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Abstract 

We show via an example that \Va.Id's test for the Hardy-Weinberg 
equilibrium has an aberrant behaviour for fixed sample sizes although 
it is asymptotically equivalent to the Likelihood Ratio and Pearson's 
chi-squared tests. 
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I Introduction 

Singer et al. (1991) have proposed Wald's tests for the Hardy-Weinberg (HW) 
equilibrium in generalized ABO genetic systems. Such tests are based on ex­
plicit expressions involving the observed phenotype relative frequencies and 
are asymptotically equivalent to the usual Pearson's chi-squared or Wilks' 
Likelihood Ratio tests, both of which depend on iterative computing proce­
dures in the general case. Since, in practice, we must work with fixed sample 
sizes, the behaviour of the test statistics under such circumstances is of ma­
jor concern. Given the results of V c:eth ( 1985 }, which indicate that for one 
parameter exponential families, Wald's test statistics may decrease to zero as 
the parameter estimate moves away from the null value, we conjecture that a 
similar behaviour is true for the multiparameter case as well. 

In this note we show that such an aberrant behaviour is followed by the 
proposed Wald's test for the HW equilibrium in the special case of the MN 
blood group classification system. In Section 2 we introduce the model and 
the proposed Wald's statistic and in Section 3 we show that for fixed sample 
sizes this test statistic may approach zero in situations where the parameters' 
estimates move towards directions where the HW model is not tenable. 

2 Tests for the HW model in the MN blood 
system 

The MN blood group classification system is a genetic system with two 
codominant alleles, M and N, occurring with probabilities qM and qN = 
1 - qM, respectively in a given population. We say that such population 
satisfies the HW (equilibrium) model if the following relations hold: 

(2.1) 

where PM,PN and PMN, (PM+ PN + PMN = l) denote the probabilities with 
which the phenotypes M, N and .\1 N, respectively occur in the population. 

A problem of general concern to geneticists is to test whether a given 
population satisfies the HW model based on the evidence provided by a sam­
ple of n units for which the observed phenotype frequencies are nM, nN and 

nMN, (nM + nN + nMN = n). 
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The Likelihood Ratio test statistic for the hypothesis (2.1) is 

nM nN nMN ] 
QL=2[nMlog{~}+nNlog{ (1 • yJ+nMNlog{2 . (1 • )} 

nqM n - qM nqM - qM 
(2.2) 

where 'IM = (2nM + nMN )/2n. Pearson's chi-squared test statistic for the 

same hypothesis is 

Alternatively, observing that (2.1) is equivalent to 

(J = PMN = l 
2JPMPN 

(2.4) 

we may follow in Singer et al. (1991), and consider a test for the HW equi­
librium using Wald's statistic 

( l)~( 1 l 1 )-t 
Qw = Qw(PM,PN) = n I - ..,. -

4
• + -;-:- + -. -

(} PM ""PN PMN 
(2.5) 

where PM = nM/n, JJN = nN/n, PMN = 1LMN/n and O = PMN/2JPMPN· 
Under the null hypothesis, as n increases, the distribution of QL, Qp and 

Qw may be approximated by a chi-squared distribution with one degree of 
freedom. In practice, however, we must work with fixed sample sizes (of 
moderate magnitude, in many instances) and the behaviour of these statistics 
under such circumstances must be evaluated. This is considered in the next 
section. 

3 Behaviour of Wald's statistic for fixed sam­
ple sizes 

First note that the parameter(} may be used as a measure of departure from 
the HW equilibrium; it was considered by Pereira and Rogatko (1984) in a 
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Bayesian analysis of the same problem. Now. write for simplicity, PN = x 

and PM= y and note that the domain of the function()= O(x,y) corresponds 

to the two - dimensional simplex defined by x E JR, y E JR, x ~ 0, y ~ 0 
and x + y .$ I . Furthermore observe that, given a > 0, the set of points for 
which O(x, y) = a corresponds to the curve with equation 

in particular, for the null value a = 1 we have 

y = (I -Jx)2. 

