

Zinc isotopes as tracers of anthropogenic sources and biogeochemical processes in contaminated mangroves

Daniel F. Araújo^{a,b,c,*}, Wilson Machado^d, Dominik Weiss^e, Daniel S. Mulholland^f, Jeremie Garnier^c, Carlos E. Souto-Oliveira^a, Marly Babinski^a

^a Universidade de São Paulo, Instituto de Geociências, Rua do Lago 562, Cidade Universitária, São Paulo, Brazil

^b Laboratoire de Biogéochimie des Contaminants Métalliques, IFREMER, Centre Atlantique, F44311, Nantes Cedex 3, France

^c Laboratoire Mixte International-Observatoire des changements Environnementaux –LMI-OCE, Institut de Recherche pour le Développement (IRD) / Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil

^d Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valongo, Niterói, Rio de Janeiro, Brazil

^e Imperial College London, Earth Science and Engineering, London, United Kingdom

^f Universidade Federal do Tocantins, Departamento de Química Ambiental, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, Tocantins, Brazil

ARTICLE INFO

Editorial handling by Neus Otero

Keywords:

Metal transition isotopes
Metal contamination
Mass spectrometry
Coastal ecosystems
Mangrove leaves

ABSTRACT

Recent work has shown that variations in zinc (Zn) isotope ratios enable us to identify contamination sources in the terrestrial environment and uptake processes in higher plants. Here in this study, we demonstrate that this also holds true for mangrove forests, which play an important role in the biogeochemical cycling of metals in tropical coastal ecosystems and that are seriously threatened by anthropogenic pollution. To this end, we determined zinc concentration and isotope composition (expressed using the $\delta^{66}\text{Zn}$ notation relative to the JMC 3-0749-L standard) in sediments and tree leaves collected from a mangrove close to Rio de Janeiro in Brazil. The $\delta^{66}\text{Zn}_{\text{JMC}}$ values of sediments vary between +0.36 and +0.84‰ and fall on a mixing line between detrital terrestrial sources (characterized with $\delta^{66}\text{Zn}_{\text{JMC}} = +0.28 \pm 0.12\text{‰}$, 2 σ) and metallurgical ore sources ($\delta^{66}\text{Zn}_{\text{JMC}} = +0.86\text{‰} \pm 0.15\text{‰}$, 2 σ). Leaves of *Laguncularia racemosa*, in contrast, showed $\delta^{66}\text{Zn}_{\text{JMC}}$ values ranging between +0.08 and +0.23‰, suggesting that processes including uptake, translocation and bioavailability in the rhizosphere control the isotope composition of zinc in the mangrove plant.

1. Introduction

Mangrove forests are found in the inter-tidal region between sea and land in tropical and subtropical regions of the world, growing typically under harsh environmental conditions such as high salinities, elevated temperatures, extreme tides, high sedimentation rates and muddy anaerobic soils (Alongi et al., 2004; Giri et al., 2011; Bayen, 2012). These unique forests are among the most productive ecosystems in the world and provide valuable food, energy sources and raw materials for the local economies (Giri et al., 2011; Agardy and Alder, 2003; Marchand et al., 2016).

Mangroves shelter many species of economic and ecological value such as mammals, birds, reptiles and insects (Nagelkerken et al., 2008). Epibionts (tunicates, sponges, algae, and bivalves) and in- and epifaunal species (prawns and crabs) live in the roots-sediment mangrove system (Nagelkerken et al., 2008). The complex mangrove food web is supported by recycling of tree leaves, which once converted into detritus by decomposers serve as food to primary consumers as plankton,

epiphytic algae and microphytobenthos (Nagelkerken et al., 2008; Castro and Huber, 2010).

Despite mangroves supporting a wide variety of ecosystem services and being economically valuable (up to several thousand US\$ $\text{yr}^{-1} \text{ha}^{-1}$, Walters et al., 2008), they remain one of the world's more threatened tropical environments (Valiela et al., 2001). It is estimated that human activities have led to a loss of at least 35% of the world's mangrove area due to the conversion to mariculture, agriculture, urbanization and to other activities (Valiela et al., 2001).

Environmental pollution has played an important factor in the degradation of mangroves (Lewis et al., 2011; Bayen, 2012; Sandilyan and Kathiresan, 2014). Urban sprawl combined with industrial expansion has led to the release of toxic metals and metalloids into the mangrove environments (Machado and Lacerda, 2004; Lewis et al., 2011; Da Souza et al., 2014; Marchand et al., 2016; Araújo et al., 2017d). Depending on bioavailability and speciation, these elements are incorporated into bio-geosphere cycles. Essential elements (e.g., Zn, Cu, Mo) play an important biological role and participate in a wide range of

* Corresponding author. Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil.
E-mail address: daniel.ferreira.araujo@ifremer.fr (D.F. Araújo).

important cellular biochemical reactions (Reilly, 2008). At high concentrations, however, these elements lead to reduction of photosynthesis in mangrove plants and of growth and biomass, and finally induce mortality (Adriano and Adriano, 2001; Sparks, 2005; Bayen, 2012 and references therein; Alongi, 2017).

Since metal contaminations of mangroves may pose major risks to biota and human health, developing tools to trace anthropogenic sources and to identify plant responses to environmental stress triggered by metal contamination is of great interest. To this end, the application of stable isotope ratios is promising for zinc (Zn). Firstly, they fractionate during industrial processes (e.g., metallurgy and combustion by high-temperature or electrolysis processes) resulting in fingerprints isotopically distinct for man-made materials and by-products from those found in nature (Kavner et al., 2008; Sivry et al., 2008; Borrok et al., 2010; Ochoa and Weiss, 2015; Thapalia et al., 2015; Yin et al., 2016), which allows to use Zn isotope ratios to discriminate between natural and anthropogenic sources in marine, terrestrial and atmospheric compartments (Yin et al., 2016; Souto-Oliveira et al., 2018). Secondly, Zn isotope fractionation occurs during uptake, translocation and distribution between the internal compartments of plants (Viers et al., 2007; Moynier et al., 2009; Caldelas et al., 2011; Jouvin et al., 2012; Arnold et al., 2015). These processes seem dependent on plant uptake strategies, concentration, speciation, redox conditions, transpiration flow and height (Moynier et al., 2009; Couder et al., 2015; Caldelas and Weiss, 2016).

To date, only a few studies have explored isotope fractionations of Zn during the biogeochemical cycling in terrestrial or wetland ecosystems (Viers et al., 2007; Aucour et al., 2015; Viers et al., 2015; Aucour et al., 2017). To this end, we conducted a preliminary study of Zn isotope variations in mangrove sediment-plant systems in Sepetiba Bay, a site historically impacted by Zn-enriched wastes from an old electroplating plant (Marins et al., 2004). Previous studies of our group testing Zn isotopes as tools to discriminate and quantify the relative contributions of natural and anthropogenic Zn sources to Sepetiba Bay focused on mud flat sediments, suspended particulate matter and a single mangrove sediments core located close to the old electroplating plant (Araújo et al., 2017a; c). This complementary study focuses on sediments and leaves of mangrove trees (*L. racemosa*) collected from sampling locations with different extent of Zn contamination. The specific questions addressed during this study are: (i) do mangrove sediments record the isotope compositions of pollutant sources? (ii) do mangrove trees fractionate Zn isotopes during uptake and transport to aerial tissues? If so, (iii) which are the possible effects of concentration, speciation, bioavailability and physiological processes (uptake, translocation, tolerance mechanism) on the Zn isotopes composition of the mangrove leaves?

