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Abstract

We study asymptotic profiles for singular solutions to a class of critical strongly coupled fourth order
systems on the punctured ball. Assuming a superharmonicity condition, we prove that sufficiently close to
the isolated singularity, singular solutions behave like the so-called Emden—Fowler solution to the blow-up
limit problem. On the technical level, we use an involved spectral analysis to study the Jacobi fields’ growth
properties in the kernel of the linearization of our system around a blow-up limit solution, which may be
of independent interest. Our main theorem positively answers a question posed by Frank and Konig (2019)
[12] concerning the local behavior of singular solutions close to the isolated singularity for scalar solutions
in the punctured ball. It also extends to the case of strongly coupled systems, the celebrated asymptotic
classification due to Korevaar et al. (1999) [21].
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1. Description of the results

We study the local behavior for strongly positive singular solutions to the critical fourth order
system,

A'uj =cm)U|* "u; in B, Sp.r)

where By := B(0) \ {0} C R" with n > 5 and R < oo is the punctured ball, A? is the bi-
Laplacian, U = (uy,...,up) : Bf‘ — R? is a p-map solution and || = (Zle uiz)l/2 is its
Euclidean norm. System (S, ) is strongly coupled by the Gross—Pitaevskii nonlinearity f; (/) =
c(n)|Z/l|2**_2u,~ with associated potential F () = (fiUf), ..., fp(U)), where 2** =2n/(n — 4)
is the critical Sobolev exponent, and

_n(n—4(»n? —4)

cn) 16

ey
is a dimensional normalizing constant.

Let us introduce some terminology. We say that I/ is a classical solution to (S, r) if each
component u; € C 4'C(Bi"), for some ¢ € (0, 1), and satisfies (S, z) pointwise. In addition, I/ is
called a singular solution to (S, 1), if the origin is a non-removable singularity for |¢/|, that
is, limjy|—0 [U(x)| = oo. Otherwise, the origin is called a removable singularity, and ¢/ is a
non-singular solution of (S, r). By a strongly positive (nonnegative) solution I to (S, r), we
understand a classical solution such that u; > 0 (u; > 0) foralli e I :={1,..., p}. We call
superharmonic in case —Au; > 0 for all i € [ := {1, ..., p}. By the maximum principle, su-
perharmonic nonnegative solutions are weakly positive, that is, for any i € I either u; > 0 or
u; =0.

The first step to studying this local behavior is to classify the solutions to the blow-up limit
system

A%up = c)UP 2u; in R™\{0). (Sp.0)

These limiting profiles are often called Emden—Fowler solutions.
Let us compare our system with its scalar counterpart. Indeed, when p = 1, we get that (S, r)
reduces to the following fourth order critical equation,

Au=cmu® ' in Bj. (S1.R)

On this subject, C. S. Lin [23, Theorem 1.3] proved that all positive non-singular solutions to
(S1.r) with R = oo are radially symmetric. He also obtained a closed expression for these so-
lutions. Additionally, if the origin is a non-removable singularity, R. L. Frank and T. Konig [12,
Theorem 2] (see also [14, Theorem 1.3]) proved that these solutions are also classified. Recently,
T. Jin and J. Xiong [20, Theorems 1.1 and 1.2] used a Green identity for the poly-Laplacian and
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some localization methods to study an equivalent integral equation, proving asymptotic radial
symmetry and sharp global estimates for singular solutions to (57, z) with R < co. These results
can be compiled in the following statement.

Theorem A. Let u be a positive solution to (S ). Assume that
Case (I): (punctured space) R = oc.

(1) If the origin is a removable singularity, then there exists xo € R" and p > 0 such that u is
radially symmetric about xo and, up to a constant, is given by

n—4

(x) = 24 N ®)
o=\ T 2 —xl2)

These are called the (fourth order) spherical solutions (or bubbles).

(ii) If the origin is a non-removable singularity, then u is radially symmetric with respect to the
origin. Moreover, there exist a € (0,ag] and T € (0, T,] such that

a7 (xX) = |x| T vg(In x| + T). 3)

Here ag = [n(n — 4)/(n2 — D)"Y and T, € R is the fundamental period of the unique
periodic bounded solution v, to the following fourth order Cauchy problem

@ — sz(2) + Kov = C(n)UZ**—l
(H 2 3) @
v(0) =a, v'W(0) =0, v¥0) =b, v (0) =0,
where
2 2 2
—4 —4 8
16 2

We call both u, T and v, 1 (fourth order) Emden—Fowler (or Delaunay-type) solutions.

