achieved in a disjoint
union of identical balls with mutual distance going to infinity. O

3. Continuity of eigenvalues

In this section, we discuss the continuity of the eigenvalues with respect to @ € RY. Note that

this is not a trivial task since any change of €} causes a change on the operator domain. In

order to overcome this problem, we extend Jq, into a L?(D) for a larger bounded set D C RY.
Let us take Q € D. We define Jo, : L?(D) ~ L?*(D) by

Fota) = {0 TE0 o

Note that Jou(z) = TJou(z) for all z € Q, and then, Ja is an extension of Jo into L*(D). In
fact, Jqo is somehow similar to the operator Jq introduced in (1.3) since Jn = Ep o Jo o Rp
where Ep : L?(Q) — L?(D) is the extension by zero operator

Ju(x), ifzxef
Epu(z) = {0, otherwise (3.11)

and Rp : L*(D) — L?*(Q) is the restriction to . Hence, since Jq is compact and self-adjoint,
it follows from [21, Theorem 4.8 Chapter 3] that J, is also a compact and self-adjoint operator
acting on L*(D) with

1Tallz2(py < 19T poo ).

Thus, we can argue as in Remark 2.1 getting from [21, Theorem 2.10 Chapter V] that o (Jq)
consists of at most a countable number of real eigenvalues with finite multiplicities, possibly
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excepting zero. We also enumerate their eigenvalues in decreasing order of magnitude

] = |fie] = ...

If P,, P, ... are the associated eigenprojections, then P; are orthogonal and self-adjoint with
finite dimensional range. Finally, we also get a spectral representation

Jo = Z fii P
i>0

in the sense of convergence in norm with projections forming a complete orthogonal family
together with the orthogonal projection Py on the null space of Jo.

In the sequel, we first get conditions, in order to guarantee the continuity of the operators Jo,
with respect to . Next, we note that the non-zero eigenvalues of Jo and Jo are equal. Here
we study continuity via abstract results concerning perturbations for linear operators dealt in
[21].

LEMMA 3.1. Let Qq, Qo be two bounded open sets in D € RY. Then, there exists C > 0
depending only on the measure of the set D such that

1Ta, — Jaullp < ClII | poe @y [0\ Q2] + 922\ Q)]

In particular, if Q,, C D is a sequence of domains with €2, — € in measure for some €} C D
as n — oo, then

|J0, — JallL2(p) — 0.

Proof. Note that
Jo, J@ = yuly)dy — [, J(x —y)u(y)dy, =€ N,
jﬂlu(x) - jgzu(m) = le J (@ —y)u(y)dy, €\ Q,
— Jo, (& —y)u(y)dy, z €\ Q.
Hence, if x € Q1 N Qy, we get

|Jo, u(@) — Ja,u(z)| < / J(z = y)luy)ldy + / J(x = y)lu(y)ldy

Q1\ Q22 2\
< Iy Nl o [0 €72 4+ 1602 € 1/2]
On the other hand, if € (0 \ Q2) U (22 \ 1),
Fgu(z) — Jogu(w)] < 171 e oyl o (1012 4 1622]172).
Consequently,

/ (T, u(z) — Foyu(e) e < / (T, u(z) — Foyu(z) Pda
D

Q1UQ5

2
<1 Ml iy (1920 \ Q22 41022\ 01]1/2) |60 1 2]

2
T Ml (19201172 + 192172) (1920 Q2] + 1922\ a])

< 2o el (py (190 \ Q2| + 92\ Q) (11 U Qa2 + Q] + [22])
proving the result. O
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Next, let us see that the sets of non-zero eigenvalues of Jq, and Jq, are equal.

LEMMA 3.2. A non-zero value p is an eigenvalue of the operator Jo, if and only if, it is a
non-zero eigenvalue for Jq. Furthermore, we have that their multiplicity is preserved.