2. Study area

The study was conducted in Sepetiba Bay (southeastern Brazil), a micro tidal estuary type lagoon, located 60 km west from Rio de Janeiro city (Fig. 1). Nine rivers drain an extensive watershed of approximately 2654 km², which includes agricultural, industrial and urban areas. The main river (Guadu River) reach the bay through artificial channels,

which among them, the São Francisco channel, with an annual flow of $6.5 \times 10^9 \text{ m}^3$, is responsible for over 86% of the total freshwater input (Molisani et al., 2004). Mangrove forests extend along the bay shore, providing nursery and feeding areas for the bays fisheries. The dominant tree species are red mangrove (*Rhizophora mangle*), black mangrove (*Avicennia schaueriana*) and white mangrove (*Laguncularia racemosa*).

In the 1960's, an electroplating plant started to operate close the northeastern shore (Fig. 1). The zinc purification process used silicate ores (calamine: $\text{Zn}_2\text{SiO}_3(\text{OH})_2$ and willemite: SiO_4Zn_2) acquired from Vazante (Minas Gerais, Brazil), the most important Zn deposit in Brazil (Barone, 1973). The waste produced during the ore refining processes were exposed to the open air and lixiviated during rainfalls, reaching surrounding mangroves and the bay through a small tidal creek located in the Saco do Engenho mangrove, considered as the *hot spot* area (Fig. 1) (Molisani et al., 2004). The amounts of zinc and cadmium remobilized from the waste were estimated to be about 24 t y^{-1} for Cd and 3660 t y^{-1} for Zn (Molisani et al., 2004). Despite the end of zinc refining operations in 1997 and the removal of the waste in 2012, Zn-enriched sediment particles from the *hot spot* continue to be remobilized throughout the bay during tidal cycles (Araújo et al., 2017a, 2017c). Computational modeling of the lagoon hydrodynamics suggests a trend of fine sediments deposition along the northeastern coastal area of the bay where the tidal flats and mangroves acts as sinks of contaminants (Montezuma, 2012).

3. Materials and methods

3.1. Sampling and sample preparation

Surface sediments were collected at three different mangrove sites (Fig. 1), during low tide in 2008. The first site is located in the Saco do Engenho (station A), the second site is located close the mouth of São Francisco channel (station B) and the third site is located in the mangrove of Enseada das Garças (station C). The latter site is located within an environmental protection area surrounded by urbanized and landfill areas. At each sampling site, three superficial ($\sim 0\text{--}5 \text{ cm}$ depth) surface sediment replicates were sampled and packed into polyethylene bags. The samples were dried at 40°C , crushed and sieved at $63 \mu\text{m}$. This grain size fraction ($< 63 \mu\text{m}$) was used for elemental and isotopic analyses.

At the three sampling sites, *L. racemosa* trees colonize the sediments. *Laguncularia racemosa* leaves were sampled in triplicate from trees surrounding the sampled sediments. The leaves were stored in plastic bags until the return to the laboratory and then washed using ultrapure water. These samples were dried at 80°C during 24 h and finely ground for homogenization. Surface sediment samples and certified materials (BCR-2 and BHVO-2 basalts from the US Geological Survey and 1646a estuarine sediment from National Institute for Standards and Technology, NIST) were weighed in Savillek® Teflon beakers and digested on a hot plate using a multiple-step acid procedure with HF, HNO_3 , HCl. Leaf samples and a plant certified reference material (1573a tomato leaves from NIST) were digested using a microwave system (Speedwave 4, Berghof) and concentrated acid mixing (HF, HCl and

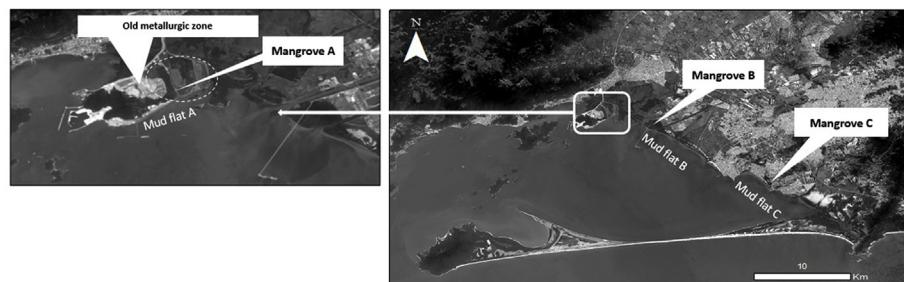


Fig. 1. Map showing the sampling stations at the Sepetiba Bay. Station A: Saco do Engenho; station B: São Francisco Channel; station C: Enseada das Garças. Zinc isotope compositions of mud flat sediments are taken from Araújo et al. (2017a,b,c,d) (Table 1). The insert at left shows the old metallurgic zone, where the electroplating activity operated from 1960's to end of 1990's. The dashed circle highlight the Saco do Engenho mangrove, one site heavily impacted by the wastes lixiviated from the old wastes produced by the electroplating processes.

Table 1Analytical data set for mangrove surface sediments and *L. racemosa* leaf samples.

Samples	$\delta^{66}\text{Zn}_{\text{JMC}}$	Zn (EF)	Zn ($\mu\text{g g}^{-1}$)	Ca (%)	Ti (%)	Fe (%)	Si (%)	Al (%)	K (%)	Mn ($\mu\text{g g}^{-1}$)	P ($\mu\text{g g}^{-1}$)
<i>Mangrove station A (Saco do Engenho)</i>											
Sediment A1	+0.80	364	21,387	0.5	0.6	10.3	20.2	12.1	1.1	255.1	877
Sediment A2	+0.82	362	19,566	0.4	0.6	10.2	18.7	11.1	1.1	308.0	887
Sediment A3	+0.84	395	23,700	0.5	0.6	10.6	20.3	12.3	1.2	543.8	1111
Leaves A ^a	+0.09 ± 0.04		47 ± 5								
Zn-exchangeable ^b			8836 ± 1788 (41%)								
<i>Mangrove station B (São Francisco Channel)</i>											
Sediment B1	+0.49	3.0	151	1.0	1.1	3.8	32.1	10.5	3.2	364.3	759
Sediment B2	+0.44	3.5	183	1.1	1.5	4.7	29.2	10.7	2.9	440.5	350
Sediment B3	+0.47	3.3	158	1.3	1.1	3.7	30.2	9.7	2.9	359.5	789
Leaves B ^a	+0.08 ± 0.10		15 ± 2								
Zn-exchangeable ^b			71 ± 19 (43%)								
<i>Mangrove station C (Enseada das Garças)</i>											
Sediment C1	+0.42	8.0	251	0.5	0.6	3.1	30.5	6.4	0.4	349.8	1022
Sediment C2	+0.40	8.5	445	0.7	0.6	4.7	21.8	10.7	1.0	341.2	1351
Sediment C3	+0.36	5.0	252	0.9	0.6	4.5	19.7	10.3	0.9	204.7	962
Leaves C ^a	+0.02 ± 0.02		25 ± 2								
Zn-exchangeable ^b			173 ± 94 (55%)								

^a Average concentration and standard deviation (σ) obtained from three different replicates. Each replicate is composed by leaves sampled from different trees.^b Average concentration and standard deviation (σ) obtained from 0.1 M acetate leaching from the three sediments collected in each mangrove station. Values in brackets correspond the percentage value relative to total Zn concentration.