Case (I): (punctured ball) R < oo, and the origin is a non-removable singularity. Suppose that
u is superharmonic. Then, u(x) = (1+ O(|x|))u(|x|) as x — 0, where u is the spherical average
of u. Moreover, there exists u, r as in (3) such that

u(x)=>0+o))ugr(x) as x—0. (5)

; 0 . ; . L .
Here v/) = ;—(/j) for j € N denotes the j-th order ordinary derivative v with respect to t.

We now move to the vectorial case. In this situation, using sliding techniques and ODE analy-
sis, in [2] the present authors obtained the classification for solutions to the limit blow-up system

(Sp.~0). Before, we define S_’:*l ={xeSP1:x; >0}
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Theorem B. Let U be a strongly positive solution to (S o).

(1) If the origin is a removable singularity. Then, there exists A € Sfr:kl such that U = Auy, g,
where uy, ,, (see (2)) is a positive solution (S| ) with R = 00;

(ii) If the origin is a non-removable singularity. Then, there exists A € Si:kl such that U =
Aug, T, where ug T (see (3)) is a positive solution to (S1 r) with R = oo.

Our main result in this manuscript proves that strongly positive solutions to (S, r) have a
local asymptotic profile near the isolated singularity given by the radial solutions to (S, ).

Theorem 1. Let U be a strongly positive superharmonic singular solution to (S, r). Then, there
exist a solution U, T to (S),~0) and 0 < ,36" < 1 such that

UE) =1+ O(xP)Uar(Ix]) as x—0. (6)

Let us mention that Theorem B and Theorem 1 extends Theorem A for the vectorial case
p > 1. In addition, p = 1 improves the remainder error term in the estimate (5).

Remark 2. As a by-product of our arguments, one can improve the decay of the remainder term
in (6), using deformed Emden—Fowler solutions in the sense of Appendix A (see [21, Section 7]).
Precisely, under the assumptions of Theorem 1, we have the following refined asymptotics

U) =1+ O(x P )Uaro(lx]) as x—0, )
for some ,BT > 1 and U, 7,0 deformed Emden—Fowler solution to (S, ~).

From the geometric point of view, R. Schoen and S.-T. Yau [32] highlighted the importance
of studying geometric singular equations and describing their asymptotic behavior near their
singular sets. Indeed, a positive smooth solution u € C*°(R" \ {0}) to (S} g) with R = oo pro-
duces a conformally flat metric g = u*/™~%8, such that g has constant Q-curvature equals
Qg = n(n? —4) /8, where § is the standard flat metric, and

1

A n3 —4n? +16n — 16 2
2m—1) ¢

8n—1)2(n—-2)2 &

2 . 2
Qg: Rg—m|Rng| +
is a fourth order analog of the conformal Laplacian, where Ag, R,, and Ric, are the Laplace—
Beltrami, scalar curvature and Ricci operator with respect to g. By the stereographic projection,

(S1.r) is the particular case of the singular Q-curvature equation on the punctured round sphere

Pgu=c(myu* =" on (S"\{p,—p}, g0)

liminfu(x) = oo,
x—>=Ep

®)

where g is the standard round metric and

) ) (n—2)>+4 4 n—4
PgMIAgM—dIVg ngg—nTlecg du+Tqu
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is the Paneitz—Branson operator (for more details, see [17] and the references therein). In this
language, (6) with p = 1 states that any complete metric with nonnegative scalar curvature and
constant Q-curvature is asymptotic to a Delaunay metric near an isolated singularity.

Now, we discuss some existing literature for second order equations. The singular Yamabe
problem is a second order geometric PDE similar in spirit to (8). In the conformally flat case,
[4] develops a measure-theoretic version of the Alexandrov technique to prove that solutions to
this second order equation defined in the punctured ball are radially symmetry. Moreover, they
classified these global singular solutions in the punctured space. They obtained the local behavior
in the neighborhood of the isolated singularity, proving that any singular solution converges to
an Emden—Fowler one.

Later, in [21], a more geometric approach for proving (6) is provided, based on the Jacobi
field growth for the linearized operator around a blow-up limit solution. This was later extended
to the case of general background metrics [25], at least for low dimensions. For second order
strongly coupled systems, in [8,9] the blow-up solutions to an analog of (S, r) are classified.
Also, in [5], an asymptotic classification is obtained, similar in spirit to the one Theorem 1.

Strongly coupled systems also appear in several mathematical physics branches. For instance,
in hydrodynamics, for modeling the behavior of deep-water and Rogue waves in the ocean [10,
24]. As well as it can be used as a model in the Hartree—Fock theory for Bose—Einstein double
condensates [1,11].