Proof. We have that p # 0 is an eigenvalue of Jq, if and only if, there exists @ # 0 in L?(D)
with
Jot(z) = pi(x), x€ DRV,
Thus, from definition of Jq,, we get
Jou(r) = pu(z), =€,
with 4(x) =0 in D\ Q since p# 0. Consequently, p is also an eigenvalue of J, with
corresponding eigenfunction u(z) := @(x) for € Q. On the other hand, if i # 0 is an eigenvalue

of Jo with corresponding non-zero u(z) € L?(Q2), we have that the extension by zero of u into
L?(D) is also an eigenfunction of Jq associated to u, completing the proof. O

Now, let sp = {A,,, ..., Ap, } be a collection of finite eigenvalues of a compact and self-adjoint
operator T" and P,,, ..., P,, their associated orthogonal eigenprojections. We say that st is
a finite system of eigenvalues with multiplicity m € N, if the range R(P,,) of P,, is finite and
satisfies

k
Z dim(R(P,,)) = m.

Note we can associate to s an orthogonal projection P, given by Py, = Zl P,,. If in addition,
all eigenvalues of st are simple, we call st a finite system of simple eigenvalues.

Our next result shows the persistence of a finite system of eigenvalues for Jo when we
perturb €. As we shall see, this is a direct consequence of the continuity of the operators with
respect to €2 in norm and abstract results from perturbation theory of linear operators shown
in [21].

LEMMA 3.3. Let sz, C O’(jQ) be a finite system of eigenvalues with multiplicity m € N
and V C R a neighbourhood of s 7. Then, for all € > 0, there exist > 0 and a neighbourhood

Ve CV of s; depending on sz , V and Ja, such that, if @ ¢ D C RN satisfies
0\ Q| +[Q\ Q| <6 (3.12)

then, jQ also has a finite system of eigenvalues s A with multiplicity m and s 7, C Ve.
Furthermore, the orthogonal projections stQ and st- associated to the finite systems s ;_
Q

and s ;_ satisfy ||P9j9 - stﬂ lz2(py < e.

Proof. Since s is a finite collection of eigenvalues and V' is a given neighbourhood, we
can construct a finite collection of disjoint open disks B; in C with radius r; > 0 such that
87, C (UiB))NRCV and B;N s 7, = [1i(Q2) for some eigenvalue fi;(2) of Ja. For each i,
let us consider the circle I'; given by the boundary 0B; of B;. Hence, for each i, we can
separate a(jg) in two natural parts Ji’l(‘jgz) and Uivg(jz) where Jm(jgz) = a(jg) N B; and
O'i’g(jQ) = O'(jQ) N B¢, and L*(Q) = My ; ® M, 5 where M, ; is the range of the orthogonal
projection associated to fi;(2) € B;, and My ; is the enumerate union of all ranges given by
the others eigenprojections and kernel of Ja.

It follows from Lemma 3.1, [21, Theorem 2.23, p. 206] and [21, Theorem 3.16, p. 212] that,
for all € > 0, there exist §; and r; > 0 depending just on Jo and I'; such that, if Q satisfies
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(3.12), then o(Js) can be likewise separated by T; in two parts o, 1(Jg) and 0;(Jg) with
associated decomposition LQ(Q) M1 i D MZ 2. M1 4 and M 2 are, respectively, isomorphic
with M, ; and M, and corresponding orthogonal projections e-closed in operator norm. In
particular, dim(M; ;) = dim(M; ;) and dim(My ;) = dim(Ms,;) and both o; 1 (J5) and 7, 2(J5)
are non-empty if this is true for Jo. Since we are considering a finite collection of eigenvalues,
the result follows taking § = min;{d;} and V. = (U;B;) N V. O

As a direct consequence of Remark 2.4 and Lemmas 3.2 and 3.3, we obtain the continuity
of a finite system of eigenvalues for the operators Jq and Bg. We have the following result.

THEOREM 3.1. Let sy, C 0(Jqa) be a finite system of eigenvalues with multiplicity m € N
and V C R a neighbourhood of s 7.

