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Abstract. Total dual integrality is a powerful and unifying concept in polyhedral combinatorics
and integer programming that enables the refinement of geometric min-max relations given by lin-
ear programming strong duality into combinatorial min-max theorems. The definition of a linear
inequality system being totally dual integral (TDI) revolves around the existence of optimal dual so-
lutions that are integral and thus naturally applies to a host of combinatorial optimization problems
that are cast as integer programs whose linear program (LP) relaxations have the TDIness property.
However, when combinatorial problems are formulated using more general convex relaxations, such
as semidefinite programs (SDPs), it is not at all clear what an appropriate notion of integrality in the
dual program is, thus inhibiting the generalization of the theory to more general forms of structured
convex optimization. (In fact, we argue that the rank-one constraint usually added to SDP relax-
ations is not adequate in the dual SDP.) In this paper, we propose a notion of total dual integrality
for SDPs that generalizes the notion for LPs, by relying on an “integrality constraint” for SDPs that
is primal-dual symmetric. A key ingredient for the theory is a generalization to compact convex sets
of a result of Hoffman for polytopes, fundamental for generalizing the polyhedral notion of total dual
integrality introduced by Edmonds and Giles. We study the corresponding theory applied to SDP
formulations for stable sets in graphs using the Lovasz theta function and show that total dual inte-
grality in this case corresponds to the underlying graph being perfect. We also relate dual integrality
of an SDP formulation for the maximum cut problem to bipartite graphs. Total dual integrality for
extended formulations naturally comes into play in this context.
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1. Introduction. In the polyhedral approach to combinatorial optimization one
usually starts by formulating a combinatorial problem as an integer linear program
(ILP) of the form max{c'z: Ax < b, z >0, x € Z"}, which is relaxed into a linear
program (LP) and then studied in the light of LP duality. This basic approach of
polyhedral combinatorics can be summarized by the following simple yet fundamental
result.

THEOREM 1.1. If A € Q™*™ is a matriz and b € Q™ and ¢ € Q" are vectors,
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ILP) sup{c'z: Az <b,z>0,z€2Z"}

LP) <sup{c'z:Ax <b, x>0, zecR"}

LD) <inf{by: ATy >c,y>0,ycR™}
ILD) <inf{b"y: ATy >¢ y>0,yecZm}.

If (ILP) and (ILD) are both feasible, the suprema and infima are attained (by Meyer’s
theorem [23]), and the middle (second) inequality holds with equality.

Usually, in the formulations of combinatorial problems, the feasible region of (ILP)
is contained in {0,1}" and some optimal solution of (ILD) lies in {0,1}™. For in-
stance, suppose that we are given a graph G = (V, E) with vertices V and edges F,
and both b and ¢ are equal to the vector 1 of all-ones. Then, when A is the V x E
incidence matrix of G, (ILP) formulates the maximum cardinality matching problem,
and (ILD) formulates the minimum cardinality vertex cover problem. Alternatively,
if A is the E x V incidence matrix of G, we obtain the maximum cardinality stable set
problem and the minimum cardinality edge cover problem. If A is the clique-vertex
incidence matrix of G, then (ILP) still formulates the maximum cardinality stable set
problem, but now (ILD) formulates the minimum cardinality coloring problem.

What makes the conceptual framework brought forth by Theorem 1.1 so funda-
mental is the fact that, in many interesting and important cases [31], equality holds
throughout in the chain from Theorem 1.1, which allows us to refine a geometric
min-max relation (equality between (LP) and (LD) given by LP strong duality) into
a combinatorial min-max relation (equality between (ILP) and (ILD)). For instance,
equality throughout holds for the first two cases above when G is bipartite (and has
no isolated vertices in the second case), thus proving very strong, weighted forms of
Koénig’s matching theorem and the Kénig—Rado edge cover theorem.

Total dual integrality is arguably the most powerful and unifying sufficient con-
dition for equality throughout the chain from Theorem 1.1. A vector in R" is integral
if each of its components is an integer, and a rational system of linear inequalities
Az < b is totally dual integral (TDI) if, for each integral vector ¢ € Z", the linear
program dual to sup{ c¢'z : Az < b} has an integral optimal solution whenever it has
an optimal solution at all. In this case, if b itself is integral, then the polyhedron P
determined by Ax < b is integral, i.e., each nonempty face of P has an integral vector;
thus, equality holds throughout in the chain from Theorem 1.1. This was proved in
seminal work of Edmonds and Giles [11] as a consequence of the following fundamental
result.

THEOREM 1.2 (Edmonds-Giles [11]). Let A € Q™*" and b € Q™. If P =
{z e R": Ax < b} is such that sup,cpc'a € ZU {£oo} for each ¢ € Z", then P is
integral.

COROLLARY 1.3 (Hoffman [15]). Let A € Qm™*", and let b € Q™. If
P = {z €R": Az < b} is bounded and sup,cpc'z € Z U {—o0} for each c € Z",
then P is integral.

In the past couple of decades, it has become popular to formulate combinato-
rial optimization problems using more general models of convex optimization, with
semidefinite programs (SDPs) playing a key role. Let us introduce some basic nota-
tion for SDPs. The real vector space of symmetric n x n matrices is S”. The set of
positive semidefinite matrices is ST = {X € S": hTXh > 0Vh € R"}. The (trace)
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inner product of X,Y € S§" is (X,Y) = Tr(XY) = Y, 37| Xi;Yi;. Denote
[n] :=={1,...,n} for each n € N. We refer the reader to subsection 1.1 for the rest of
the notation used throughout the text.

When a combinatorial problem is formulated as in (ILP), the combinatorial ob-
jects are usually embedded in the (geometric) space R™ as incidence vectors; i.e., we
consider feasible solutions of the form x = 1y € R”, for certain subsets U C [n],
where the i¢th coordinate of 1y is 1 if ¢ € U and 0 otherwise. Having a correct ILP
formulation for a combinatorial optimization problem typically means that the fea-
sible solutions for (ILP) are in ezact correspondence with the combinatorial objects
of interest in the problem. One then considers the LP relaxation (LP) by dropping
the nonconvex constraint “z € Z™.” Note that the “integer dual” (ILD) is obtained
from the dual (LD) of (LP) by adding back the nonconvex constraint “y € Z™” of
the same form.

When embedding combinatorial objects into matrix space S™ for an SDP formu-
lation, one may embed a subset U C [n] as the rank-one matrix X = 1,1], € S7. It
is also common to use rank-one matrices arising from signed incidence vectors, e.g.,
X = sysf; where sy =21y — 1 € {£1}" for some U C [n]. (We shall argue later that
there is a “better” embedding, which we shall adopt.) One then obtains the following
optimization problems, partially mimicking the chain from Theorem 1.1:

(L.la)  sup{(C,X): (4;, X) < b;Vi € [m], X € S}, rank(X) =1}
(1.1b) <sup{ (C, X) : (A;, X) < b; Vze ], X e St}
(1.1c) < mf{ bly:ye RY, ST 1y7A C eSS }

where Ay,..., Ay, C € S™ and b € R™. Here usually the feasible solutions for (1.1a)
correspond ezactly to the combinatorial objects of interest, as is the case for (ILP).
Similarly as in Theorem 1.1, the SDP relaxation (1.1b) is obtained from (1.1a) by drop-
ping the nonconvex constraint “rank(X) =1, (1.1c) is the SDP dual of (1.1b), and
the last inequality is SDP weak duality. There are many instances of the chain (1.1)
in the literature; see, e.g., [14, 13, 25]. Some of this work is in copositive programming
(see, for instance, [3]).

Conspicuously missing from (1.1) is a fourth optimization problem, that is, an
“integer dual SDP” corresponding to (ILD). In fact, it is not even clear what the right
notion of integrality is for (1.1c), i.e., which nonconvex constraint to add to (1.1c)
to obtain a sensible combinatorial problem. One could argue that we may just add
back the nonconvex constraint from (1.1a), by requiring the dual slack Y .~ y;4; — C
to have rank one, and it might also make sense to require y to be integral. Unfor-
tunately, as we describe in section 2, the “integer dual SDP” thus obtained is not
very satisfactory: whereas it can be made to generalize the corresponding notion for
LPs, it fails to provide sensible “integer duals” for the SDP formulations of some of
the most classical combinatorial problems, namely the Lovész theta function and the
Max Cut SDP. Thus, we require our notion of “integrality constraints in the dual” to
provide meaningful combinatorial min-max theorems at least for Max Cut SDP and
more importantly, for SDP formulations of the Lovéasz theta function.

The theta function introduced by Lovéasz [20] was one of the earliest applications
of SDPs to combinatorial optimization. The theta function of a graph, which can
be computed efficiently (to within any given precision), lies sandwiched between its
stability and clique-covering numbers. More importantly, the theta function has a rich
and elegant duality theory (see, e.g., [8]). This is why we take the underlying SDPs
as the main test case for any generalization of TDI theory. The other SDP mentioned
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above, the Max Cut SDP, was famously exploited in a breakthrough approximation
algorithm and its analysis by Goemans and Williamson [13] and helped popularize
SDPs in the discrete optimization and theoretical computer science communities.
In this paper, we introduce a notion of integrality for SDPs that
(i) generalizes the usual rank-one constraint in primal SDPs;
(ii) allows us to extend the chain (1.1) so as to generalize Theorem 1.1 for LPs in
the natural, diagonal embedding of Az < b into matrix space;
(iii) is primal-dual symmetric;
(iv) yields sensible “integer duals” for the SDPs for the Lovasz theta function and
the Max Cut SDP.