HNO_3). After total sample digestion, aliquots were taken for the subsequent determination of Zn concentrations and isotopic compositions.

Aliquots of sediments samples were leached using 0.1 M acetate to remove weakly-sorbed metal species (Quevauviller et al., 1997; Rauret et al., 1999; Gleyzes et al., 2002). To this end, about 500 mg of sediment were weighted in tube flacons and 17.5 ml of 0.1 M acetate were added. The sediment and acetate mixtures were shaken for 16 h at 30 ± 10 rpm. The solutions were centrifuged at 3000 g for 20 min and the supernatants were filtered using a syringe and membrane filter (0.22 μm). The filtered solutions were stored at 4 °C until analysis day.

All acids used during the cleaning of bottles and lab ware and during the sample preparation were distilled by sub-boiling in Teflon™ stills. The water used was < 18.2 MΩ (Nanop System®). The chemical procedures were performed at the clean laboratory suites at the University of São Paulo (USP) and the University of Brasília (UnB).

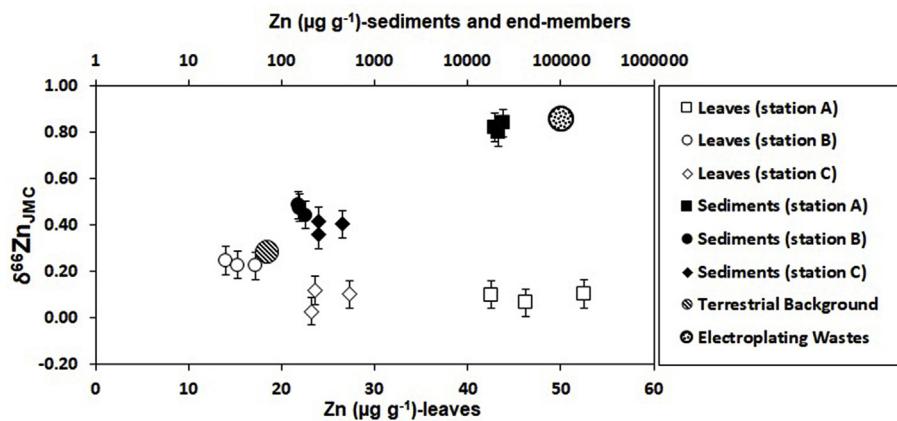
3.2. Elemental and isotope ratio analysis of zinc

Aluminum, Fe, Ti, Ca, Mg, P, Mn, Zn, Cu, Ni and Cr were analyzed using inductively coupled plasma optic emission spectrometry (ICP-OES, Spectro Ciros Vision, Spectro, at Campo Laboratory, Minas Gerais, Brazil). Multi-elemental standard solutions (Merck®) were used to produce external calibration curves. Certified reference materials (BHVO-2 and BCR-2 basalts from the USGS; 1646a estuarine sediment and 1573a tomato leaves from the NIST) were used to assess the accuracy of analysis. The accuracy expressed as percentage relative error was always within 10% of the certified values for all the elements studied.

Before the isotope ratio determinations, Zn was separated from other elements using an ion-exchange chromatography procedure employing a Bio-Rad PolyPrep column filled with 2 ml of the anion exchange resin AG-MP1, 100–200 mesh, (Araújo et al., 2017b). For subsequent mass bias corrections, the Cu standard NIST-976 was added to the purified fractions after the ion exchange procedure and concentration matched with the ratio 1:1 (300 $\mu\text{g ml}^{-1}$ in 0.05 M HNO_3). Zinc isotopic ratios were measured using a ThermoFinnigan Neptune MC-ICP-MS at the Laboratório de Geocronologia of the University of Brasília and at the Laboratorio de Geocronologia of the University of São Paulo. The introduction interface consisted of quartz glass spray chamber (cyclone + standard Scott double pass) coupled with a low flow PFA nebulizer (50 $\mu\text{l min}^{-1}$). The analytical sequences ran automatically using a Cetac ASX-100 autosampler and low mass resolution

collector slits.

The zinc isotopes ratios were measured relative to the in-house single element standard MERCK Lot #9953 labeled henceforward as Zn_{UnB} standard. The standard-sample bracketing technique was used, i.e., each sample was bracketed by standard solution mixture (Zn_{UnB} and $\text{Cu}_{\text{NIST-976}}$) with rinses between sample and standard analyses with 3% (v/v) HNO_3 . The raw ratios were corrected for instrumental mass fractionation using the exponential law based and the certified ratio ($^{65}\text{Cu}/^{63}\text{Cu} = 0.4456$) for Cu of the NIST SRM 976 standard.


The $\delta^{66}\text{Zn}$ values were calculated as the deviation of the mass bias corrected isotope ratio of the samples from the mean of the mass bias-corrected isotopes ratios of the bracketing standards:

$$\delta^{66}\text{Zn}(\%) = \left(\frac{\delta^{66}\text{Zn}_{\text{sample}}}{\delta^{66}\text{Zn}_{\text{standard}}} - 1 \right) \quad (1)$$

Zinc isotope data reported in this study are expressed relative to the Johnson Matthey Company 3-0749-L (JMC_{3-0749-L}) reference standard calibrated against our Zn_{UnB} standard ($\Delta\text{Zn}_{\text{JMC-UnB}} = +0.17\text{\textperthousand}$). For analytical quality control, the certified isotope reference material Zn IRMM-3702 was measured two or three times along each session analysis yielding a $\delta^{66}\text{Zn}_{\text{JMC}}$ value of $-0.27 \pm 0.06\text{\textperthousand}$ ($n = 30, 2\sigma$). This value agrees with values the average value of compiled data from other laboratories ($+0.30 \pm 0.01, 2\text{SE}$, Moynier et al., 2017). The 1573a tomato leaves showed $\delta^{66}\text{Zn}_{\text{JMC}}$ values of $+0.79 \pm 0.09\text{\textperthousand}$ ($2\sigma, n = 4$). The $\delta^{66}\text{Zn}_{\text{JMC}}$ values obtained for BHVO-2 basalt ($+0.25 \pm 0.10\text{\textperthousand}, 2\sigma, n = 5$), BCR-2 basalt ($+0.25 \pm 0.08\text{\textperthousand}, 2\sigma, n = 1$), and AGV-2 andesite ($+0.29 \pm 0.07, 2\sigma, n = 2$) are in line with those reported in the literature for silicate rocks (Chen et al., 2013; Sossi et al., 2015). Average reproducibility for $\delta^{66}\text{Zn}_{\text{JMC}}$ values determined for the certified reference material Zn IRMM-3702 and unknown samples was $\pm 0.06\text{\textperthousand}$ (2σ). This value was taken to represent the external reproducibility of the method.

4. Results

The analytical results for the mangrove superficial sediments and leaves are shown in Table 1. Highest Zn concentrations (expressed in $\mu\text{g g}^{-1}, 1\sigma, n = 3$) in surface sediments are found at station A ($21,551 \pm 2072$), while intermediate values are found in station C (316 ± 112), and the lowest values in station B (164 ± 17). The sediment samples of Sepetiba Bay display a wide range of $\delta^{66}\text{Zn}_{\text{JMC}}$ values

Fig. 2. Zinc isotope composition (expressed using $\delta^{66}\text{Zn}_{\text{JMC}}$) and concentration of sediment and of leaves samples. The end-members (terrestrial detrital material and electroplating wastes) identified in a previous study performed by Araújo et al. (2017a) are included.