Then, for all € > 0, there exist § > 0 and a neighbourhood V. C V of sz, depending on sy,
V and Jq such that, if Q c D c RY satisfies

2\ Q| +1Q\ Q] <6 (3.13)

then Jg also has a finite system of eigenvalues s 7, with multiplicity m and sz, C V..

Furthermore, if sp, is also a finite system of eigenvalues with multiplicity m € N for the
operator Bg, we have, under the same condition (3.13), the existence of a finite system of
eigenvalues sp, C V. with multiplicity m.

REMARK 3.1. In the proof of Lemma 3.2, we obtain a relationship between the eigenprojec-
tions of the operators Jo and Jo, and then, between the _eigenprojections of the operators Jo
and Bg. Indeed, if P, and P, are the eigenprojections of Jo and Jo, respectively, we have that
P,=RpoP,oEp and P, = Epo P, o Ry for any 7 > 1 where Rp is the restriction operator
to Q and Ep is the extension by zero previously introduced in (3.11). Thus, by the action of
the operator Ep, we obtain from Lemma 3.3 the continuity of the eigenspaces of Bq, associated
to non-zero eigenvalues since they vanish outside of 2.

We also note the persistence of a finite system of simple eigenvalues.

COROLLARY 3.1. Let sz, = {p1(Q),...,ux(Q)} Co(Ja) be a finite system of simple
eigenvalues with sz, C V for some open set V C R.

Then, for all € > 0, there exist 6 > 0 and a neighbourhood V. C V of sy, depending on sy,
V and Jq such that, if Q ¢ D C RN satisfies (3.13), the operator Jg also possesses a finite
system of simple eigenvalue sz, = {p1(Q), ..., e (Q)} C V..

Respectively, if sg, = {\(Q),..., ()} C V is a finite system of simple eigenvalues for Bq,
then there exists a finite system of simple eigenvalues sp_ = M(Q), .., (D)) C V..

Proof. Let us apply Lemma 3.3 to each single system {u;(2)} C sz,. Since u;(2) is simple,
for eachi = 1,2, ..., k, there exists §; > 0 such that {1;(Q)} C 0(Jg) is also a simple eigenvalue
whenever () satisfies (3.13) substituting § with &;. Hence, as sz, is a finite collection, the result
follows if we take § = min{di,..., 05} setting sz, in a natural form. O

Now, we are ready to obtain the convergence of single eigenvalues given by a sequence of
bounded open sets.

LEMMA 3.4. Let Q,, C RN be a sequence of bounded open sets with

|Q\Qn|+|Qn\Q|_>O, asn — oo
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FIGURE 1 (colour online). A family of open sets with rough boundary.

for some bounded open set () C RN Then, if fi(Q) is an eigenvalue for Jq, there exists a family
of eigenvalues ji(Q,) € o(Ja, ) such that

Q) = 4(2), asn— oo.

Proof. We just need to fix a small neighbourhood for the single eigenvalue 1(Q2) applying
Lemma 3.3 and Lemma 3.1. O

Next, let us proof Theorem 1.1 which concerns the continuity of the eigenvalues providing
an estimate of their rate of convergence. As one can see, Theorem 1.1 is a direct consequence
of Lemma 3.2 and [17, Theorem 2.3.1].

Proof of Theorem 1.1. Using the spectral representation of Ja, we can have the following
orthogonal decomposition for L?()

L*(Q) = L (Q) & L§(Q) & L2 (%),

where L2 (Q) and L2 () are defined by the eigenprojections associated to positive and negative
eigenvalues, respectively, and L2(f) denotes the null space of Jo. Note that such linear
subspaces are Jo, invariant. Hence, since Jq, is a compact and self-adjoint operator, continuous
with respect to Q C RY by Lemma 3.3, we can use the min-max formula for their positive and
negative eigenvalues. The result follows from Lemma 3.2, Remark 2.4 and [17, Theorem 2.3.1]
applied to Ja. O

Finally, let us consider two families of open sets discussing continuity of eigenvalues for the
integral operators Jn and Bq. First, we look at a family of open sets with rough boundary.
Next, we analyse a periodically perforated domain. Below, we illustrate each family in Figures 1
and 2, respectively.