We use this integrality condition for SDPs to define the notion of total dual integrality
for the defining system of an SDP. We connect this new notion to Corollary 1.3 by
extending the latter to compact convex sets, using basic tools from convex analysis
and ILP theory, such as the Gomory—Chvatal closure. We prove that the total dual
integrality of an SDP formulation for the Lovasz theta function is equivalent to the
underlying graph being perfect. We also study a close relative of TDIness for the Max
Cut SDP and relate it to bipartiteness of the underlying graph. Along the way, we
discuss an intermediate generalization of TDIness for LPs in terms of lifted (extended)
formulations. Finally, we discuss future research directions along these lines, inspired
by integrality (and other exactness) notions in convex optimization.

In order to achieve this, several obstacles must be overcome. First, we must
choose a specific format for SDPs that makes it natural to work with integral solu-
tions; that is, we must settle for a specific embedding of combinatorial objects into
matrix space. We solve this partially by restricting ourselves to binary integer pro-
grams, i.e., where variables can only take values in {0,1}; this is the usual case in
combinatorial optimization. Our choice of embedding and our focus on the combi-
natorial aspects of the dual SDP require us to rewrite SDP constraints in a slightly
unusual way; this happens because other works in the literature do not focus on in-
tegrality for the dual SDP. Finally, SDP formulations for combinatorial problems are
usually lifted formulations, so we must generalize the (algebraic) notion of TDIness
to these (geometric) extended formulations.

Our work is related to previous abstract notions of duality in integer program-
ming; we highlight [4, 27].

1.1. Notation. The set of nonnegative integers (resp., reals) is denoted by Z,
(resp., R;). The set of positive reals is R;;. We use Iverson’s notation: for a
predicate P, we denote

[P] =

1 if P holds,
0 otherwise.

Throughout the text, V' should be considered a finite set, usually taken to be the
vertex set of a graph. The set of k-subsets of V is (}) :== {U CV : |U| = k}. The
collection of subsets of V' that contain some i € V' (resp., that contain some i € V
and j € V) is denoted (1‘2) (resp., (”VC))

All graphs in this paper are simple. Let G = (V, E) be a graph. The complement
of Gis G == (V,E), where E = (‘2/) \ E. The subgraph of G induced by U C V is
G[U] = (U, EN ([2])) The complete graph on vertex set V' is Ky. A subset U of V is a
clique in G if G[U] = Ky; we say that U is stable in G if U is a clique in G. Denote the
set of cliques of G by K(G). The clique number of G is w(G) == max{ |K| : K € K(G)}.
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The chromatic number x(G) of G is the smallest size of a partition of V' into stable
sets of G. A graph G = (V, E) is perfect if w(G[U]) = x(G[U]) for every U C V.

The canonical basis of RV is {e; : i € V}. The incidence vector of U C V is
1y € R, ie., (ly); == [i € U] for each i € V. Let W be a finite set. The direct sum
of r € RV and y € RW is 2 @ y. The componentwise product of z,y € RV is denoted
by z ® y. The support of z € R is supp(x) :== {i € V : z; # 0}.

The real vector space of symmetric V x V matrices is S¥. The cone of symmetric
positive semidefinite (resp., entrywise nonnegative) V' x V matrices is denoted by SK
(resp., SY,). For A, B € SV, we write A = Bif A—-B € SK, and for A, B € RVXW  we
write A > B if A;; > B, for every (4,j) € V x W. The identity matrix in appropriate
space is denoted by I. The map diag: RV*Y — RY extracts the diagonal of a matrix,
and its adjoint Diag: RV — RY*V builds diagonal matrices. The principal submatriz
of X € RV*V indexed by U C V is the restriction X[U] :== X[y, € RV*V. The
orthogonal projection of A € RV*V onto S is Sym(A) :== (4 + AT). The convex
hull of a subset % of a Euclidean space is denoted by conv(%).

1.2. Organization. The rest of this text is organized as follows. We discuss
dual integrality constraints for SDPs in section 2, including drawbacks of the rank-one
constraint usually added to the primal SDP, as well as embedding issues. There, we
show that our notion of dual integrality befits nicely with the Lovész theta function.
In section 3, we generalize Corollary 1.3, which motivates us to define a notion of
total dual integrality for SDPs in section 4; we show that the latter is sufficient for
primal integrality. In section 5, we characterize total dual integrality for formulations
of the Lovasz theta function, and we study dual integrality for the Max Cut SDP with
nonnegative weight functions in section 6. We conclude our paper with several open
problems and future research directions in section 7.

2. Fundamental framework and integrality constraint for dual SDP.
We discuss in subsection 2.1 the shortcomings of the rank constraint as an “inte-
grality constraint” for the dual SDP (1.1c), and we propose a suitable replacement
in subsection 2.2. Throughout the discussion, a few somewhat unusual choices will
be made which are not common in the SDP literature; e.g., whenever appropriate
we are careful when writing linear inequalities of the form (A, X) <  on a matrix
variable X with an integral symmetric matrix A and integer 5. The reason we insist
on symmetry of A is to properly set up the dual SDP, and we want A and 8 to be
integral so as to simplify combinatorial interpretation of the linear system; this is also
the case when one studies the ILP chain from Theorem 1.1 in the context of classical
TDIness theory.

2.1. Drawbacks of the rank-one constraint as a dual integrality con-
straint. In order to discuss integrality constraints for SDPs, we must first choose
a standard form to embed combinatorial objects (e.g., subsets of some finite ground
set V) into matrix space S¥. The format we shall choose actually embeds subsets of
a finite set V as matrices in S191YV; i.e., the index set has one extra element, which
we call 0, assumed throughout not to be in V. Each subset U of V' is embedded as the
rank-one matrix

T T
. 11
(2.1) X = { 1] [1} - vo| esi,
ly] |1y 1y 1,1]
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as a convention, we decorate matrices in this lifted space with a hat, e.g., X in (2.1).
Similarly, since we use the lifted matrix space so often, we shall abbreviate

(2.2) SV .= stopwv and g}r/ = S{+0}uv7

and we also decorate subsets of SV with a hat, e.g., 3 C Sv. By writing any matrix X
from (2.1) in the form

N T ~
(2.3) X = Llc fx] c8v,

with X € SV, one sees that it satisfies Xoo = 1 and ; = X;; > 0 for each j € V,
which we shall write as

(2.4a) (eoeg, X) =1,
(2.4b) (2Sym(e;(e; —e0)"), X) = Vi eV,
(2.4c) <ejeJT-7X> >0 vVjieV.

The constraints (2.4), together with the constraint rank(X) = 1, ensure that X has
the form (2.1) for some U C V. Throughout the rest of the text, one may think that
every system of linear inequalities on X arising from combinatorial problems includes
the constraints (2.4), just as one usually considers the linear constraints Az < b, z > 0
from (ILP) to include 0 < z < 1.

Another constraint satisfied by X of the form (2.1), using the notation of (2.3),
is X = X[V] > 0. Sometimes it will make sense to add this extra constraint to (2.4),
leading to the following constraints:

(2.50) (ol X) =1,

(2.5b) (2Sym(e;(e; —€0)"), X)=0  VjeV,

(2.5¢) (eje]T-,X> >0 Vi ev,

(2.5d) (2 Sym(eie}),X> >0 Vi,j € V, such that i # j.

The embedding described above is used in some formulations of the theta function
(see [14, 31]), in the lift-and-project hierarchies of Lovédsz and Schrijver [21] and
Lasserre [18], and in copositive formulations for mixed integer linear programs by
Burer [3].

A simple, natural way to obtain an SDP relaxation for (ILP) is to formulate

(2.6a) Maximize (Diag(0@® c), X)
(2.6b) subject to X € g’}r satisfies (2.5) with V := [n],
(2.6¢) (Diag(—b; & ATe;), X) <0 Vi € [m)].

In this case, to obtain an exact reformulation of (ILP), corresponding to (1.1a), one

may add the rank constraint rank(X) < 1 to (2.6). Note, however, that (2.6) is a
potentially tighter relaxation for (ILP) than (LP). The SDP dual to (2.6) may be
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written as
(2.7a)
Minimize 7
(2.7b)
T T T
subject to ju Diag(_;;) — Z} Jri;n] bi {701% Diag(()ATei)} -5= {8 Diz?g(c)} ’
(2.7¢) SeSt, neR, ueR", yeRT, ZeSL,.

If (2.6b) is weakened to “X € gﬁ satisfies (2.4),” again with V' = [n], then the variable
Z in (2.7) would be required to take the form Z = Diag(z) for some z € R’}; that is,
the dual feasible region is smaller.

It is easy to check that if y is feasible in (ILD), then

(n, Z,y,S,u) == (b'y, Diag(ATy — ¢),,0,0)

is feasible in (2.7) with the same objective value as that of y in (ILD). Thus, the
rank constraint rank(S) < 1 seems reasonable as an integrality constraint for (2.7).
In fact, we may even consider the tighter rank constraint rank(g) =1, as long as we
allow 7) to take on real values (rather than only integral ones), possibly at the cost
of nonattainment. Note that we had to be very permissive for the rank constraint to
make any sense at all.