(between $+0.36$ and $+0.84\text{\textperthousand}$, Table 1). Samples from Saco do Engenho mangroves (station A) exhibit the highest values, ranging between $+0.80$ and $+0.84\text{\textperthousand}$ (Fig. 2) with an average of $+0.82 \pm 0.04\text{\textperthousand}$ ($n = 3$). Surface sediments collected in the mangrove close to the São Francisco Channel (station B) display $\delta^{66}\text{Zn}_{\text{JMC}}$ values between $+0.44$ and $+0.49\text{\textperthousand}$ (average of $+0.47 \pm 0.04\text{\textperthousand}$ ($n = 3$), slightly heavier than values found in the mangrove of Enseada das Garças (station C) which range between $+0.36$ and $+0.42 \pm 0.06\text{\textperthousand}$ (Fig. 2) with an average of $+0.39 \pm 0.06\text{\textperthousand}$ ($n = 3$). Zinc concentrations ($\mu\text{g g}^{-1}$, 1σ , $n = 3$) in the exchangeable fraction (0.1 M acetate leach) were 8836 ± 1788 , 71 ± 19 and 173 ± 94 ($n = 3$) for the mangrove stations A, B, C, respectively. This corresponds to 41, 43 and 55% of the bulk sediment Zn concentration.

Average Zn concentrations in *L. racemosa* leaves in the mangrove stations follow the same trend observed for sediments, i.e. the highest concentrations ($\mu\text{g g}^{-1}$, 1σ , $n = 3$) are found in station A (47 ± 5), followed by station C (25 ± 2) and station B (15 ± 2) (Fig. 2). The leaves collected at the stations with higher Zn concentrations in sediments (stations A and C) display similar $\delta^{66}\text{Zn}$ values of $+0.09 \pm 0.04\text{\textperthousand}$ and $+0.08 \pm 0.10\text{\textperthousand}$ ($\pm 2\sigma$, $n = 3$), respectively (Fig. 2). These values are very different from those observed in leaves from station B, which display heavier $\delta^{66}\text{Zn}$ values of $+0.23 \pm 0.02\text{\textperthousand}$ (2σ , $n = 3$, Fig. 2).

5. Discussion

5.1. Zinc isotope composition of end-members from Sepetiba Bay

Two previous studies of our group (Araújo et al., 2017a; c) assessed the variability of the Zn isotope values within a single sediment core and of suspended particulate matter collected in the estuary. We found that the isotope signatures in the sediment core can be accounted for by mixing of three main end-members: a terrestrial detrital source ($\delta^{66}\text{Zn}_{\text{JMC}} = +0.28 \pm 0.12\text{\textperthousand}$, 2σ), a marine detrital source ($\delta^{66}\text{Zn}_{\text{JMC}} = +0.45 \pm 0.03\text{\textperthousand}$, 2σ), and an anthropogenic source associated with electroplating wastes released into the bay ($\delta^{66}\text{Zn}_{\text{JMC}} = +0.86 \pm 0.15\text{\textperthousand}$, 2σ , Araújo et al., 2017a; Araújo et al., 2017c). Table 2 summarizes relevant data compiled from Araújo et al. (2017a), including the Zn isotopic signatures of top layers ($\sim 5\text{ cm}$) from sediment cores of mud flat sediments collected close the stations A, B and C determined in this study. The compiled dataset is used in the following sections to support the interpretations of the new dataset in the mangrove systems presented in this study.

5.2. Tracing anthropogenic zinc sources in the mangrove sediments

$\delta^{66}\text{Zn}_{\text{JMC}}$ values of the surface sediments at Saco do Engenho

Table 2

Zinc isotope composition (expressed using $\delta^{66}\text{Zn}_{\text{JMC}}$) of the end-members and the mud flat sediments from Sepetiba Bay Data compiled from Araújo et al. (2017a).

End-members	$\delta^{66}\text{Zn}_{\text{JMC}}$ (2σ)
Electroplating wastes	$+0.86 \pm 0.15\text{\textperthousand}$
Terrestrial detrital material	$+0.28 \pm 0.12\text{\textperthousand}$
Marine detrital material	$+0.45 \pm 0.03\text{\textperthousand}$
<i>Mud flat sediments (top layers of mud flat cores)</i>	
Station A	$+0.83 \pm 0.06\text{\textperthousand}$
Station B	$+0.67 \pm 0.06\text{\textperthousand}$
Station C	$+0.46 \pm 0.06\text{\textperthousand}$

(station A) range between $+0.72$ and $+1.15\text{\textperthousand}$ (Araújo et al., 2017a). They are likely controlled by the isotope composition of waste derived from the electroplating plant as station A is located within the hot spot contamination area (Table 1). In addition, isotope values previously reported for waste and slag produced during metallurgical processes are in the same range ($+0.59$ to $+1.49\text{\textperthousand}$, Sivry et al., 2008; Juillot et al., 2008). The large isotope fractionation between electroplating waste and ores minerals (average of $+0.03 \pm 0.24\text{\textperthousand}$ for willemite, Araújo et al., 2017a) and concentrates ores of sphalerites from worldwide (average of $+0.03 \pm 0.1\text{\textperthousand}$, Ochoa et al., 2016) may be associate to the electrochemical separation process used during ore refining (Kavner et al., 2008; Yin et al., 2016).

Suspended particles enriched in Zn as well as dissolved Zn are transported from the hot spot area throughout the bay and deposited in the tidal flats and mangroves along the shore (Leal Neto et al., 2006; Roncarati and Carelli, 2012). There, dissolved metal contaminants including Zn and suspended particles are immobilized within organic-rich and anoxic sediment due to the formation of insoluble metallic sulfides and complexes with organic matter (Machado et al., 2008; Andrade et al., 2012; Ribeiro et al., 2013). This metal trapping capacity likely explains the moderate to high concentrations of Zn in stations B and C, even though the latter station is located as far as 16 km from the old electroplating plant. Additional input from other anthropogenic sources (e.g., urban effluents) also could play a role.

The surface mangrove sediment from stations B and C show $\delta^{66}\text{Zn}_{\text{JMC}}$ values between the geological background of Sepetiba Bay, estimated at $+0.28 \pm 0.12\text{\textperthousand}$ (2σ), represented by granites rocks and sediment core sections from pre-industrial period (Table 2) and electroplating wastes, estimated at $+0.86 \pm 0.12\text{\textperthousand}$ (2σ) represented by waste from the old electroplating plant (Araújo et al., 2017a, Fig. 2, Table 2). The mangroves of Sepetiba bay are known to act as sinks of the suspended particulate matter brought during the high tides (Lacerda et al., 1988). In Fig. 3, we observe an overlap of the isotope signature between the first 5 cm layers of sediment cores of mud flat

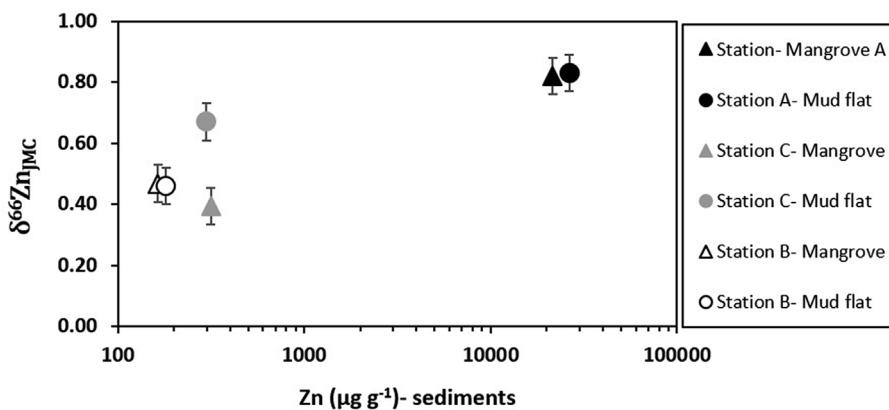


Fig. 3. Zinc isotope composition (expressed using $\delta^{66}\text{Zn}_{\text{JMC}}$) of mangrove (this study) and mud flat (Araújo et al., 2017a) surface sediments (0–5 cm depth).

and mangrove surface sediments. This suggests that the Zn isotope compositions of suspended particle material and dissolved Zn remain unchanged during the transport and after deposition in the mangrove system. The lack of overlap in the station C may indicate inputs from an additional, unknown source in this mangrove system. This would well be in agreement with the location of and proximity of untreated urban sewage effluents observed during the field work.