EXAMPLE 3.1 (Open sets with rough boundary). Let us consider the following family of
domains

in(2
Qn:{(m,y)eRz cze(0,1) and0<y<1+w}.
n
The family Q,, can be seen as a perturbation of the unit square = (0,1)? and has been
studied by many authors; see, for example, [2, 4 10] and references therein.
It is not difficult to see that
2n fol/zn sin(2rnx)dr 2

=— =0 asn— oo.
n ™

|\ Q]+ (2, \ Q| =
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FIGURE 2 (colour online). A periodic perforated domain Q° = (0,1)% \ A°.

Consequently, we may apply Theorem 1.1, Lemma 3.3, and Corollary 3.1 to this family of open
sets evaluating the behaviour of their eigenvalues.

EXAMPLE 3.2 (Perforated domains). Let Q@ C RY be the following cell
Q = (0,11) X (0,12) X . oo X (O,ZN)
We perforate  C R removing from it a set A¢ of periodically distributed holes set as follows:
Take any open set A C @ such that @ \ A is a measurable set with |@ \ A| # 0. Denote by

7.(A) all translated images of €A of the form e(kl + A) for k € ZV and kl = (kily,. .., knly).
Now define A° = QN 7.(A) introducing our perforated domain as

QO =Q\ A, €>0.

Note that, if the measure of the set A is non-zero, then |2\ Q¢ + |Q€\ | does not converge
to zero as € — 0. Thus, Theorem 1.1 and Lemma 3.3, as well Corollary 3.1, cannot be applied
to this family of open sets.

Indeed, it follows from [22, Lemma 3.1, Section 4.1] that the first eigenvalue A1 (Q2¢) of the
non-local Dirichlet operator Bge converges to a value 1 as e — 0 which satisfies 8; € (0, 1),
and

Ot (@) = Boo* (2 + L0
for a strictly positive function ¢* € L?(€2), with ¢*(x) = 0 in RV \ Q, and a positive constant
X

¢*(z), zeQ, (3.14)

[Q\ A
X =
QI

which is gotten by the limit of the characteristic function of the open sets Q2 as € — 0.

‘We have:

COROLLARY 3.2 (Perforated domains). (3 is the first eigenvalue of B, if and ouly if, |A| = 0,
that is, when Q is weakly perforated.

Proof. If 8y is the first eigenvalue of By and satisfies (3.14), taking, ¢* as a test function in
equation (3.14), we get that

1-X— 1
A__?i@WWﬁm:§ANAMMWWMWM—W@V@W>@WW§M

and then, 61(1 — X) > (1 — X). Since f; € (0,1), we obtain X = 1, which implies |A| = 0.
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Reciprocally, if |A] =0, then |Q\ Q¢+ |Q\ Q| =0 for all € > 0, and then, we can apply
Theorem 1.1 obtaining A (2) — A1(Q2) = 51 as € — 0, completing the proof. O

REMARK 3.2. Finally, we would like to observe that other kinds of perforations could be
considered and similar results could be obtained. In a general framework, the continuity of the
eigenvalues will depend on the limit of the characteristic function yqe of the perforated domain
Q¢. In fact, one can combine Theorem 1.1 and [22, Theorem 1.1] to show that the eigenvalues
of Bge are continuous, if and only if, yge — 1 weakly* in L%°(Q).

4. Domain derivative of simple eigenvalues

In this section, we perturb simple eigenvalues of operators Jo and B getting derivatives with
respect to the domain Q. We use the approach introduced in [18] perturbing a fixed domain
Q by diffeomorphisms. As a consequence, we extend the expression obtained to the domain
derivative for the first eigenvalue in [16] for any simple one in the spectral set of J and Bg.