Now we move on to the SDP formulation for 1}, the Lovasz theta function. In fact,
we will also consider variations of ¥ usually denoted by ¥ and 9T, which were intro-
duced independently in [22, 28, 32]. These parameters have subtle, slightly different
properties, and hence it is important to study all three parameters. For instance, ¥ is
multiplicative with respect to certain graph products whereas ¢ is not; see, e.g., [24,
sect. 4] and [1, Example 4.5]. We shall show that the rank constraint is very inadequate
for the dual SDP in this setting, for the theta function and its two variants.

Let G = (V,E) be a graph, and let w: V' — R. There are several equivalent
formulations for the weighted theta number ¥(G;w) (see, e.g., [8]), and similarly for
its variations 9¥'(G;w) and 97 (G;w). In view of our choice of format for SDPs that
includes the constraints (2.4), we define

(2.8a) ¥ (G, w) = Maximize (Diag(0® w), X)

(2.8b) subject to X € gX satisfies (2.4),

(2.8¢) (2 Sym(eie}),fﬂ =0 Vij € E,
(2.8d) (2Sym(e;el ), X) > 0 Vij € E,

where E = (‘2/) \ E. Note that, if U C V is stable in G, then the matrix X defined
in (2.1) is feasible in (2.8) with objective value w1y =Y, ., wy. Define also
(2.9)
9(G,w) = max{ (Diag(0 ® w), X) : X € gr satisfies (2.4) and (2.8¢)},
(2.10)
9T (G, w) = max{ (Diag(0 ® w),X): X € gr satisfies (2.4) and (2 Sym(eie}—),X) <0Vij € E}.
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The dual SDP of (2.8) is

(2.11a)
Minimize 7
(2.11b)
T T T
subject to ju Diag(;ufz)} + Z Yii [8 QSyn(:(eie]T-)] -S5= [8 Dia?g(w)} ’
ise(3)
(2.11c) $5e8Y, neR ueR”, zeRY, ye R ¢ —RZ.

Note that the dual for the formulation (2.9) of ¥(G;w) is similar, except that it
requires y|z = 0, and the dual for the formulation (2.10) of ¥*(G;w) furthermore
has the sign constraint y[, > 0. We claim that
(2.12)

if (2.11) has a feasible solution with rank(S) < 1 and w € RY., then G = Ky

Indeed, suppose that rank(S’) < 1. We have > 0 by weak duality, so rank(S’) =1
and S[V] = %uuT. Then,

(2.13) Diag(2u — z — w) + Z 2y, Sym(eie}) = %uuT.
v
ije(3)

By applying diag to both sides of (2.13), we get 2u — 2z — w = u @ u, so 2u =
(u®u)+z+w e RY, . Nextlet i,j € V be distinct. The ijth entry of (2.13) is
Yij = %uiuj > 0 whence ij € E. This proves (2.12). Since the set of dual feasible
slacks for 1 is larger than those for ¢ and 9T, it follows that the dual SDPs for the
formulations of ¥ and its two variants only have feasible solutions with rank-one slacks
if G is complete.

One might argue that we have chosen an inappropriate formulation for the rank
constraint. However, given the mandatory constraints (2.4), the formulation above
is the most natural one. For completeness, we show in Appendix A that the rank
constraint is not adequate either for another, more popular formulation of ¥; in Ap-
pendix B.1, we also treat the rank constraint for the dual of the Max Cut SDP.

2.2. An improved dual integrality constraint. In view of our adopted em-
bedding (2.1), let us draft the complete version of the (partial) chain of inequali-
ties (1.1) as

(2.14a)
sup{ (C,X): (A, X) < biVie|m], X e gi, “X integral” }
(2.14b)
<sup{ (C,X): (A;, X) <b; Vi [m], X €S}
(2.14c)
< inf{ bly:y eRY, S = Zzly“ﬁil —-Ce §1}
(2.14d)

<inf{ bly:yeZl, S= Z:’;lyzfl, —Ce §17 “3 integral” }.

Assume that the system (A;, X) < b;, i € [m], includes the constraints (2.4).
 To define the integrality constraint for (2.14d), we shall consider the dual slack
S = Zlil yzAl —-C.
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DEFINITION 2.1. Let S be feasible in (2.14¢). We say that S is integral if S is a

sum S = Zszl Sk of rank-one matrices Si,...,Sx € gi such that, for each k € [N],
we have

(2.15a) (eged, Sk) =1,

(2.15h) (28ym(e;(ej +€0)"),Sk) =0  VjeV.

Note that this is almost identical to the constraints in (2.4), except for the sign
of eg in (2.15b). Equivalently, each Sj must have the form

& |1 —SZ
Sk B |:Sk Sk :|

and satisfy diag(Sg) = sx. Since Sy, has rank one, we must have Sy = SkSZ. Hence,
the condition “S' is integral” may be interpreted with a more combinatorial flavor as
requiring S to have the form

s> LT

KeK

for some family (i.e., multiset) K of subsets of [n]. Denote the power set of V by
P(V). By denoting by m: P(V) — Z4 the multiplicity of each subset K C V' := [n]
in K, the condition “S' is integral” becomes

(DZ) §=3 Lo P(V) = Z
= ma or some m: — Ly
Acy —14 ]lA]lI‘

The integrality constraint for (2.14a) is analogous.

DEFINITION 2.2. Let X be feasible in (2.14b). We say that X s integral if X is a
sum X = Zi\;l X of rank-one matrices Xl, .., Xy € St such that X, satisfies (2.4)
for each k € [N].

As before, this integrality constraint can be described as

(PZ) X=> Lo f P(V) = Z
= ma Oor some m: +-
= 1, 1,17

The usual rank constraint “rank(X) = 17 can be simply enforced by the linear con-
straint Xog = 1.

FACT 2.3. Let X be feasible in (2.14b). Then X is integral if and only if Xoo = 1.

With these “semidefinite integrality” conditions in mind, we can state a semidef-
inite analogue of Theorem 1.1. To make the theorems syntactically more similar, we
shall adopt a more compact notation for SDPs via linear maps: define A: S™ — R™
by setting [A(X)]; = (A;, X) for each i € [m], so that A(X) < b is equivalent to
(A;, X) < b; Vi € [m]. Then the adjoint A*: R™ — S" satisfies A*(y) = ST viA
for every y € R™.

THEOREM 2.4. IfCY €S"isa matriz, A: SV = R™ is a linear map, and b € R™
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is a vector, then

(ISDP)  sup{ (C,X): A(X) <b, X satisfies (PZ)}
<s

(SDP) up{ (0, X) : A(X) <b, X €S}
(SDD) <inf{bTy:yeR?, §=A(y) - CeS"}
(ISDD) <inf{b'y:yeZy, S = A*(y) — C satisfies (DzZ)},

and the middle (second) inequality holds with equality if either one of (SDP) and (SDD)
has a positive definite feasible solution and finite optimal value.

The equality in Theorem 2.4 follows from the usual constraint qualification for
SDP, namely the fact that the SDP satisfies the relazed Slater condition; see, e.g., [7,
Theorem 1.1].

We shall refer to (ISDD) as the integer dual SDP of (SDP). For convenience, we
shall say that a feasible solution (y, ) for (SDD) is integral if it is actually feasible
in (ISDD), that is, if y is integral and § satisfies (DZ). Integrality of y in (ISDD)
shows why it is important to use integral matrices Al

Let us set up the integer dual SDP of the SDP formulation (2.6) of LPs. If we re-
quire integrality from feasible solutions of (2.7), that is, if we add the constraint (DZ)

and further constrain 7, u, y, and Z to be integral, then (2.7b) becomes equivalent to

(2.16a) n—>b"y=1"m,
(2.16D) —u=—> mala,
ACV
(2.16¢) Diag(2u+ ATy —c) = Y mul 1} + Z.
ACV

At each feasible solution we have Z > 0, which implies that supp(m) C (‘1/), we may
always set mg := 0. Thus, the integer dual SDP of (2.6) can be written as

(2.17) min{1Tu+b"y: ATy+u>c yeZP ueZl},

assuming A, b, and ¢ to be integral. Hence, every feasible solution y for (ILD) yields
a feasible solution for (2.16) with the same objective value by setting u := 0. In the
case of binary ILPs, we can say more.

Fact 2.5. If (ILP) from Theorem 1.1 is sup{ 'z Az <b,0<z<1,z¢€ "}
with A, b, and ¢ integral, then the integer dual SDP of (2.6) is equivalent to (ILD).

From our previous discussion after (2.7), our new notion of dual integrality passes
the test of behaving nicely with respect to ILPs. Next we will see that it surpasses
the rank-one constraint by showing that it yields the “natural” combinatorial dual
for the theta function.