5.3. Zinc concentrations and isotope compositions of tree leaves

The zinc isotope composition of the leaves of *L. racemosa* (ranging between +0.08 and +0.23‰) are lighter than that of the bulk sediments (ranging between +0.36 and +0.84‰). The smaller variation of $\delta^{66}\text{Zn}$ found in the leaves is possibly due to an isotopically more homogenous bioavailable pool (see discussions further below). The leaves collected at the stations with higher Zn concentrations in the surface sediments (stations A and C) display similar $\delta^{66}\text{Zn}$ values (+0.09 ± 0.04‰ and +0.08 ± 0.10‰, ± 2 σ , $n = 3$) but are significant different from those observed in leaves of trees collected at station B (+0.23 ± 0.02‰, 2 σ , $n = 3$, Fig. 2). As will be discussed later, this difference between mangrove sites can be associated to physiological responses and tolerance mechanisms of mangrove trees.

5.3.1. Suggested control of mineral phases and rhizosphere processes

The changes in Zn concentrations in *L. racemosa* leaves reflect changes in Zn concentrations in surface sediments (Fig. 2) though the magnitudes of increase or decrease is different. For example, we observe between the stations A and B a 100-fold increase in Zn concentrations in the sediments but only a 3-fold increase in the leaves. It is conceivable that the bioavailability of excess anthropogenic Zn is strongly reduced at station A. The capability of mangroves to reduce metal bioavailability is attributed to the formation of stable metal sulfides, metal-organic matter complexes and sorption on clays minerals (Machado et al., 2005; Marchand et al., 2006, 2011; MacFarlane et al., 2007; Lewis et al., 2011). The lower Zn concentrations in the leaves may also reflect tolerance mechanisms including root iron plaque formation, excretion through leaves or roots and compartmentation in root cells (Macfarlane and Burchett, 1999; MacFarlane and Burchett, 2000; MacFarlane and Burchett, 2002; Machado et al., 2005; MacFarlane et al., 2007; Naidoo et al., 2014). The large contribution of Zn in the exchangeable fraction, i.e., from 41 to 55% (Table 1), suggests a weak role of the sediment on the retention of Zn and a prevailing of tolerance mechanisms on the reduction of Zn bioavailability.

Iron plaques formation is a critical process to control metal uptake via root. They are formed during oxidation of Fe^{2+} in anoxic, waterlogged conditions at the root surface by O_2 diffusing through the aerenchym (Machado et al., 2005; Aucour et al., 2017; Garnier et al., 2017). In Sepetiba Bay, a previous study of seedlings of *L. racemosa*

showed that almost 90% of Zn in the roots are associated with iron plaque and only a minor fraction is stored in the root tissues (Machado et al., 2005). It is therefore likely that Zn adsorption on iron plaques is an important process with respect to isotope fractionation. Several laboratory studies have demonstrated significant Zn isotope fractionation during sorption processes on Fe-bearing phases with preferential enrichment of heavy isotope in the solid phase (Pokrovsky et al., 2005; Balistrieri et al., 2008; Juillet et al., 2008; Dekov et al., 2010, 2014). This would lead a preferential immobilization of heavy Zn isotopes on iron plaques, resulting in a Zn phyto-available pool isotopically lighter.

A second important reservoir of Zn in mangrove sediments are sulfide compounds formed during anoxic conditions by microbial activity. Previous studies demonstrated that Zn sulfides are isotopically lighter compared to other mineral phases (John et al., 2008; Kelley et al., 2009; Veeramani et al., 2015; Jamieson-Hanes et al., 2017) and Aucour and co-workers (2016) found enrichment of light Zn isotopes in roots compared to the soil in a wetland system in France, due to the dissolution of ZnS enriched in light isotopes.

Mangroves are subjected to daily redox changes triggered by tidal cycles and bioturbation processes. This leads to re-precipitation and re-dissolution of mineral phases. In anoxic conditions (e.g., during high tides), Fe-oxyhydroxides are partially reduced and dissolved releasing metals into solution, while sulfides produced from the microbial activity immobilize metals. During oxic conditions, sulfides may be oxidized releasing metals to pore- or column water (Huerta-Diaz and Morse, 1992; Marchand et al., 2011; Andrade et al., 2012; Machado et al., 2014). Previous mineralogical analyses (XRD) of the mangrove sediments in Sepetiba bay showed presence of ankerite ($\text{Ca}(\text{Fe},\text{Mg},\text{Mn})(\text{CO}_3)_2$) and pyrite, evidencing an intense redox cycling of Fe and Mn during diagenetic processes involving carbon-iron-sulfur interactions and microbial metabolism (Araújo et al., 2017d).

The changes in sedimentary mineralogy induced by diagenetic processes, tidal cycles and bioturbation affects the Zn mobility in the sediment/water interface and its isotope compositions (Veeramani et al., 2015; Jamieson-Hanes et al., 2017, Dekov et al., 2010, 2014). A flow-through cell experiment designed for the study of Zn speciation *in situ* in natural sediments demonstrated an enrichment of the heavier Zn isotope in the aqueous phase due to the continuous Zn removal via microbially-mediated ZnS precipitation in reducing conditions (Jamieson-Hanes et al., 2017). Leaching experiments of metallurgical slags showed different directions and extent of Zn isotope fractionation depending on the formation or dissolution of secondary phases such as carbonates, hydroxides, or oxides during weathering (Yin et al., 2016). To predict accurately the overall magnitude or direction of Zn isotope fractionation resulting from these various processes in mangrove sediments, however, remains difficult due to the wide variety of Zn bearing mineral phases.

Nevertheless, it is important to note that despite the wide range of

Zn concentrations found in the sampled sediments, the Zn isotope compositions of the leaves displays a rather narrow range of $\delta^{66}\text{Zn}_{\text{JMC}}$ values, varying between +0.08 and +0.23‰. This small range of $\delta^{66}\text{Zn}_{\text{JMC}}$ values suggests that the isotopic composition of the Zn pool available for uptake is similar at the different sites. This is supported by the isotope analysis of the exchangeable phase (data unpublished).

5.3.2. Zinc uptake and translocation to aerial parts of mangrove plants

The enrichment of light isotopes in leave tissues may be associated to the combined effects of biological isotope fractionation during Zn uptake and translocation to aerial parts of mangrove plants. The direction and magnitude of the Zn isotope fractionation during Zn uptake is depending of Zn speciation and uptake mechanisms (Jouvin et al., 2012). The enrichment of the light isotope in the leaves of *L. racemosa* found in this study is in line with uptake of free Zn^{2+} via diffusion. The transport of Zn from root to shoot and leaves in higher plants occurs via the xylem sap, which seems, in general, to lead an enrichment of light isotopes in the leaves of high plants (Caldelas and Weiss, 2016) possibly due to ion exchange processes (Moynier et al., 2009).