Note also that O(x, y)-+ 0 as (x, y)-+ (p, l - p), where O < p < l and that 

O(x,y)-+ oo as (x,y) __. (O,p) or (x,y)-+ (p,O). 
Let us now analyse the behaviour of the function 

( 
2fty ) 

2 ( 1 1 1 )-I Qw(x,y)=n 1- -~- -+-+---
1 - X - y 4x 4y 1 - X - y 

(
L-x-y )

2
{(1-x-y)2 {l-x-y)2 1-x-y}-I = n ---- - I ----- + ----- + - - - -

2.Jxy 16x2y 16xy2 -txy 

(3.1) 

as O(x, y) moves away from the null value, i.e. as x and y approach the 
boundaries of the domain of O(x.y). 

From the second expression in (3.1) it is clear that Qw(x,y)-+ oo as 
(x,y) __. (p, 1 - p) for any O < p < 1. i.e. as O(x,y)-+ 0. However, from 
the first expression in (3.1) we may conclude that Qw(x,y) __. 0 as (x,y)-+ 
(O,p),(x,y) __. (p,O) or (x,y) __. (0,0) for any O < p < 1 which correspond 

to O(x, y) = oo. It remains to consider the behaviour of Qw(x, y) in the 
neighbourhood of the points (0 , 1) and (1,0). In this direction, let y ~ f(x) 
where f : [O, l] is a nonnegative function with derivatives f'(x) = df(x)/dx 
and J"(x) = d2 f(x)/dx 2 and such that f(l) = 0, -1 :$ J'(l) :$ 0 and let us 
examine the behaviour of O(x,y) and Qw(x,y) as (x,y)-+ (1.0) along the 
curve y = f(x) . Applying L'Hopital's rule we get 
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. . 1-x-f(x) { O 1 
hm 0(x,y)=hm = ./,, 

(:z:,11 )-(1,0J x-1 2Jxf(x) y2f (1) 
00 

if J'(l) /; 0 

if f'(l) = 0, f"(l) /; 0 

if f'(l)=J"(l)=0. 
(3.2) 

Writing A(x) = 1- x - J(x) and B(x) = A(x){x + J(x)} + 4xf(x) we get 

{ 
1 - X - y } 

2 
{ j

2 
( X) } 

Qw(x, y) = l6nx2 2--fiy- 1 A(x)B(x) (3.3) 

Applying L'Hopital's rule to /2(x)/{A(x)B(x)} we obtain 

Jim J2(x) = -J'(l) 
x-1 A(x)B(x) {3/'(1) - l}{f'(l) + l} 

(3.4) 

and then, from (3.1)-(3.4) we may conclude that 

. { O 16n f" ( 1 ) 
(x,11\~1,u) Qw(x,y) = ~f'(l)- l}{/'(1) + l} 

if J'(l) = 0, J"(l) /; 0 

if f'(l)-::/- 0 

if /'( 1) = f"(l) = 0. 

from the above discussion and (2.5) we may conclude that for fixed sample 
sizes, Qw = Qw(PM, PN) may converge to zero in situations which clearly 
violate the HW model, indicating that such statistic should be used with 
caution, specially when the observed M and N phenotype proportions are 
close to 0 or 1. If we rewrite the expressions for Q L and Q p in terms of the 
observed phenotype proportions by substituting npM for nM, npN for nN, 

npM N for nM N, and PM+ hm /2 for t/M in (2.2) and (2.3) and proceed with a 
similar analysis as in the case of Wald's statistic, we may conclude that even 
for fixed sample sizes, both the Likelihood Ratio and Pearson's statistics tend 
to reject the HW equilibrium hypothesis in all situations where the observed 
phenotype frequencies clearly violate the null hypothesis. 