Let G = (V,E) be a graph, and let w: V. — Z. The clique covering number
X(G,w) is defined as

(2.18) X(G,w) = min{ 17m : mEZI_f_(G), ZmK]lK Z’LU}-
Kek(G)

Every feasible solution of (2.18) is a clique cover of G with respect to w. We now show
that the integer dual SDPs for each of the SDP formulations (2.9), (2.8), and (2.10)
are extended formulations for X(G, w).
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PROPOSITION 2.6. Let G = (V,E) be a graph, and let w: V — Z. Then the
following hold:

(i) If m: P(V) — Zy is a clique cover of G with respect to w, then there exists
an integral dual solution (S,n,u,y, z) for (2.11) such that (DZ) holds for S and
m:P(V)=>Zy,n=1"m, and y € R¥ & 0.

(ii) If (S,n,u,y, z) is an integral dual solution for (2.11) and (DZ) holds for S and
m: P(V) = Z,, then n = 1"m and m is a clique cover of G with respect to w.

Proof. To restrict ourselves to integral dual solutions for (2.11), we require the
dual slack S to satisfy (DZ), and 7, u, y, and z to be integral. In this case, (2.11Db)
can be rewritten as n = 1"m, u = ZAQ, mal s, and

(2.19) Diag(2u — z — Z 2y;; Sym(e; Z mal 1.
136(2) ACV

Applying diag to both sides of (2.19) yields 2u — z —w = ZAQV mala = u. Let

i,j € V be distinct. The ijth entry of (2.19) is y;; = 17 |, , m. Hence, the integer

%
(ij¢)
dual SDP of (2.8) can be written as
(2.20a) Minimize 17m
(2.20Db) subject to m: P(V) — Z,
(2.20c) wtz=u= Y mala,
ACV
(2.20d) Yij = 1{ v )m vij € (5),
ijC

. 1 -1]

(2.20¢) S = ma ,
% ~14 1,17

(2.20f) SeSV . nez uez’ 22V, yerf o177

We may now prove the result. We start with (i). Suppose m: P(V) — Z, is a
clique cover of G with respect to w. Set u =3 ,~, mala, z:=u—w >0, and n :=
17m. Define y and S as in (2.20d) and (2.20e), respectively. Since supp(m) C K(G),
we get y € ZE @ 0. Hence, (S,n,u,y, z) is feasible in (2.20) and satisfies the desired
properties in (i).

For (i), let (S,n,u,y,2) be feasible in (2.20). If ij € E, then y;; < 0 together
with (2.20d) yield m4 = 0 for each A C V such that i,j € A. Hence, m4 > 0 and
i,j € ACVimply ij € E, i.e., supp(m) C K(G), whence m is a clique cover of G.
This proves (ii). d

The statement of the above result makes it clear that the integer dual SDPs of 4,
¥, and 97 are all equivalent to the clique covering problem.

We have just seen that not only does the integer dual SDP have a feasible solution
for every graph, but it is actually equivalent to a natural combinatorial optimization
problem. In fact, the clique covering problem is the right dual problem for the max-
imum stable set problem at least for the very rich class of perfect graphs; see, e.g.,
[31, Chap. 67].

Now that we have a sensible notion of integrality for the dual SDP, we go back
to the chain from Theorem 2.4. Motivated by the notion of total dual integrality
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that was so powerful for proving equality throughout in the chain from Theorem 1.1,
and which was based on Theorem 1.2 and Corollary 1.3, we shall prove a generalized
version of the latter corollary in the next section.

3. Integrality in convex relaxations. In this section, we generalize Corol-
lary 1.3 to compact convex sets, which will motivate the definition of total dual
integrality for SDPs in the next section. Denote the support function of a convex set
€ C R™ by

(3.1) ox(w) == sup(w, z) € [—00, +] Yw € R™.
TEE

THEOREM 3.1. If € CR"™ is a compact conver set, then
C={reR":w'z <og(w)Vw € Z"}.

Proof. We may assume that € # @. The inclusion C is obvious. For the
reverse inclusion, we start by noting that the right-hand side (RHS) is equal to
¢ ={zeR": wr < og(w)VYw € Q"} by positive homogeneity of o (-). Let T €
%¢'. Let w € R, and let (wy)ken be a sequence in Q" converging to w. Then w}z <
o (wy) for every k € N, which in the limit yields w'z < o (w) by the (Lipschitz)
continuity of the support function (apply Corollary 13.3.3 of [26] to the function o (+),
where % is a compact convex set). Hence 4’ C {x € R" : w'z < o4 (w)Vw € R"} =
%, where the latter equation follows from Theorem 13.1 of [26]. 0

Theorem 3.1 holds more generally for pointed closed convex sets; a proof using
elementary convex analysis can be found in [9]. The obvious generalization of Theo-
rem 3.1 to unbounded (even polyhedral) convex sets is false; e.g., let € be any closed
halfspace with a normal vector containing both rational and irrational entries.

Let € C R™ be a convex set. The Gomory—Chvdtal closure and the integer hull
of € are, respectively,

(3.2) CG(E) ={zeR":w'z < |og(w)] Yw € Z"},
(3.3) € = conv(€ NZ").

THEOREM 3.2 ([29]). If € C R™ is a bounded convex set, then CGF (%) = €;
for some integer k > 1.

We now generalize Corollary 1.3 (see [2, 6, 5] for recent generalizations in similar
directions).

COROLLARY 3.3. If € C R" is a nonempty compact conver set, then € = €1 if
and only if ox(w) € Z for every w € Z".

Proof. Necessity is clear. For sufficiency, note that
C={xeR":w'z < |og(w)| Yw € Z"} = CG(¥)
by Theorem 3.1. Hence, CGk(‘K) =% for every k > 1, so € = %; by Theorem 3.2. O

Corollary 3.3 provides a blueprint to define sensible, algebraic notions of total dual
integrality for convex formulations in certain formats, which depend on some arbitrary
choice of embedding. We shall do this in the next section for SDPs, but it is plausible
that similar notions could be useful for conic optimization problems over other cones,
e.g., the second-order cone. And whereas Corollary 3.3 is a purely geometric result,
independent of algebraic representations (if any!), it does fully characterize integrality
through a total criterion using duality. Thus, it seems fair to regard it as a very
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general, geometric notion of total dual integrality, which can be seen as a precursor
to algebraic notions of total dual integrality for specific embeddings.

Characterizations of exactness of convex relaxations for sets of integer points can
naturally involve (convex) geometry in general, boundary structure of convex sets
in particular (including polyhedral combinatorics), diophantine equations (number
theory), and convex analysis and optimization. Next, we summarize some of the
consequences of our geometric characterization (Corollary 3.3) of exactness for convex
relaxations of integral polytopes. The next theorem, well known in the special case
of LP relaxations, provides equivalent characterizations of integrality in terms of the
facial structure of the convex relaxation, optimum values of linear functions over the
relaxation, optimal solutions of the linear optimization problems over the relaxation,
diophantine equations, and gauge functions in convex optimization and analysis.

In the next result, the polar and the gauge functions of a subset € of a Euclidean
space [E are, respectively,

¢° ={yek: (y,z) <1Vx € €},
ve(x) :==inf{n € Ry  : %x €%}.
COROLLARY 3.4. Let € C R™ be a closed convex set with the origin in its interior.
If v (w) € Z for each w € Z™, then € is a polyhedron.

Proof. Suppose that y¢(w) € Z for each w € Z™. Since 2 := €° is a compact
convex set and v = 09 (see, e.g., [26, Theorem 14.5]), Corollary 3.3 shows that 2
is a polytope. Hence, € = 2° is a polyhedron. O

A convex subset .# of a convex set € is a face of € if, for every x,y € € such
that the open line segment (x,y) = {Az+ (1 —X)y: A € (0,1)} between z and y
meets %, we have x,y € %. A nonempty face of ¥ which does not contain another
nonempty face of € is a minimal face of €. If w € R™\ {0} and S € R, we say that
H={x €R": w'a < B} is a supporting halfspace of € if € C 5 and w'x = B for
at least one = € %; in this case we also say that {x € R" : w'z = 8} is a supporting
hyperplane of €. The intersection of ¥ with any of its supporting hyperplanes is a
face of €’; such faces (as well as the empty face) are exposed. Faces of polyhedra are
well known to be exposed, but this need not be the case for compact convex sets.

THEOREM 3.5. Let € be a nonempty compact convex set in R™. Then, the fol-
lowing are equivalent:
(i) € =%s;
(ii) every nonempty face of € contains an integral point;
(iii) every minimal face of € contains an integral point;
(iv) for every w € R™, we have that max{ (w,z) : x € €} is attained by an integral
point;
(v) for every w € Z", we have max{{w,z) : x € €} € Z;
(vi) every rational supporting hyperplane for € contains integral points;
(vii) for each xo € € and for each w € Z", we have (w, o) 4 V(g —ay)e (W) € Z;
(viil) there exists xg € € such that, for each w € 7", (w, o) + V(@ —a,)° (W) € Z.
Proof. (i) = (ii): Since % is compact, it is bounded. Therefore, ¥ = %7 implies
that ¢ is a polytope. Every nonempty face of % contains an extreme point of ¥ and
every extreme point of ¥ = %7 is integral.
(ii) = (iil): Immediate.
(iii) = (iv): Suppose every minimal face of ¢ contains an integral point. Let
w € R™. Then, since € is nonempty, compact, and convex, arg max,c4 (w, ) = %
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is a nonempty (exposed) face of ¥. Every minimal face contained in # contains an
integral point (by part (iii)); hence, & contains an integral point.