It is also evident that sampling sites with medium (station C) and high (station A) degrees of Zn contaminations show lighter isotope compositions than the mangrove station with the lowest contamination degree (station B) (Fig. 2). To explain this observation, we suggest physiological responses and tolerance mechanisms of mangrove trees as controlling process. Mangroves plants exclude metals or regulate uptake of metals at the root level and limit translocation to the shoot to maintain the concentration of metals within physiological limits. This involves the use metallothioneins, phytochelatins and Cys-rich membrane proteins for metal transport, chelation, compartmentalization, exclusion and sequestration processes (Zhou and Goldsborough, 1995; Cobbett, 2000; Hasan et al., 2017; Weng et al., 2012). Thus, Zn isotope compositions of leaves will reflect the various mechanisms that control uptake, accumulation, trafficking and detoxification of metals (MacFarlane et al., 2007; Da Souza et al., 2014; Arrivabene et al., 2016). Zinc complexation with organic ligands containing O and N donor atoms favor the heavy isotopes and the magnitude of Zn isotope fractionation during complexation seems proportional to the affinity constant (Markovic et al., 2017). Hence, complexation to organic ligands with O and N donor atoms could lead to the immobilization of heavy isotopes in cell roots and stems with a subsequent preferential translocation of light isotopes to aerial parts of plants. Sulfur containing molecules (cys-rich proteins, phyto-chelatins, metallo-thioneins) are likely also involved in membrane transport, chelation, compartmentalization, exclusion and sequestration processes of metals (Zhou and Goldsborough, 1995; Cobbett, 2000; Weng et al., 2012; Fujii and Albarède, 2012; Hasan et al., 2017), further imparting significant isotope fractionation.

Different Zn isotope signature patterns in plants as response to high or low Zn supplies have been reported in the literature. Caldelas et al. (2011) pioneered experiments with wetland plants (*Phragmites australis*) in substrates with toxic levels of Zn and observed heavier isotopic compositions in roots than in leaves. Similar observations were made studying plants grown in soils contaminated by metallurgic waste (Couder et al., 2015). Both groups suggested that under conditions of high Zn supplies, Zn is immobilized by organic ligands and stored in cell organelles (e.g., vacuoles) leading to preferential accumulation of the heavy isotope of Zn excess in the roots.

Mangrove trees across genera and families tend to accumulate higher amounts in roots than leaves (MacFarlane et al., 2007) as detoxification mechanism. This would increase the enrichment of the light isotope in the Zn pool translocated to aerial plant compartments. Thus, metal stress should lead to different isotope patterns of mangrove leaves than those observed under normal conditions.

6. Conclusions

Mangrove ecosystems play an important role in the dynamics of metal contaminants in coastal areas. This work demonstrates that Zn isotopes is useful to trace anthropogenic sources in superficial mangrove sediments, especially, those associated to metallurgical pollution. We demonstrate that post-depositional biogeochemical processes do not significantly fractionate zinc isotopes in surface sediments.

Zinc isotopes in mangrove tree leaves show significant fractionation compared to the sediments, likely as result of Zn uptake and translocation to aerial parts. The subtle isotopic signatures among mangrove stations may be associated to tolerance mechanisms employed by mangroves under high Zn exposure to exclude metals or regulate uptake of metals to maintain Zn levels within physiological limits. Therefore, Zn isotope compositions of leaves are not indicative of sources. However, changes in Zn isotope compositions of leaves may be potential indicators for responses of mangrove plants to environmental changes and changes in physiological status.

Acknowledgements

This work was financially supported by CNPq (D.F. Araújo PhD grant, process: 161944/2012-4 and 211238/2014-7; post-doctoral grants, processes: 150561/2018-0 and 400029/2015-4) and MCTI 400029/2015-4 (post-doctoral grant) and by different scientific projects listed: Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program (NIDYFICS, n°318123) and CNPq universal 445423/2014-5, CNPq–PQ 310750/2014-8, FAP-DF 193.000.932/2015. This work benefited from the Ciência Sem Fronteiras program (C. Quantin and Patrick Seyler) PV: 406288/2015-1 and PVE 400329/2014-0. We thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

References

- Adriano, D., Adriano, D., 2001. Trace Elements in Terrestrial Environments. Springer, New York.
- Agardy, T., Alder, J., 2003. Coastal systems (chapter 19). In: Alcamo, J., Bennett, E. (Eds.), Ecosystems and Human Well-being. Island Press, Washington, DC.
- Alongi, D.M., 2017. Micronutrients and mangroves: experimental evidence for copper limitation. Limnol. Oceanogr. 62, 2759–2772. <http://dx.doi.org/10.1002/lo.10604>.
- Alongi, D., Wattayakorn, G., Boyle, S., Tirendi, F., Payn, C., Dixon, P., 2004. Influence of roots and climate on mineral and trace element storage and flux in tropical mangrove soils. Biogeochemistry 69, 105–123.
- Andrade, R., Sanders, C., Boaventura, G., Patchineelam, S., 2012. Pyritization of trace metals in mangrove sediments. Environ. Earth Sci. 67, 1757–1762.
- Araújo, D.F., Boaventura, G.R., Machado, W., Viers, J., Weiss, D., Patchineelam, S., Ruiz, I., Rodrigues, A., Babinski, M., Dantas, E., 2017a. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chem. Geol. 449, 226–235.
- Araújo, D., Boaventura, G., Viers, J., Mulholland, D., Weiss, D., Araújo, D., Lima, B., Ruiz, I., Machado, W., Babinski, M., Dantas, E., 2017b. Ion exchange chromatography and mass bias correction for accurate and precise Zn isotope ratio measurements in environmental Reference Materials by MC-ICP-MS. J. Braz. Chem. Soc. 28, 225–237.
- Araújo, D.F., Machado, W., Dominik, W., Mulholland, D.S., Boaventura, G.R., Viers, J., Garnier, J., Dantas, E.L., Babinski, M., 2017c. A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary. Environ. Pollut. 226, 41–47.
- Araújo, D.F., Peres, L.G.M., Yépez, S., Mulholland, D.S., Machado, W., Tonhá, M., Garnier, J., 2017d. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Compt. Rendus Geosci. 349, 290–298.
- Arrivabene, H.P., Campos, C.Q., Souza, I.D.C., Wunderlin, D.A., Milanez, C.R.D., Machado, S.R., 2016. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing. Environ. Pollut. 215, 302–313. <http://dx.doi.org/10.1016/j.envpol.2016.05.019>.
- Arnold, T., Markovic, T., Kirk, G., Schönbächler, M., Rehkämper, M., Zhao, F., Weiss, D., 2015. Iron and zinc isotope fractionation during uptake and translocation in rice (*Oryza sativa*) grown in oxic and anoxic soils. C. R. Geosci. 347, 397–404.
- Aucour, A.-M., Bedell, J.-P., Queyron, M., Magnin, V., Testemale, D., Sarret, G., 2015. Dynamics of Zn in an urban wetland soil–plant system: coupling isotopic and EXAFS approaches. Geochim. Cosmochim. Acta 160, 55–69.
- Aucour, A.M., Bedell, J.P., Queyron, M., Tholé, R., Lamboux, A., Sarret, G., 2017. Zn

speciation and stable isotope fractionation in a contaminated urban wetland Soil-*Typha latifolia* system. *Environ. Sci. Technol.* 51, 8350–8358.