Let Q € RY be an open bounded set C'-regular. If h : Q + R” is a C! imbedding, that is, a
diffeomorphism to its image, we set the composition map h* (sometimes called pull-back) by

h*v(xz) = (voh)(z), =€,
when v is any given function defined on h(Q). It is not difficult to see h* : L?(h(Q)) — L*(Q)
is an isomorphism with inverse (h*)~* = (h=1)*.
For such imbedding h and a bounded region €2, one has
Gua)) = [ Sy —wpwyde, v e @) (415)
h(Q

setting Jy(0) : L*(h(2)) — L*(h(€2)). On the other hand, we can use the pull-back operator
h* to consider h*jh(g)h*_l : L2(Q) = L2(Q) given by

B Tuayh™ ulz) = / T(h(z) — w)(uwo b~ (w)dw, Vo e Q. (4.16)
h(Q)

As we have already mentioned, expressions (4.15) and (4.16) are the customary way to
describe motion or deformation of regions. (4.15) is called the Lagrangian description, and
(4.16) the Eulerian one. The former is written in a fixed coordinate while the Lagrangian does
not. It is easy to see

h*jh(Q)h*_lu(x) = o J(y — wyv(w)dw = (Tn)v) () (4.17)
h(Q
if we take y = h(z) and v(y) = (wo h™ 1) (y) = h* u(y) for y € h(Q).
Note h*jh(g)h*_l is a compact operator since h* and h* ! are isomorphisms and NSRS
compact. On the other side, h*jh(g)h**1 is not a self-adjoint operator in L?(Q) for all h.

In fact, if we change the L?(2) measure using the determinant of the Jacobian matrix Dh
of h, we do obtain a self-adjoint operator. As J is even, by a change of variables, we have

[ @i o u)ldet(Dhe)lde = [ (pon ) [ - w)weh ) w)dudy
Q

R(Q) h(Q)

= / ( J(h(z) —y)(po h_l)(y)dy> u(z)|det(Dh(z))|dz
Q \Jh()

_ /Q W Tneyh™ " p(2) u(z) |det(Dh())|dz.
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Consequently, if we change the measure of L*(Q) taking
L*(Q) = {u Q=R / u?(x)|det(Dh(z))|dz < oo}
Q

we have that h*Jj,q)h* " : L2(Q) — L?(Q) is a compact self-adjoint operator in L?(2). As h
is an imbedding, there exists ¢ > 0 such that |det(Dh)| > ¢ > 0 in €, and then, L2(£) is well
defined. Thus, we can conclude that U(h*j;,,(g)h*_l) C R for any imbedding A :  — R.

We have the following result:

ProproOSITION 4.1. Let h:Q+— R be an imbedding. Then, u € R is an eigenvalue of
h*jh(g)h*_l, if and only if, is an eigenvalue for Jyq)-

Proof. Indeed, it follows from (4.17) that
h*jh(g)h*flu(x) = pu(z), =€,
if and only if,
Tn@yo(y) = poy),  y € h(Q),
for v(y) = (uo h~')(y) with y € h(Q). Also, since h* ' : L?(92) = L?(h(£)) is an isomorphism,
u # 0, if and only if, v # 0. O

Now, let us study differentiability properties of simple eigenvalues j15,(q) of Jj,(q) with respect
to h. For this, we denote by Diff* (Q) c C*(Q, RN) the set of C'-functions h : Q — R which are
imbeddings considering the map

F :Diff'(Q) x R x L2(Q) — L*(Q) x R
(hapc = (0 Gt = ) [ wldet(Dn)dz ).

It is not difficult to see that Diff'(€2) is an open set of C' (€2, R™) which denotes the space of
C'-functions from Q into RY whose derivatives extend continuously to the closure Q with the
usual supremum norm. Hence, F' can be seen as a map defined between Banach spaces.