(iv) = (v): Suppose ¢ satisfies (iv). Let w € Z™. Then, by (iv), there exists
T € € NZ™ such that max,ce (w, ) = (w,Z). Since w and T are integral, it follows
that max,c¢ (w, z) € Z.

(v) = (vi): Suppose € has the property (v). Let w € Q". Define &% =
arg max,c (w,x). Let u be a positive rational such that pw € Z" and ged(pws, . . ., pws,)
= 1. Then, argmax, o (w,z) = F. By property (v), f = max,cy (uw,z) € Z.
Since

{zeZ": (pw,z) = B} # @ <= ged(pwy, ..., pw,) divides B,

and we have ged(pws, . .., pwy,) = 1, we are done.
(vi) <= (i): Suppose € has property (vi). Then, for every w € Z", o¢(w) € Z.
Therefore, by Corollary 3.3, ¢ = ¢7. The converse also follows from Corollary 3.3.
(v) <= (vil) <= (viii): Let o € € and w € Z". Set € := € — x¢. Then

o¢(w) = (w, x0) + 0z (w) = (w,z0) + min{ n € Ry : (w,z) < nVa E‘g},

where in the last equation we use the fact that 0 € € to add the constraint 7 € R..
Finally, note that

min{7n € Ry : (w,z) <nVx E‘g} =inf{n e Ry, : %w E%O} =z (w). |

In the quite common case that 0 € €, Theorem 3.5 shows that € = ¥ if and only
if, for each w € Z™, we have o (w) € Z. Thus, integrality of € can be characterized
using the integrality of the gauge function of its polar; this is related to Corollary 3.4.

Just as Theorem 1.2 motivates the definition of total dual integrality for LP
formulations, one may use Corollary 3.3 to define total dual integrality more generally.
Next, we shall define it for SDP formulations.

4. Total dual integrality for SDPs. The concept of total dual integrality in
LPs is an algebraic notion, rather than a geometric one, in the following sense: for a
rational polyhedron P := {x € R" : Az < b}, it is not the geometric object P that is
TDI, but rather the defining system Ax < b, which is not uniquely determined by P.
For instance, the perfect matching polytope of a graph G = (V, E) can be described
either by the system

(4.1a) Te >0 Ve € E,
(4.1c) IL}(U)m >1 VYU C V, such that |U| is odd,

or by the system obtained from (4.1) by replacing (4.1c) with the constraints ]lE[U]x <

L%|U |J for each odd U C V. However, the latter system is TDI, whereas the former
is not; see [31, sect. 25.4]. In respect to this algebraic dependence, our choice of
embedding for SDPs using (2.4) is the only arbitrary choice that we make, though
as argued, this choice is well justified and natural. The total dual integrality results
from section 3 do not rely on any algebraic representation, since they are geometric.
In this respect, our convex theory of total dual integrality is complete, at least for
compact sets.

Whereas integrality of a polyhedron and total dual integrality of a defining system
are not the same, they are related as follows.
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THEOREM 4.1 ([30, Theorem 22.6]). Ewery rational polyhedron is defined by a
TDI system Ax < b with A integral. Moreover, if P is integral, then b may be chosen
integral.

Transforming any rational system Az < b into a TDI system is simple: Giles
and Pulleyblank [12] showed that there is a positive integer ¢ such that the system
(%A)x < %b is TDI. Thus, the “moreover” part of Theorem 4.1 is its most critical
part, since without integrality of b we do not recover integrality from Theorem 1.2.
The proof of this part relies on a sharper way of making a system TDI, namely
on completing Hilbert bases. Giles and Pulleyblank’s result shows, however, that
TDlIness is rather unintuitive and not robust.

Next we move on to define a notion of total dual integrality for SDP formulations.
We want to define when the system A(X) < b, X = 0 for (SDP) is TDI, but there is a
further complication. We may not need the dual SDP to have an “integral solution”
for every integral objective function X — (C, X). As the formulation (2.9) shows,
for the Lovasz ¥ function we are only interested in objective functions of the form
X — (Diag(0®w), X), perhaps with w € RY integral. The same remark can be made
about the diagonal embedding (2.6) of LPs as SDPs. In these cases, one is interested
only in the diagonal part of the variable X, and the lifting w — Diag(0@w) embeds in
matrix space only the objective functions that matter to us. This arises from the fact
that we are essentially dealing with extended formulations. However, when we look
at the Max Cut SDP in section 6, we shall only be interested in objective functions
of the form X — (0 ® La(w), X), where Lg(w) € SV is a weighted Laplacian matrix
of the input graph G on vertex set V', to be defined later; as before, X e §X is the
variable. In this case, one might argue that we are only interested in the off-diagonal
(1) entries of the variable X. Thus, when defining semidefinite TDIness, we shall need
to refer to which objective functions (that is, which projection of the feasible region)
we care about. (This notion of TDIness coupled with extended formulations already
leads to an interesting generalization of TDIness in the polyhedral case, as we discuss
in section 7.)

We may now define a semidefinite notion of total dual integrality which plays
well with extended formulations. Below, the map £ is a lifting map, such as w —
Diag(0 @ w) and w — 0@ Lg(w) from above. The corresponding projection, which
will be the adjoint £* of the lifting £, will appear in Theorem 4.3 below.

DEFINITION 4.2. Let £: RF — 8" be a linear map. The system A(X) <b, X >0
is totally dual integral (TDI) through L if, for every integral c € ZF, the SDP dual to
sup{ (L(c), X) : A(X) < b, X = 0} has an integral optimal solution whenever it has
an optimal solution.

For convenience, we use the term “TDI” to refer to two separate notions, one
for linear inequality systems of the form Az < b, and another one for semidefinite

systems of the form A(X ) < b, X - 0; the context shall make it clear to which notion
we are referring.

THEOREM 4.3. Let A(X) < b, X = 0 be totally dual integral (TDI) through a
linear map L: RF — S". Set® = {X e St A(X) <b} and € == L*(€) CR*. Ifb
is integral, € is compact, and € has a positive definite matrix, then € = €.

Proof. Let w € Z*. Then
(42) o¢(w) = max (w, £*(X)) = max (L(w), X).

Xe¥ Xe€
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The latter SDP satisfies the relaxed Slater condition by assumption and its optimal
value is finite and attained by compactness of 4. By SDP strong duality, the dual
SDP has an optimal solution. Since .A(X) < b, X = 0is TDI through £, the dual SDP
has an integral optimal solution (y*,5*). Hence, o (w) = bTy* and so og(w) € Z,
since b is integral. It follows from Corollary 3.3 that € = €. a0

We have established that total dual integrality is sufficient for exact (primal)
representations. We next describe conditions under which the chain of inequalities
in Theorem 2.4 holds with equality throughout, thus completing our discussion in sec-
tion 1 regarding equality throughout in Theorem 1.1.

Again there is a more involved setup due to our choice of embedding (2.1). Let
% C [0,1]* be a convex set. Let £: R¥ — S™ be a lincar map, and let ¢ C S~
We say that € is a rank-one embeddmg of €7 via L if for each z € {0,1}* there
exists X € € such that = — £*(X) and X has the form (2.1) for some U C V :
[n]. One may think of % as a convex set in (lifted) matrix space, e.g., the feasible
region of an SDP, described algebraically by a linear system .A(X ) < b, X =0
that includes (2.4). Then to have the (lifted) rank-constrained SDP formulation
sup{ (L(w), X) : X €%, rank(X) = 1} be a correct relaxation for the combinatorial
optimization problem max{w'z : z € ¥ N {0,1}*} requires the conditions for % to
be a rank-one embedding of 47. R

If £: we RY — 0& Diag(w) and € C [0,1]V, to say that the set ¢ C S™ defined
by a system A(X) < b, X = 0 is a rank-one embedding of €, via £ requires that, for

each T € 6 {0, 1} , We have
r ITx '

THEOREM 4.4. Let A(X) <b, X = 0 be totally dual integral (TDI) through a lin-
ear map L: R* — S" such that b is integral. Suppose that € = {X e gi C A(X) < b}
has a positive definite matriz and that € = £*(‘2) C [0,1]% is compact. If% is a
rank-one embedding of € via L, then for every w € ZF, equality holds throughout in
the chain of inequalities from Theorem 2.4 for C = L(w), all optimum values are
equal to

(4.3) max{w'z : r € €},

and all suprema and infima are attained.

Proof. Fix w € Z* and set C' = L(w) throughout the proof. Note that the
optimal value of (SDP) is bounded above, since each X € € has objective value
(L(w), X) = (w, £*(X)) < o¢(w) < co by compactness. Since the relaxed Slater
condition holds by assumption, SDP strong duality shows that (SDD) has an optimal
solution and hence is feasible. Together with the TDI assumption, this shows that
(SDP), (SDD), and (ISDD) have the same optimal values and the latter two are
attained.