Balistrieri, L.S., Borrok, D.M., Wanty, R.B., Ridley, W.I., 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. *Geochem. Cosmochim. Acta* 72, 311–328.

Barone, R.H.T., 1973. Perfil analítico do zinco. Ministério das Minas e Energia. Departamento Nacional da Produção Mineral, Bolteim nº26. Rio de Janeiro, Brasil.

Bayen, S., 2012. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. *Environ. Int.* 48, 84–101.

Borrok, D., Gieré, R., Ren, M., Landa, E., 2010. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels. *Environ. Sci. Technol.* 44, 9219–9224.

Caldelas, C., Weiss, D.J., 2016. Zinc Homeostasis and isotopic fractionation in plants: a review. *Plant Soil* 1 (411), 17–46. <http://dx.doi.org/10.1007/s11104-016-3146-0>.

Caldelas, C., Dong, S., Araus, J., Jakob Weiss, D., 2011. Zinc isotopic fractionation in *Phragmites australis* in response to toxic levels of zinc. *J. Exp. Bot.* 62, 2169–2178.

Castro, P., Huber, M., 2010. Marine biology. McGraw-Hill, New York.

Chen, H., Savage, P., Teng, F., Helz, R., Moynier, F., 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. *Earth Planet Sci. Lett.* 369–370, 34–42.

Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. *Plant Physiol.* 123, 825–832.

Couder, E., Mattielli, N., Drouet, T., Smolders, E., Delvaux, B., Iserentant, A., Meeus, C., Maerschalk, C., Opfergelt, S., Houben, D., 2015. Transpiration flow controls Zn transport in *Brassica napus* and *Lolium multiflorum* under toxic levels as evidenced from isotopic fractionation. *C. R. Geosci.* 347, 386–396.

Da Souza, I., Bonomo, M.M., Morozeski, M., Rocha, L.D., Duarte, I.D., Furlan, L.M., Arrivabene, H.P., Monferrán, M.V., Matsumoto, S.T., Milanez, C.R.D., Wunderlin, D.A., Fernandes, M.N., 2014. Adaptive plasticity of *Laguncularia racemosa* in response to different environmental conditions: integrating chemical and biological data by chemometrics. *Ecotoxicology* 23, 335–348.

Dekov, V.M., Cuadros, J., Kamenov, G.D., Weiss, D., Arnold, T., Basak, C., Rochette, P., 2010. Metalliferous sediments from the H.M.S. Challenger voyage (1872–1876). *Geochem. Cosmochim. Acta* 74, 5019–5038. <http://dx.doi.org/10.1016/j.gca.2010.06.001>.

Dekov, V.M., Vanlierde, E., Billström, K., Garbe-Schönberg, C.D., Weiss, D.J., Gatto Rotondo, G., Van Meel, K., Kuzmann, E., Fortin, D., Darchuk, L., Van Grieken, R., 2014. Ferrihydrite precipitation in groundwater-fed river systems (Nete and Demer river basins, Belgium): insights from a combined Fe-Zn-Sr-Nd-Pb-isotope study. *Chem. Geol.* 386, 1–15. <http://dx.doi.org/10.1016/j.chemgeo.2014.07.023>.

Fujii, T., Albarède, F., 2012. Ab initio calculation of the Zn isotope effect in phosphates, citrates, and malates and applications to plants and soil. *PLoS One* 7. <http://dx.doi.org/10.1371/journal.pone.0030726>.

Garnier, J., Garnier, J.M., Vieira, C.L., Akerman, A., Chmeleff, J., Ruiz, R.I., Poitrasson, F., 2017. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field. *Sci. Total Environ.* 574, 1622–1632.

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., Duke, N., 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. *Global Ecol. Biogeogr.* 20 (1), 154–159.

Gleyzes, C., Tellier, S., Astruc, M., 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. *TrAC - Trends Anal. Chem.* 21, 451–467.

Hasan, M.K., Cheng, Y., Kanwar, M.K., Chu, X.-Y., Ahammed, G.J., Qi, Z.-Y., 2017. Responses of plant proteins to heavy metal stress—a review. *Front. Plant Sci.* 8, 1492.

Huerta-Díaz, M.A., Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. *Geochem. Cosmochim. Acta* 56, 2681–2702. [http://dx.doi.org/10.1016/0016-7037\(92\)90353-K](http://dx.doi.org/10.1016/0016-7037(92)90353-K).

Jameson-Hanes, J.H., Shrimpton, H.K., Veeramani, H., Ptacek, C.J., Lanzirotti, A., Newville, M., Blowes, D.W., 2017. Evaluating zinc isotope fractionation under sulfate reducing conditions using a flow-through cell and *in situ* XAS analysis. *Geochem. Cosmochim. Acta* 203, 1–14.

John, S.G., Rouxel, O.J., Craddock, P.R., Engwall, A.M., Boyle, E.A., 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. *Earth Planet Sci. Lett.* 269, 17–28.

Jouvin, D., Weiss, D.J., Mason, T.F.M., Bravin, M.N., Louvat, P., Zhao, F., Ferec, F., Hinsinger, P., Benedetti, M.F., 2012. Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. *Environ. Sci. Technol.* 46, 2652–2660.

Juillot, F., Maréchal, C., Ponthieu, M., Cacaly, S., Morin, G., Benedetti, M., Hazemann, J.L., Proux, O., Guyot, F., 2008. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. *Geochem. Cosmochim. Acta* 72, 4886–4900.

Kavner, A., John, S., Sass, S., Boyle, E., 2008. Redox-driven stable isotope fractionation in transition metals: application to Zn electropolating. *Geochem. Cosmochim. Acta* 72, 1731–1741.

Kelley, K.D., Wilkinson, J.J., Chapman, J.B., Crowther, H.L., Weiss, D.J., 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. *Econ. Geol.* 104, 767–773.

Lacerda, L.D., Martinelli, L.A., Rezende, C.E., Mozeto, A.A., Ovalle, A.R.C., Victoria, R.L., Nogueira, F.B., 1988. The fate of trace metals in suspended matter in a mangrove creek during a tidal cycle. *Sci. Total Environ.* 75 (2–3), 169–180.

Leal Neto, A., Legey, L., González-Araya, M., Jablonski, S., 2006. A system dynamics model for the environmental management of the Sepetiba bay watershed, Brazil. *Environ. Manag.* 38, 879–888.

Lewis, M., Pryor, R., Wilking, L., 2011. Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. *Environ. Pollut.* 159, 2328–2346.

MacFarlane, G., Burchett, M., 1999. Zinc distribution and excretion in the leaves of the grey mangrove, *Avicennia marina* (Forsk.) Vierh. *Environ. Exp. Bot.* 41, 167–175.

MacFarlane, G., Burchett, M., 2000. Cellular distribution of copper, lead and zinc in the grey mangrove, *Avicennia marina* (Forsk.) Vierh. *Aquat. Bot.* 68, 45–59.

MacFarlane, G., Burchett, M., 2002. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove *Avicennia marina* (Forsk.) Vierh. *Mar. Environ. Res.* 54, 65–84.

MacFarlane, G.R., Koller, C.E., Blomberg, S.P., 2007. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. *Chemosphere* 69, 1454–1464.