Since (2.4) is not the only alternative to characterize the HW equilibrium 
in this context, it seems worthwhile to consider the behaviour of other func­
tions of the phenotype frequencies for such purposes. In particular, a natural 
substitute for (2.4) is 
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logO = 0. (3.5) 

The corresponding Wald statistic for this parametrization is 

Qwi = QwdPM,PN) = nlog20 (
4
--;- + 

1 
~ + -. 1- )-I (3.6) 

PM 4PN PMN 

Following the same arguments employed in the case of Qw, we may show 
that Qw L has a similar aberrant behaviour near the boundary of the parameter 
space. However, by noting that 

lim QwL(x,y)/Qw(x,y) = oo 
(x,y)-(p,O) 

we may conclude that QwL(x, y) converges to zero at a slower rate than 
Qw(x,y) when (x,y) --+ (p,0). Similar results hold when (x,y)--+ (O,p), 
suggesting that (3.6) might be a better alternative than (2.5) for the purposes 
of testing the HW equilibrium. 

Further evidence of these facts are suggested in Figures 3.1 - 3.4, where 
the values of the four test statistics discussed above are plotted as functions of 
nM for n = 40 and nN = l, 2, 3, 4, 5 and l5. First, the non-monotone nature of 

either Qw or Qwi as functions of 0 clearly contrasts with the correspondin~ 
( and desirable) monotone behaviour of Q L or Q p ( note that the value of (} 
increases as nM approches 0). Also, the more stable behaviour of Qwi with 
respect to that of Qw is depicted in Figures 3.1 and 3.2. 

Finally, in Table 3.1 we present numerical examples of situations where 
the aberrant behaviour of the Wald's statistic mentioned above is evident. For 
n = :m, Qw does not lead to the rejection of the HW equilibrium even with 
0 = l•t.00 while the other three alternative statistics do so. A similar picture 
holds for n = 40 and seems less evident for n = 50, as expected. Although for 
larger values of n, (e.g. 100 or more) erroneous conclusions will only occur 
for pathological cases ( e.g. 11M or nN equal O or 1 ), this note may serve as 
a warning against a routine application of the type of statistics investigated 
here. A similar analysis for the general case discussed in Singer et al. (1991) 
seems mathematically intractable: however, we believe that the corresponding 
Wald's statistics have the same type of aberrant behaviour in that case, too. 
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Table 3.1: Numerical examples. 

Phenotype frequencies Total HW eq. param. Test statistics 

nM nN TiMN n 0 Qw QwL QL Qp 

l l 28 30 14.00 1.61 13.00 26.89 22.53 

2 2 26 30 6.50 2.48 12.15 18.03 16.13 

2 3 25 30 .5.10 2.60 10.70 14.69 13.41 

:J 3 24 30 4.00 2.70 9.22 11.56 10.80 

a 4 23 30 3.32 2.58 7.61 9.07 8.59 

4 4 22 30 2.75 2.38 6.00 6.79 6.53 

5 5 20 30 2.00 1.67 3.20 3.40 3.33 

l 1 38 40 19.00 1. 71 16.47 39.57 32.40 

2 2 :J6 40 9.00 2.84 17.38 29.45 25.60 

:! :1 ;J.'j .f() i .H :J.12 16.:12 25.46 22.57 

:1 :1 :34 10 5.u7 :JA6 15.35 21.64 19.60 

:1 -! 33 40 4.76 3.54 13.83 18.45 16.95 

4 -l :12 -10 .f.00 3.60 12.30 15.42 14.40 

:i :i :w 40 :mo 3.33 9.05 10.46 10.00 

l -!8 50 24.00 l.i6 l!J.:19 52.52 42.32 

2 2 46 ,50 11.50 3.07 21.95 41.44 35.28 

2 3 45 50 9.19 3.44 21.33 36.97 32.06 

3 1 44 50 7.33 3.94 20.96 32.62 28.88 

3 4 43 50 6.21 4.16 19.71 28.92 25.97 

4 4 42 50 5.25 4.40 18.48 25.35 23.12 

5 5 40 50 4.00 4.50 15.37 19.27 18.00 
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