It remains to prove that (SDP), (ISDP), and (4.3) have the same optimal values
and are attained. Let Z be an optimal solution for max{w'x : x € ¢ N {0,1}*}. Then
there exists )_( € € that satisfies (PZ) such that # = £*(X). Then the optimal value
of (4.3) is w'z = (w, £*(X)) = (C, X), which is upper bounded by the optimal value
of (ISDP). On the other hand, as shown above, the optimal value of (SDP) is upper
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bounded by o4 (w) = o4, (w) = w'Z since ¥ = %7 by Theorem 4.3. Hence, T is
optimal in (4.3), and X is optimal in (ISDP) and (SDP), all with the same objective
values. a

Naturally, any other choice of (i) embedding in some lifted space and (ii) integral-
ity conditions would require an adaptation of the definition of “rank-one embedding”
of €7 via a lifting map, if only to ensure that the lifted representation ¢ is a correct
formulation of (4.3).

The next result characterizes TDIness for the diagonal embedding (2.6) of LPs.
It shows that our notion of semidefinite TDIness is the same as the polyhedral notion,
at least in [0, 1]™.

THEOREM 4.5. Let Az < b be a rational system of linear inequalities. The system

defining (2.6) is TDI through w € RY + Diag(0®w) if and only if the system Az < b,
0<ax<11ws TDL

Proof. Immediate from Fact 2.5. ]

Together with Theorem 4.5, Theorem 4.4 yields a richer version of equality
throughout the chain from Theorem 1.1, since it includes the LP case via the di-
agonal embedding (2.6) as well as other, lifted formulations; see, e.g., Theorem 5.2
in the next section. Theorem 4.4 yields further results when the lifting map involves
the Laplacian of a graph G, i.e., when £ has the form w — 0 ® Lg(w) as discussed
before Definition 4.2. In this case, we leave it to the reader to check exactly how the
set € must be related to the cuts of G.

COROLLARY 4.6. Let P C [0,1]V be an integral polytope such that P # {0}.
Then there is U C V and a system A(X) < b, X =0 on SY that is TDI through
L:w € RY — Diag(0 ® w|y) € SY and with at least one positive definite solution
such that, for% = {X e SY - A(X) < b}, we have L*(€) = P.

Proof. Write P = Q @ 0 where Q C RY for some U C V is such that, for each

1 € U, there is € P such that x; > 0. Hence, there is z € P such that supp(z) = U.
The result now follows from Theorem 4.1 and Theorem 4.5. ]

Hence, our semidefinite notion of total dual integrality is complete for polytopes
in [0,1]Y; note also that Corollary 4.6 provides a relaxed Slater point as prescribed
in Theorem 4.3. One may ask whether we gain anything in terms of efficiency, e.g.,
compact representations. The next section provides a positive answer to this question.

5. Integrality in the theta function formulation. In this section, we prove
that the formulation (2.9) for the Lovész 9 function of a graph G is TDI through the
appropriate lifting if and only if G is perfect.

Let G = (V, E) be a graph. For each w: V — R, the weighted stability number is
a(G,w) =max{w'ly : U C V stable}. A subset ¢ of R is a convex corner if € is
a compact convex set with nonempty interior and such that 0 < y < & € € implies
y € €. Associate with each graph G = (V, E) the following convex corners:

STAB(G) := conv{ 1y : U C V stable},
TH'(G) == { diag(X[V]) : X feasible in (2.8)},
TH(G) == { diag(X[V]) : X feasible in (2.9)},

TH(G) := { diag(X[V]) : X feasible in (2.10)},
QSTAB(G) == {z € RY : 1z < 1VK € K(G)}.
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A strong form of the Lovasz sandwich theorem [20] is that
(5.1) STAB(G) C TH'(G) C TH(G) € THT(G) C QSTAB(G).
The following result is well known; we include a sketch of its proof for completeness.

THEOREM 5.1. Let G be a graph. The following are equivalent:
G is perfect;
G is perfect;
STAB(G) = QSTAB(G);
(iv) the system x >0, 1.0 <1 VK € K(G) defining QSTAB(G) is TDI;
(v) a(G,w) =x(G,w) for each w: V = Z;
(vi) TH(G) is a polytope;
TH'(G) is a polytope;
THT(G) is a polytope.

Proof. Most equivalences can be seen in [14, Chap. 9], except for (vii) and (viii),
involving TH'(G) and THY(G). Tt is clear that (iii) and (5.1) imply both (vii)
and (viil). When proving that (vi) implies (iii), [14, Cor. 9.3.27] relies on the facts
that the antiblocker of TH(G) is TH(G) and that the nontrivial facets of TH(G)
are determined by the clique inequalities 1Lz < 1 for each K € K(G). It is well
known that the antiblocker of TH'(G) is TH(G) and that the nontrivial facets of
both TH'(G) and TH(G) are determined by the same clique inequalities above; one
may find complete, unified proofs in [8, Theorem 24]. These facts are sufficient to
adapt the proof from [14, Cor. 9.3.27] to show that each of (vii) and (viii), separately,

implies (iii). O

(i
(i

(iii

(vii

N — N T T

(vii

We can now characterize TDIness for ¥ via the underlying graph being perfect.
In the proof below we comment on the modifications to obtain analogous results for
the SDP formulations (2.8) and (2.10), of ¥ and 97, respectively. Hence, total dual
integrality works in a robust manner for these formulations.

THEOREM 5.2. Let G = (V, E) be a graph. The defining system for the SDP
formulation of the Lovdsz ¥ function in (2.9) is TDI through w € RY — Diag(0 ® w)
if and only if G is perfect. Analogous statements hold for the SDP formulations of ¢
and 9% in (2.8) and (2.10), respectively.

Proof. We start with sufficiency. Suppose G is perfect. Let w: V — Z. Let
U C V be a stable set of G such that a(G,w) = w1y, so that X defined as in (2.1)
is feasible in (2.9) with objective value a(G,w). Then by item (v) in Theorem 5.1
there exists a clique cover m of G with respect to w such that 17m = a(G,w). Hence,
Proposition 2.6 shows that there is an integral dual solution (S , M, u,y, z) for the dual
SDP of (2.9) with objective value n = 1Tm = (G, w), which is the same as the
objective value of X. Hence, (S,n,u,yﬁ) is optimal for the dual SDP of (2.9) by
weak duality. Note in fact that Proposition 2.6 shows that (5’, n,u,y, z) is an integer
dual solution also for the dual SDPs of (2.8) and (2.10).

Now we move to necessity. Suppose the defining system is TDI through Diag(0®-).
By Theorem 4.3, it follows that TH(G) = TH(G)r; hence TH(G) is a polytope and G
is perfect by Theorem 5.1. Note that the equivalences (vii) and (viii) in Theorem 5.1
also show that the defining systems for ¢ and 9" can only be TDI if G is perfect. O

By Theorem 3.5, TH(G) = STAB(G) if and only if the gauge function of [TH(G)]°
is integer-valued for every integral vector w € ZY. Since TH(G) = [TH(G)]° NRY,
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Theorem 3.5 also relates exactness (as a relaxation of the stable set polytope) of the
theta body of a graph to the integrality of the gauge function of its complement.

6. Dual integrality for the Max Cut SDP. Let G = (V, E) be a graph. A
cut in G is a set of edges of the form §(U) :={e€ E: |enU| =1} for some U CV
such that @ £ U # V. If U = {i} C V is a singleton, write §(7) := 6({i}). The
maximum cut problem (or Max Cut problem) is to find, given a graph G = (V, E) and
w: E — Ry, an optimal solution for max{w 15 : @ # U C V}. (We shall discuss
nonnegativity of w and related issues in Appendix B.3.) By using the embedding
U e PV)w— sysi € SV with sy = 21y — 1, ie., (sp); = (—1)#Y] for each
i € V, one may reformulate the Max Cut problem exactly by adding the constraint
“rank(Y) = 1”7 to the SDP

(6.1) max{ (+Lc(w),Y) : diag(Y) =1, Y € SK};

here, Lg: RF — SV is the Laplacian of the graph G, defined as

(62) Eg(w) = Z Wi j (ei — ej)(ei — €j)T Yw € RE.
ijeE

It is not hard to check that 1], Le(w)1ly = {s]La(w)sy = w15 for each U C V.
We call (6.1) the Maxz Cut SDP. It is one of the most famous SDPs, since it was used
by Goemans and Williamson [13] in their seminal approximation algorithm and its
analysis.

We postpone discussing the drawbacks of the rank-one constraint for the dual
SDP of (6.1) to Appendix B.1. Here we shall study the integer dual SDP for the Max
Cut SDP with objective functions of the form X — (1Lg(w), X) for every w € RZ.
To apply our theory to the Max Cut SDP, we formulate (6.1) in our format. First
we rewrite it as max{ (0 & +Lq(w), Y):diag(Y)=1,Y € /S\X} and then perform the
change of variable

Y — BYBT =X W%B:lz of
I 2 IL I I

and add the redundant constraints diag(X[V]) > 0 to get the equivalent SDP
(6.3) Maximize (0 ® La(w), X)
. subject to X e ’S\X satisfies (2.4),

called the homogeneous Max Cut SDP. The change of variable is a linear automor-
phism of SJ‘F/ that preserves rank, so we are not giving ourselves any undue advantage
by choosing this embedding.

The dual SDP of (6.3) is

Minimize 7

T T
) n —u _a_ |0 0
(6.4) subject to _u Diag(2u — 2)] S = [0 EG(w)} )

SeSY neR,uecRY, zeRY.