The strategy to prove Theorem | relies on asymptotic analysis. Roughly speaking, this is a
combination of classification results, some a priori estimates, and linear analysis. Using a simple
scaling argument, we may assume that R = 1 in (S, ), which gives us

A =cm)U)* "2u; in B, Sp.1)

where c(n) > 0 is given by (1).
The first step is to show that the Jacobi fields (elements in the kernel of the linearization of
(Sp,1) around a blow-up solution) satisfy suitable growth properties:

Proposition 3. For any a € (0, ag], the projected (on the j-th eigenspace of spherical harmonics
with j € N) linearized operator (see Lemma 12) satisfies:

(i) For j =0, the homogeneous equation Li(®) = 0 has a solutions basis with 2p elements,
which are either bounded or at most linearly growing as t — 0o;

(ii) For each j > 1, the homogeneous equation ﬁ’;(@) = 0 has a solutions basis with 4p ele-
ments, which are exponentially growing/decaying as t — o0.

Inspired by [5,16], we use the spectral analysis of the linearized operator to prove the last
proposition. The issue is that not all the Jacobi fields are generated by variations of some param-
eters in the classification of the Emden—Fowler solutions. To overcome this problem, we show
that the spectrum of the linearized operator is purely absolutely continuous. More precisely, it
is the union of spectral bands separated by gaps away from the origin. Therefore, the geometric
Jacobi fields generate the zero frequency deficiency space. We also need to show that solutions
to (S, 1) satisfy upper and lower bounds estimate near the isolated singularity

Proposition 4. Let U be a strongly positive superharmonic solution to (S 1). Then, U is radially
symmetric with respect to the origin. Moreover, either the origin is a removable singularity, or

there exists Cy, Co > 0, satisfying
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d-n don
Cilx] 2 < UX)| < Colx["2 for 0< x| <1/2. ©))

The main ingredients in the proof of Proposition 4 are the blow-up method based on the clas-
sification result for non-singular solutions to (S, ) given by (2) and a removable singularity
result relying on the sign of the Pohozaev invariant associated to (S, 1). The difficulties in our
argument are numerous. The lack of maximum principle causes one due to the fourth order oper-
ator on the left-hand side of (S, 1). To handle the problem with the lack of maximum principle,
we apply a Green identity to convert (S, 1) into an integral system [20]. Then, we prove that sin-
gular solutions satisfy an upper and lower bound near the isolated singularity; these arguments
are based on an integral form of the moving spheres technique. We also need to deal with the
nonlinear effects imposed by the coupling term on the right-hand side of (S, 1). The idea is to
use Theorem B combined with some decoupling techniques from [8,9,13,18], which yields a
comparison involving the norm of a p-map solution and each component.

Finally, the proof of Theorem [ is a combination of Theorem B, Proposition 3, and Proposi-
tion 4, which is called Simon’s (or slide-back technique) and arises in the theory of regularity for
isolated singular points of minimal hypersurfaces.

Here is our plan for the rest of the paper. In Section 2, we introduce some tools to be used
throughout the text. In section 3, we use an involved spectral analysis to prove Proposition 3. In
Section 4, we use the integral moving spheres technique to prove Proposition 4. In Section 5, we
apply Simon’s technique to prove Theorem 1. In Appendix A, we prove a refined asymptotics
for singular solutions.

2. Preliminaries

This section aims to introduce some necessary background for developing our methods.
2.1. Kelvin transform

The moving spheres technique we will use later is based on the fourth order Kelvin transform
for a p-map. For Q2 € R" a domain, before we define the Kelvin transform, we need to establish
the concept of inversion through a sphere 9 B, (xp), which is a map Z,, ,, : 2 — Qy, , given by
Loy n(x) =x0+ KXO,M(x)Z(x — x0), where Ky, (x) = p/|x — xo| and Qy, ;, 1= Ly, . (2) is the
domain of the Kelvin transform. In particular, when xop = 0 and u = 1, we denote it simply by
To.1(x) = x* and Ko 1(x) = x|x| 2.

The following definition is a generalization of the Kelvin transform.

Definition 5. For any U/ € C*(2, RP), let us consider the fourth order Kelvin transform through
the sphere with center at xo € R” and radius v > 0 defined on Uy, : Qx,, . — R? by

Usy, 0 () = Ko, ()" U (Ziy 0 (1)) -
Now, we emphasize the invariance of System (S, 1) under the action of Kelvin transform.
Proposition 6. Let U be a non-singular solution to (S, 1), then Uy, satisfies
A2 U)o, = C WUy 2 Widag.e 0 (B for i€l
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where Uy, ;o = (1) xg, 100 -+ - » Up)xg, u)-

Proof. It is a direct consequence of the formula

AU 1 (0) = Ko o ()" A% (T, (0)) = Koy, (6 (A%U) 9,10 (%),
which is obtained by a simple computation. O
2.2. Cylindrical transformation

This subsection introduces a transformation that converts singular solutions to (S, 1) into
non-singular solutions in a cylinder. Then, the local behavior of singular solutions near the origin
reduces to understand the asymptotic global behavior for tempered solutions to a fourth order
ODE defined on a cylinder.