Note, if 19 € R is an eigenvalue for Jo for some ug € L*(Q) with [, uf(z)dz =1, then
F(iq, po, ug) = (0,1) where ig € Diff'(Q) denotes the inclusion map of Q into RY. On the
other side, whenever F'(h, u,u) = (0,1), we have from Proposition 4.1 that

Tnno(y) = poly), g € h(Q),  with /hm>”2(y’dy:1’

where v(y) = (uo h™1)(y) for y € h(Q). In this way, we can use the map F to deal with
eigenvalues and eigenfunctions of J,(q) and h*jh(Q)h*71 perturbing the eigenvalue problem
to the fixed domain 2 by diffeomorphisms h.

LemMMA 4.1. Let py be a simple eigenvalue for Jq with corresponding normalized
eigenfuction ug and J € C*(RM,R) satisfying (H). Then, there exists a neighbourhood V of
inclusion iq € Diff' (Q), and C'-functions uj, and p; from V into L*(Q) and R, respectively,
satisfying

h*tjh(Q)h*_luh(x) = ,U,hUh(SC), HAS Q7

with up, € C1(Q) for all h € V.
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Moreover, py, is a simple eigenvalue with (u;,,,w;,,) = (to, wo) and domain derivative

a—Z(m)-V:uo/ ul V- NodS VYV € C'(Q,RY).
oQ

Proof. Under the additional condition J € C'(R™ R), we get from [14] that the map F is a
C!-function between Banach spaces (see also [18, Chapter 2]). In fact, F is linear with respect
to the variables u € R and u € L*(Q). Also, it is of class C! with respect to h, since expressions

h*J;L(Q)h*_lu(x) = fh(Q) J(h(z) —w)(uoh™1)(w)dw

= Jo J(h(z) — h(2))u(z)|det(Dh(z))|dz, =€ Q, (4.18)

and [, u*(x)|det(Dh(z))|dz are set by compositions among smooth functions J, det and h
which define C'-maps in the variable h € Diff' ().

Next, since pg is a simple eigenvalue with F(iq, o, ug) = (0,1), we are in condition to apply
Implicit Function Theorem to F at (ig, o, uo) € Diff' () x R x L?(Q2). First, we see

oF
O(p, )

(iq, o, uo) : R x L*(Q) = L*(Q) x R

Q

is an isomorphism. In fact, since ug is a simple eigenvalue, its eigenfunction wug is orthogonal
to the image of the operator (Jo — po) satisfying L?(Q) = R(Ja — po) @ [uo)-
Thus, for any f € L*(2), there exists a unique w € R(Jj () — o) such that

(Jo — po)w = f — jrug ~ with i = / fug
Q

since for such fi, f — jiug is orthogonal to ug in L?(Q2) belonging to R(Jq — o). Consequently,
for all (f,a) € L*(2) x R, we can take unique @ = w 4 $ug and f = [, fuo such that

a(il,?u)(i”’“(]’“‘))(ﬂ’ u) = (f,a).

Therefore, by the Implicit Function Theorem, there exist C!-functions h + (u,,us) such that
F(h, pn,un) = (0,1) whenever ||h —iq||c1(qrv) is sufficiently small. Thus, we have a family of
simple eigenvalues j;, and corresponding eigenfunctions vy, = (uj o h™1t) for Jh(e) defined by
any h in a neighbourhood of iq € Diff' (Q) which is still differentiable with respect to h.

Finally, we compute the derivative of u; at h = iq. For this, it is enough to consider a curve
of imbeddings h(t,z) = z + tV(z) for a fixed V € C1(Q,RY) taking the Gateaux derivative at
t=0.