Upon adding the integrality constraint to (6.4), assuming integrality of w € Z_’E , and
simplifying, we get
(6.5)

i€ ijC
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The next result, whose proof we postpone to Appendix B.2, describes the unique
optimal solution of (6.5).

THEOREM 6.1. Let G = (V, E) be a graph, and let w: E — Z. Then the opti-
mization problem (6.5) has a unique optimal solution m*, and it satisfies supp(m*) C
E and m* | =

Note that Theorem 6.1 does not characterize total dual integrality of the Max
Cut SDP (6.1) since it only identifies integral dual optimal solutions when the weight
function w on the edges is nonnegative. We postpone the discussion of dual integrality
for not necessarily nonnegative weight functions to Appendix B.3.

7. Conclusion and future directions. We have introduced a primal-dual sym-
metric notion of integrality in SDPs in Definitions 2.1 and 2.2; see also conditions (PZ)
and (DZ). This enabled the SDP version in Theorem 2.4 of the LP-based Theorem 1.1.
Then, by relying on our generalization of Corollary 1.3 in Corollary 3.3, and the notion
of total dual integrality through a linear map in Definition 4.2, we described sufficient
conditions for exactness of the (primal) SDP formulation in Theorem 4.3 and equality
throughout the chain from Theorem 2.4 in Theorem 4.4. We also characterized the
semidefinite notions of TDIness in the LP case (Theorem 4.5) and the theta function
and its two variants (Theorem 5.2) via natural conditions. Finally, in Theorem 6.1,
we determined the optimal solutions for the integer dual SDP for the Max Cut SDP
when the weight function on the edges of the graph is nonnegative.

Our approach leads to several other interesting research directions. We start with
the following problem.

PROBLEM 7.1. Obtain a primal-dual symmetric integrality condition for SDPs
that applies to arbitrary ILPs, not just binary ones.

The theory of total dual integrality for LPs is considered well understood. Our
work raises new issues, related to the interplay between total dual integrality and
extended formulations in LP; the latter area has received a lot of attention recently.
More concretely, one may define a system of linear inequalities Az < b on R™ to be
TDI through a linear map L: R¥ — R™ if, for every integral ¢ € Z*, the LP dual to
sup{ (L(c), z) : Az < b} has an integral optimal solution if its optimal value is finite.

PROBLEM 7.2. Are there compact extended formulations for classical combinato-
rial optimization problems (e.g., mazimum weight r-arborescences, minimum span-
ning trees) that are TDI through the corresponding lifting maps? Do these lead to new
min-maz theorems?

PROBLEM 7.3. Let Az < b be a system of linear inequalities on R™ and L: RF —
R™ be a linear map such that for P == {x € R™ : Ax < b} the projection L*(P) is
integral. Does there exist a TDI system Cx < d in R™ with d integral such that
L*(P)=L*({xzeR": Cx <d})?

Recall that a polyhedron P C R™ has the integer decomposition property if for
every k € Z, each integral point in kP = { kz : € P} is a sum of k integral points
in P. The next problem is more open-ended.

PROBLEM 7.4. What is the relation between total dual integrality and the integer
decomposition property (see [30, sec 22.10]), of which our dual integrality condition
in Definition 2.1 is reminiscent?

In section 6 we studied dual integrality of Max Cut SDP with nonnegative weight
functions, and we discuss in Appendix B.3 the issues that arise when we allow weights
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of arbitrary signs. These issues suggest further research directions. One may define
a refinement of the notion of total dual integrality restricted to a rational polyhedral
cone K C R*; there, one would only require the dual SDP to have an integral optimal
solution for primal objective functions of the form X — (£(c), X) with integral ¢ € K.
In this context, it seems misleading to use the term total dual integrality; K-dual
integrality seems more adequate.

PROBLEM 7.5. Adapt Theorem 4.3 to some notion of K-dual integrality. Simi-
larly, can Corollary 3.3 be modified by taking only integral w € K to obtain integrality
of some modification of € using K?

Concerning the semidefinite notion of TDIness, one may ask for a characterization
of total dual integrality of other SDP formulations, such as the application of lift-
and-project hierarchies (see [19]) to ILP formulations of combinatorial optimization
problems. One possible instance is the following.

PROBLEM 7.6. Given k > 1 and the LSy operator of Lovdsz and Schrijver [21]
(called Ny in their paper), determine the class of graphs for which the kth iterate of
the LS. operator applied to the system

(7.1) x>0, rit+z; <1 Vijer

yields a TDI system through the appropriate lifting, leading to a minmazx relation
involving stable sets in such graphs.

Still in the realm of SDPs, one may ask for notions of exactness other than inte-
grality, as well as their dual counterparts. For instance, many problems in continuous
mathematics, such as control theory, lead to nonconvex optimization problems where
the variable matrix is required to be rank-one or of restricted rank. However, the
entries of such a matrix may define a continuous curve rather than taking on only
finitely many values. For a general convex relaxation framework working with such
formulations, see [17].

PROBLEM 7.7. Obtain systematic, primal-dual symmetric conditions for exact-
ness in SDP relazations for continuous problems.

Finally, one may consider the problem of defining integrality in a systematic and
primal-dual symmetric way for convex optimization problems in other forms. This is
especially challenging since a dual integrality notion, even in the polyhedral case, is
inherently dependent on the algebraic representation of the problem, not only on its
geometry.

Appendix A. Rank constraint in dual SDP of trace formulation for
theta. In subsection 2.1 we showed that the rank-one constraint for the dual SDP
of a formulation of the theta function is not very interesting. There, the formulation
we used was based on our chosen embedding into the lifted space SV, which requires
the constraints (2.4). One might argue that the rank-one constraint might make more
sense for the dual SDP of the probably more popular formulation of ¥(G,w) for a
graph G = (V, E) and w: V — R, obtained by dropping the nonnegativity constraint
from
(A1)

,w) = max wvw ,X) =1,X;; =0Vij€E, X;; >0Vij € E, X € .
V(G Vwyvaw', X) : Te(X Xi; =0Vij€E, Xi;; >0Vije E, X eSY

Here, w € RY denotes the componentwise square root of w. We will show that
the rank-one constraint is not very meaningful even in the dual of the SDP in (A.1);
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as in subsection 2.1, this dual feasible region contains those of the corresponding
formulations for ¢ and 9*. Denote o = { A €SV : A;; #0 = ij € E}. The dual
SDP of (A.1) can be written as

(A2)  min{A:M+A-A—S=Vu/u,S=0, Ac dgAde sV},

The embedding of stable sets in G as feasible solutions of (A.1) goes as follows:
if U C V is a stable set in G with positive weight w' 17, then X == (w" 1) (Vw ©
1y)(v/w ® 1y)T is feasible in (A.1), with objective value w' 1. The normalization
factor and the square root in the definition of X already hint that this formulation
does not play so well with integrality.

PROPOSITION A.l. Let G = (V,E) be a graph, and let w € RY . If there exists
a feasible solution (\, A, A, S) for (A.2) such that rank(S) < 1, then G is bipartite.

Proof. Suppose S = ss' for some s € RY. Then
(A.3) A+ A=ss" +Vovw' + A

Apply diag to both sides of (A.3) to get A1 = (s © s) + w. Hence, A1 > w and there
exists U C V such that s = Diag(21y — 1)y ALl —w. Let ij € E. Specialize (A.3) to
the ijth entry to get

(Ad) 0= s;8; + Jwgwy + Ay > (—)FEVHIEYI O — ) V2 (N — w))2 + | Jwgw;.

Ifi,j € Uori,j € U:=V\U, then the RHS of (A.4) is positive, since w € RL_.
This contradiction shows that G[U] = Ky and G[U] = K, so G is bipartite with
color classes U and U. ]

By our previous discussion, the dual SDPs of the above formulations of 1, 1,
and 97 only have rank-one slacks when G is bipartite (whence G is perfect).

We note, however, that another low-rank constraint for the dual SDP for ¢ does
in fact yield a useful and almost exact formulation for the chromatic number of a
graph G = (V, E), via the circular chromatic number. Suppose G has at least one
edge. We first describe the vector chromatic number x,(G), introduced in [16]:

(A5)  xo(G):=min{7:diag(Y)=1,Y;; < -2, Vije E,Y € S}, r > 2}.

The map (S, ) — ﬁS maps bijectively the feasible region of (A.2) applied to G

to the feasible region of (A.5) and preserves objective values. Hence, x,(G) = ¢'(G).
Any optimal solution ¢* for the SDP

(A.6) min{ o : diag(Y) =1,Y;; <oVije B, Y € SY, 7 > 2}

lies in [—1,0) and leads to the optimal value 7* :=1 —1/¢* for (A.5).
Consider next the circular chromatic number of G, which can be defined as

(see [10])
(A7) Xe(G) =min{7:y: V — S, ¢y > 2m/TVij € E, T > 2},

where S! denotes the unit sphere in R? and ¢i; € [0, 7] is the angle between y; and y;.
Since cos is monotone decreasing on [0, 7], we can rewrite (A.7) using Gram matrices
as
(A.8)

min{ 7 : diag(Y) = 1, Y;; < cos(2r/7)Vij € E, Y € S}, rank(Y) =2, 7 > 2}.
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Finally, since f: 7 € [2,00) > cos 2777 € [-1,1) is a monotone increasing bijection, we
see that, if o* is the optimal value of (A.6) with the extra constraint rank(Y) = 2,
then x.(G) = f~(c*). One can then read off the chromatic number of G since
X(G) = [xc(G)]; see [33].