Let us introduce the so-called (logarithmic) cylindrical transformation. First, we consider
Co.1=(0,1) x S"! and Afph the bi-Laplacian written in spherical (polar) coordinates,

X

2(n —1 -1 -3 —1)(n -3

3
2(11—3)8 A 24

3 ro T T 4 /o

1 2
— A2+ Z8PA
+ A0+ 507 A0 + -

r

where A, denotes the Laplace—Beltrami operator on S"~!. Then, we can rewrite (S p.1)as
ALy =cm)UP Pu; in Co.
In addition, we apply the Emden—Fowler change of variables (or logarithm cylindrical coor-
dinates) given by V(¢,0) =r"U(r,0), where r = x|, t = —Inr,0 =x/|x| and y = (n — 4)/2,
which sends the problem to Co = (0, 00) x S"~ .

Using this coordinate system and performing a lengthy computation, we arrive at the follow-
ing fourth order nonlinear PDE system on the cylinder,

AL =cm[V* v on C. Cp.0)

Here Afy] is the bi-Laplacian written in cylindrical coordinates given by

A2 =0 — K29 + Ko+ A3 420 Ag — oA, (10)
where K, K2, Jo € R are constants depending only on the dimension, which is defined by

2 2 2
—4 —4n 48 —4
KO:n(n ), 2:11 n +  and Jozn(n ).
16 2 2
Furthermore, the superharmonicity condition —Au; > 0 is equivalent to

—Bt(z)v,- +20;v; ++/ Ko — Agv; > 0.
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Notice that, in the blow-up limit case, solutions are rotationally symmetric, which transform
(C),0) into the following ODE system

v® — K20® + Kovi = eV 2 in R, (Cp.oo)

which can be taken with suitable initial conditions to become a well-posed Cauchy problem.
Along these lines, let us introduce the cylindrical transformation defined as follows

F:CX(Bf,RP) — C(Cy,R?) givenby FU)=r"U(r,0),
which sends singular solutions to (S ».1) into solutions to « ,0)-

Remark 7. In the geometric language, this change of variables corresponds to a restriction of
the conformal diffeomorphism between the entire cylinder Cs, := R x S"~! and the punctured
space, namely, ¢ : (Coo, gey1) = (R \ {0}, 80) defined by ¢(r,0) = e "o Here gey1 = dr? +do?
stands for the cylindrical metric and df = e~21(dr? + do?) for its volume element obtained via
the pullback ¢*8q, where Jy is the standard flat metric. In this fashion, our choice for the symbol
Azyl = Afph o &~ ! is an abuse of notation since the cylindrical background metric is not flat, we
should have Py = A? L © 5!, where Py stands for the Paneitz—Branson operator of this metric
in the new logarithmic cylindrical coordinate system.

2.3. Pohozaev invariant

In the next step, we define a type homological invariant associated with (S, 1). This invariant
is the main ingredient in providing a removable singularity theorem and is one of the features
for developing the convergence method. The existence of a Pohozaev-type invariant is closely
related to a conservation law for the Hamiltonian energy of the ODE system (C,, o).

Initially, let us introduce a vectorial energy that is conserved in time for all p-map solutions
V to system (C, o), which depends on the angular variable.

Definition 8. For any V strongly positive solution to (C) ), let us consider its Hamiltonian
Energy given by

H,0,V) :=Ha(t,0,V) + Hang (2,0, V), (1)
where

1 K
Head(t,0,V) = —(VI(1,0), VD (2, 0)) + 5|v<2>(r, 0)1> + 72|V“)(t, 0)[>

K ~ sk
- S V@O + 2V 0P
_ 2 2 2 2 N AEx—1
Hang (1,0, V) = [AgV(t, )" +2[0,7 Vo V(1,0)|" — Jo|VeV(t,0)7, and c(n) =2"" "c(n).
A standard computation shows that the Hamiltonian energy is invariant on the variable ¢, that
is, 0;H(¢,6,V) = 0 for all solutions V to (C,, o). Hence, we can integrate (11) over the cylindrical

slice to define another conserved quantity as follows
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Definition 9. For any V strongly positive solution to (C), o), let us define its cylindrical Pohozaev
integral by

,Pcyl(t’v)z / H(t,0,V)do.
S;l*l

Here S;‘*] = {r} x S"! is the cylindrical ball with volume element given by d0 = ¢~ *'do,,
where do; is the volume element of the Euclidean ball of radius r > 0.