Note that
h(t)* Tngeoyh ()" uny (€) = pyuney, @ € Q,
and then,
a * *—1 8,”7 8“1’, .
= (B0 T b @)| = “Euo+ 5t in @, (4.19)

Thus, in order to complete our proof, we need to compute the derivative of the left side of
(4.19). We proceed as in [18] using the anti-convective derivative D, in the reference region

0 o . Oh " 0h
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By [18, Lemma 2.1], we have
* *— * 8 *— .
D, (h(t) Thne.oyh(t) 1u,,,(t)) = h(t) a(jh(t,mh(t) lu,,m) in Q. (4.20)

Now, set v(t,y) = h(t)*_luh(t)(y) = uh(t)(h_l(t,y)), y € h(t,Q). Then, from (4.17), we get

%(Jhmnh(t)*%h(w)\ - %(*7’1<tvsl>”)‘t

t=0 =0

0
=5 </h(t7m J(y — w)v(t, w)dw)

Due to [18, Theorem 1.11], we can compute domain derivatives for integrals obtaining

for y € h(t, Q).

t=0

B N B
o <jh(t,Q)h(t) 1Uh(t)) = a(jh(t,ﬂ)v)’

t=0 t=0

= / J(z — w)(Dyu)(0,w) dw + / J(x — 2)up(2) (V- No)(z)dS(z)
Q o0
where N is the unitary normal vector to 9.

Note that the last integral on 02 is well defined. Since J is C!, the eigenfunctions u; and
their derivatives can be continuously extended to the border 9. Thus, uy; € C'(Q), and we
can take the trace of u, on 0f).

Consequently, from (4.19) and (4.20), we get

or 10T,

0 _ 0 _
= [U(t&“) "oz (h(t)*jh(t,sz)h(t)* 1uh(t)) + h(t)*a (jh(t,Q)h(t)* 1uh(t)):|

t=0

=V g(jﬂuo) + Jo(Diunt)lt=0) +/ J(- = 2)uo(2) (V- No)(2) dS(z) in Q.
z o0

Hence, multiplying by ug and integrating on €2, we obtain

3#1‘9 + / Liouo auin de = / oo (V . VUO + % VN VUO> dx
O Q

ot ot ot

o ( [ = 2ot dx) uo(2) (V- No)(2) dS(2),

which implies

i
b — o [ ud(a) (V- Na)(z) dS(2)
o0
completing the proof. O

Therefore, as a direct consequence of Lemma 4.1 and items (a) and (c¢) from Remark 2.4, we
get Theorem 1.2 concerning the Dirichlet problem (1.1).

REMARK 4.1. From Corollary 2.1, we know A;(Q*) is simple, and a critical point to the
map

h € DI () = (A ((2)), [R(Q7)] = |27)).
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Hence, from Theorem 1.2

0= / u} V- Ng-dS for all V € C*(Q*,R") such that / V- Ng- = 0.
o0+ a0

Therefore, the first eigenfunction u; associated to A;(Q*) satisfies the boundary condition
ui(x) = ¢ on I for some constant ¢ > 0.

REMARK 4.2. Finally, let us give an example which shows that in general, the first eigenvalue
A1(€Q) of (1.1) does not possess a maximizer among open bounded sets with |Q)| = constant.

For this, let h: (0,1)? — (0,a) x (0,1/a) C R? be the imbedding h(z1,z2) = (ax1, (1/a) z2)
for any a > 0. Note that det(Dh) = 1 and |h((0,1)?)| = 1 for all a. Also, from (4.18) we have

h* Thioyyh™ ™ u(a) = /(O b J(a(z1 — ), (1/a)(z2 — y2))u(y)dy, Vo € (0,1)°

Hence, since J(x) — 0 as |z| — +o00 by hypothesis (H), we obtain that h*jh((071)2)h*_1u(x) —
0 as a— 0, for all z € (0,1)? and u € L*(Q). Therefore, one can get from Proposition 4.1 and
Remark 2.3 that 1 (h((0,1)%)) — 0 as a — 0 implying that A\;(h((0,1)?)) — 1 as a — 0. As
1 € 0.s5(Bq) for any open set €, we conclude our assertion.
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