Note, however, that this dual formulation required quite a lot of ad hoc treatment.

Appendix B. Further analysis of the Max Cut integer dual SDP.

B.1. Rank-one constraint in dual of the Max Cut SDP. In this section,
we show that the dual of the Max Cut SDP has a feasible solution with a rank-one
slack only if the weight function on the edges comes from a very restricted (though
rather interesting) class of weight functions. Let G = (V,E) be a graph, and let
w: EF — R. The dual of the Max Cut SDP (6.1) is

(B.1) min{ 17y : § = Diag(y) — 1Lc(w), S €SY, y e RV}

PROPOSITION B.1. Let G = (V,E) be a graph without isolated vertices. Let
w: E — R\ {0}. If (B.1) has a feasible solution (S,y) such that rank(S) < 1,
then G = Ky, and there exists u: V — R\ {0} such that w;; = u;u; for eachij € E.
Proof. Set L := Lg(w). Suppose there exists u € RV such that S = uu'. Then,
for each ¢ € V, we have y; — iL“— =S, = u? > 0. If u; = 0 for some i € V,
then Se, = 0 whence i is an isolated vertex; recall that S = Diag(y) — L. Hence,
supp(u) = V. Now the off-diagonal entries of the equality constraint of (B.1) show
that G = Ky and that w;; = 4u,u; for each ij € E = (‘2/) o0
Instances of Max Cut of the form described by Proposition B.1 are still NP-hard.

Indeed, they may be reformulated as max{ (]l}u)(]l‘T,\Uu) : @ #U C V}. The latter
can be seen to include the partition problem.

B.2. Optimal solution for Max Cut integer dual SDP. Theorem 6.1 fol-
lows immediately from the following slightly more general result.

THEOREM B.2. Let G = (V, E) be a graph, and let w: E — Z,. Then the opti-
mization problem

(B.2a) Minimize 1Tm

(B.2b) subject to - m: P(V)\{@} = Z,

(B.2¢) supp(m) € K(G),

(B.2d) Ljw < 11{72 ym VieV,
(B.2¢) 1{ijyc)m < wyj Vij € E

has a unique optimal solution m*, and it satisfies supp(m*) C E and m* |5 = w.

Proof. Let my,: P(V) — Z4 such that supp(m,) C E and my, [ = w. It is easy
to check that m,, is feasible in (B.2). Let m*: P(V) — Z, be an optimal solution
for (B.2); one exists since there exist feasible solutions and the objective value of every
feasible solution is a nonnegative integer. We will prove that m™ = m,,.

The key part of the proof is to show that

(B.3) supp(m”) < (V) U (%)-
Let C € supp(m*). We claim that

(B.4) 7 :i=m" — d+ 1p|q is feasible for (B.2), where d == ec + (|C] — 2)]1(?).
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For each ¢ € V', we have ]l{ )d =[ieC](|C]-1) = ]lg )]lE[C] so (B.2d) holds for m.

For every ij € E we have ]l( v )d = [ij € E[C]] = ]l( v )]lE[C], so (B.2e) holds for m.
In verifying (B.2b) for m, we may assume |C| > 2. We will prove that (B.2b) holds
for m by showing that

(B5) m = m*—ec > (|C|—2)]l((1;),

then (B.2¢) for m will also follow, thus completing the proof of (B.4).
Note that m > 0. Let ¢ € V', and let N(¢) denote the set of its neighbors. Then

15w < ]l{v)m* by (B.2d)
1€
:]lEV)m—F[iGC’] since m" = 1m + ec
<y }—l—Z]l m+ [i € C] smce]l <e{}+Z]1 (20
JeV\{i } JEVA{i} "7
7m{}+Z]l V)m+[ze()] by (B.2¢)
JEN(4)

—m{l}-l-z]l A m —Z]l 6c+[i€C] since m = m* — ec

JEN(3) JEN() "7
<mpy+ >, wiy —|6()NEC] + [i € C by (B.2e)
JEN(3)
=My + ]lj;—(i)w —lieC](lC]-2) since |6(i) N E[C]| = [i € C](|C| —1).

This proves (B.5) and thus completes the proof of (B.4).

We have 1Tm* — 1T = 17d — 1T1ge) = 1+ [C|(|C] - 2) — (1)) = L(|C| -
1)(|C] — 2). Optimality of m* and (B.4) imply that |C| € {1,2}. This concludes the
proof of (B.3).

By summing the vertex constraints (B.2d) and using (B.3), we obtain

.
(B.6) 21w < ( > |A|6A) m* = ]1{Y)m* + 21{g>m

ACV

By summing the edge constraints (B.2e) and using (B.3), we obtain

(B.7) ]1&)m* = ( > (';H)eA)Tm* <1Tw

ACV
It follows from (B.3), (B.6), and (B.7) that

(B.8) 17m, = 1Tw < ]lgv)m* + ]l{v
1

m*=1"m
2)

Equality throughout in (B.8) implies that each constraint in (B.2d) and (B.2e) holds
with equality for m*, so that m* is feasible for (6.5). The latter fact, together
with (B.3), easily implies that m* = m,,. d

B.3. The Max Cut problem and nonnegative weights. One may wonder
whether Theorem 6.1 may be extended to arbitrary weight functions w: E — Z,
not just nonnegative weights. Such an extension might be used to characterize the
graphs G for which the system defining the Max Cut SDP (6.1) is TDI through w €

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/16/20 to 130.238.7.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

494 MARCEL K. DE CARLI SILVA AND LEVENT TUNCEL

RE 5 0@ Lg(w) = L(w); by Theorem 6.1 such graphs form a subset of the bipartite
graphs. Then we would be able to obtain the cut polytope conv{ lss): @ # S C V}
of any such graph G as a projection of the feasible region of (6.1) via £L*. However, due
to constraints (B.2e), if w: E — Z has a negative entry, problem (B.2) is infeasible.
One may attempt to “fix” this issue by adding to (6.3) the redundant constraint
L*(X) = L£5(X[V]) > 0. Note that this is similar to the redundant constraint (2.4c)
added in our chosen embedding, which is fundamental for dealing with w € RV\RK for
the 9 function; in both cases, the redundant constraint comes from the projection £*.
The dual SDP is then obtained from (6.4) by replacing the occurrence of L& (w) in
the RHS with Lg(w + y), where y € Rf is a new variable. Optimal solutions for the
corresponding integer dual SDP are described by the next result.

COROLLARY B.3. Let G = (V,E) be a graph, and let w: E — Z. Then the
optimization problem

(B.9a) Minimize 17m

(B.9b) subject to m: K(G)\ {@} = Zy, y € RY,

(B.9c) Ly (w+y) < 1(vym VieV,
(B.9d) ﬂlyg)m < wij + Yij Vij € B

has a unique optimal solution (m*,y*), and it satisfies supp(m*) C E, and for each
ec FE,

my = [we > 0w, Yo = —|we < O]we.

Proof. Let (m, ) be feasible. By (B.9d), we have w +§ > 0 so y > y*. By
Theorem 6.1, the optimization problem (B.9) with the extra constraint y = § has a
unique optimal solution, and its optimal value is 17 (w + 7), which is greater than or
equal to 1T (w + y*), the objective value of the feasible solution (m*,y*). |

Even though Corollary B.3 shows how the dual SDP for Max Cut with an extra
(redundant) constraint may have integral solutions, the optimal value is always non-
negative. The deeper problem here is that the Max Cut SDP (6.1) is not tight for
arbitrary weights w, even if the underlying graph is bipartite. Hence, if € C R¥ is
the projection of the feasible region of (6.1) via £*, we cannot even expect € = €7,
let alone total dual integrality of the defining system.

To see this, first note that, for a graph G = (V, F) and weights w: F — R, we
should redefine the maximum cut problem as the optimization problem
sup{ lelg(U) : @ # U C V}; when w > 0, since §(@) = 6(V) = @, it was harmless to
keep both trivial sets U = @ and U = V in the feasible set. Correspondingly, in the
Max Cut SDP (6.1), the feasible solution X := 117 shows that the optimal value is
always nonnegative, even when w is negative and G is connected! To prevent these
trivial solutions from being feasible in a modified Max Cut SDP, one may add the
constraint (117, X) < (|V|—2)2, since max{ (117, sy;s},) : @ # U C V} = (|[V|-2)?,
where sy == 21 —1 for each U C V. These considerations lead us to strengthen (6.1)
as

(B.10) max{ (}Lg(w),Y) : diag(Y) =1, (117,Y) < (V| -2)?, Y e SY }.

Even this strengthened formulation is not exact for connected bipartite graphs if we
allow weights of arbitrary signs. Consider, for instance, the path of length 3 given
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by G = ([4],{12,23,34}), with weights w = —1. Then Max Cut is really a minimum

cut problem and the optimal value is clearly —1. However, the feasible solution zx

T

in (B.10) where z == [1 1 —27%/2 72’1/2}T has objective value —3/4.
These issues motivate the study of dual integrality for weight functions in a cone,
as described in Problem 7.5.
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