Machado, W., Borrelli, N.L., Ferreira, T.O., Marques, A.G.B., Osterrieth, M., Guizan, C., 2014. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. *Mar. Pollut. Bull.* 79, 365–370. <http://dx.doi.org/10.1016/j.marpolbul.2013.11.016>.

Machado, W., Lacerda, L.D., 2004. Overview of the biogeochemical controls and concerns with trace metal accumulation in mangrove sediments. In: Lacerda, L.D. (Ed.), *Environmental Geochemistry in Tropical and Subtropical Environments*. Springer, Berlin.

Machado, W., Gueiros, B.B., Lisboa-Filho, S.D., Lacerda, L.D., 2005. Trace metals in mangrove seedlings: role of iron plaque formation. *Wetl. Ecol. Manag.* 13, 199–206.

Machado, W., Santelli, R., Carvalho, M., Molisani, M., Barreto, R., Lacerda, L., 2008. Relation of reactive sulfides with organic carbon, iron, and manganese in anaerobic mangrove sediments: implications for sediment suitability to trap trace metals. *J. Coast Res.* 4, 25–32.

Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa, D., Baillif, P., 2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. *Mar. Chem.* 98, 1–17.

Marchand, C., Allenbach, M., Lallier-Vergès, E., 2011. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). *Geoderma* 160, 444–456.

Marchand, C., Fernandez, J., Moreton, B., 2016. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia). *Sci. Total Environ.* 562, 216–227.

Marins, R.V., Machado, W., Paraquetti, H.H.M., Bidone, E.D., Lacerda, L.D., Molisani, M.M., 2004. Environmental changes in Sepetiba Bay, SE Brazil. *Reg. Environ. Chang.* 4, 17–27. <http://dx.doi.org/10.1007/s10113-003-0060-9>.

Marković, T., Manzoor, S., Humphreys-Williams, E., Kirk, G.J.D., Vilar, R., Weiss, D.J., 2017. Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2'-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms. *Environ. Sci. Technol.* 51, 98–107.

Montezuma, P.N., 2012. Análise de prováveis fatores causadores do processo de assoreamento na Baía de Sepetiba-RJ. In: Bacia hidrográfica dos Rios Guandu, da Guarda e Guandu-Mirim. INEA, Rio de Janeiro.

Moynier, F., Pichat, S., Pons, M., Fike, D., Balter, V., Albarède, F., 2009. Isotopic fractionation and transport mechanisms of Zn in plants. *Chem. Geol.* 267, 125–130.

Nagelkerken, I.S.J.M., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., Kirton, L.G., Meinecke, J.O., Pawlik, J., Penrose, H.M., Sasekumar, A.S., Somerfield, P.J., 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. *Aquat. Bot.* 89 (2), 155–185.

Naidoo, G., Hiralal, T., Naidoo, Y., 2014. Ecophysiological responses of the mangrove *Avicennia marina* to trace metal contamination. *Flora – Morph. Distr. Funct. Ecol. Plants* 209, 63–72.

Ochoa, Gonzalez R., Weiss, D., 2015. Zinc isotope variability in three coal-fired power plants: a predictive model for determining isotopic fractionation during combustion. *Environ. Sci. Technol.* 49, 12560–12567.

Ochoa, Gonzalez, R., Strelkopytov, S., Amato, F., Querol, X., Reche, C., Weiss, D., 2016. New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities. *Environ. Sci. Technol.* 50, 9816–9824.

Pokrovsky, O.S., Viers, J., Freydier, R., 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. *J. Colloid Interface Sci.* 291, 192–200.

Quevauviller, P., Rauret, G., López-Sánchez, J.F., Rubio, R., Ure, A., Muntau, H., 1997. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. *Sci. Total Environ.* 205, 223–234.

Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. *J. Environ. Monit.* 1, 57–61. Available at: <http://xlink.rsc.org/?DOI=a807854h>.

Reilly, C., 2008. *The Nutritional Trace Metals*. Blackwell Publishing, Oxford.

Ribeiro, A., Figueiredo, A., Santos, J., Dantas, E., Cotrim, M., Cesar Lopes Figueira, R.V., Silva Filho, E., Cesar Wasserman, J., 2013. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil). *Mar. Pollut. Bull.* 68, 55–63.

Roncarati, H., Carelli, S.G., 2012. Considerações sobre estado da arte dos processos geológicos cenozóicos atuantes na baía de Sepetiba. In: Baía de Sepetiba. Estado da Arte, Rio de Janeiro: Corbá.

Sandilyan, S., Kathiresan, K., 2014. Decline of mangroves—a threat of heavy metal poisoning in Asia. *Ocean Coast Manag.* 102, 161–168.

Sivry, Y., Riote, J., Sonke, J., Audry, S., Schafer, J., Viers, J., Blanc, G., Freydier, R., Dupre, B., 2008. Zn isotopes as tracers of anthropogenic pollution from Zn ore smelters the Rio Morto-Lot River system. *Chem. Geol.* 255, 295–304.

Sossi, P.A., Halverson, G.P., Nebel, O., Eggin, S.M., 2015. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. *Geostand. Geoanal. Res.* 39 (2), 129–149.

Souto-Oliveira, C.E., Babinski, M., Araújo, D.F., Andrade, M.F., 2018. Multi-isotopic

fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. *Sci. Total Environ.* 626. <http://dx.doi.org/10.1016/j.scitotenv.2018.01.192>.

Sparks, D., 2005. Toxic metals in the environment: the role of surfaces. *Elements* 1, 193–197.

Thapalia, A., Borrok, D., Van Metre, P., Wilson, J., 2015. Zinc isotopic signatures in eight lake sediment cores from across the United States. *Environ. Sci. Technol.* 49, 132–140.

Valiela, I., Bowen, J.L., York, J.K., 2001. Mangrove Forests: one of the World's Threatened Major Tropical Environments: at least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. *Bioscience* 51 (10), 807–815.

Veeramani, H., Eagling, J., Jamieson-Hanes, J.H., Kong, L., Ptacek, C.J., Blawes, D.W., 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. *Environ. Sci. Technol. Lett.* [acs.estlett.5b00273](https://doi.org/10.1021/acs.estlett.5b00273).

Viers, J., Oliva, P., Nonell, A., Gélabert, A., Sonke, J.E., Freydier, R., Gainville, R., Dupré, B., 2007. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). *Chem. Geol.* 239, 124–137.

Viers, J., Prokushkin, A.S., Pokrovsky, O.S., Kirdyanov, A.V., Zouiten, C., Chmeleff, J., Meheut, M., Chabaux, F., Oliva, P., Dupré, B., 2015. Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia. *Geochem. Trans.* 16, 3.

Walters, B.B., Rönnbäck, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R., Primavera, J.H., Barbier, E., Dahdouh-Guebas, F., 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. *Aquat. Bot.* <http://dx.doi.org/10.1016/j.aquabot.2008.02.009>.

Weng, B., Xie, X., Weiss, D.J., Liu, J., Lu, H., Yan, C., 2012. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium: subcellular distribution, chemical forms and thiol pools. *Mar. Pollut. Bull.* 64, 2453–2460.

Yin, N., Sivry, Y., Benedetti, M., Lens, P., van Hullebusch, E., 2016. Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: a mini review. *Appl. Geochem.* 64, 128–135.

Zhou, J., Goldsborough, P., 1995. Structure, organization and expression of the metallothionein gene family in *Arabidopsis*. *Mol. Gen. Genet.* 248, 318–328.