Since that by definition P also does not depend on ¢, let us consider the cylindrical Pohozaev
invariant Pey1 (V) := Peyi(t, V). Hence, applying the inverse of cylindrical transformation, we
recover the classical spherical Pohozaev integral defined by Pgpn(r,U) := (Pcy1 o S‘l) V),
which satisfies the following Pohozaev-type identity:

Lemma 10. Let U,ﬁ e CH(B*,R”) and 0 < r; <ry < 1. Then, it follows

p

~ ~ —4 /. ~

Z / [Azui(x, Vu;) + Azui(x, Vu;) — " (uiAzui + uiAzui):| dx

i=1p, \B,

= Z / q(ui, i;)doy, — / q(u;, i;)doy,

i=1 198, 9B,
Here
- 2—n - r - n—4 ~ ~

qui,u;) = (Au;, dyut;) — E(A”i, Au;) + (ui, 8y Au;) + (x, Vui)oy Au;

n
— Au; ijavﬁij,
j=1

where U;j is j-th coordinate function of u; and v is the outer normal vector to 3 B,..

The last lemma is a vectorial version of the fourth order Pohozaev identity in [7, Proposi-
tion 4.1] (see also [20, Propositon A.1]).

Proof. See the proof in [7, Proposition 4.1]. O

Remark 11. Using the last lemma, we present an explicit formula for the spherical Pohozaev
invariant

p
Popn(U) = / [Zq(u,-, ui) — r?(n>|u|2**} doy, (12)
0B

i=1
where
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2—n r , hn—4 -
q(ui,u;) = TAuis pu; — EIAuil + i Oy Au; + (x, Vu;)oy Au; — Au; ijavuij-

j=1
(13)

For easy reference, we summarize the following properties:

(i) There is a natural relation between these two invariants, Pspn () = w,—1Pey1(V), where w, 1
is the (n — 1)-dimensional surface area of the unit sphere;

(ii) In the blow-up limit case, one can check that if the non-singular solution is Uy, ,, = Ay, for

some A € Sﬁ_l and uy,,,, a spherical solution, we obtain Pgpn (U, ;) = 0. Also, if the singular

solution has the form U, 7 = Au,, v for some A € Sffl and u, 7 an Emden—-Fowler solution.
Then, a direct computation shows Pph(Ua, 1) = Psph(ta, 1) = Pey1(va, 1) = cuH(va,7) < 0 for
some ¢, > 0 dimensional constant (for more details see [31, Corollary 4]).

3. Linear analysis

The objective of this section is to prove Proposition 3. More precisely, we show the linear
stability of the linearized operator by studying its spectrum. Consequently, we can control the
asymptotics for solutions using the growth of the Jacobi fields, computed using Floquet theory
(or Bloch wave theory). Namely, we prove that spec(£) is a disjoint union of nondegenerate in-
tervals with 0 € J, an isolated point. The strategy is to use a decomposition to study the spectral
bands of the Jacobi operator. We proceed by applying the Fourier—Laplace transform combined
with some results from holomorphic functional analysis [27,28]. For complex numbers, we de-
note p =« + i, where R(p), J(p) stands for its real and imaginary parts, respectively.

3.1. Linearized operator

Now, we study the linearized operator around blow-up limit solutions. The heuristics are that
when this operator is Fredholm, its indicial roots determine the rate at which singular solutions
to the nonlinear problem (S, 1) converge to this limit solution near the isolated singularity. Here,
we borrow some ideas from [3,28].

First, let us consider the following nonlinear operator acting on p-maps N (U) := A%u; —
fiUh), where we recall f; (V) = c(n)|V|*"~2v; fori € I. Then, using the cylindrical transforma-
tion §: C°(B, R?) — C°(Cp, R?) and the homogeneity of the Gross—Pitaevskii nonlinearity,
we obtain

NeptV) 1= Adi = fi (V). (14)

In what follows, we drop the subscript since we often will be using the operator written in cylin-
drical coordinates.

Lemma 12. The linearization of N : H*(Co, R?) — L?(Co, R?) around an Emden—Fowler so-
lution V1 to (Sp.~0) is given by

2
"(”T‘”vﬁfﬁmm, c1>>] (15)

LE(@) =9 — K29? + Kogi — [c(n)vﬁf‘;‘z@ +
A + 201 Moy — Jo Ao
+ 9¢l + t 9¢1 0 9¢1a
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where A= (Ay,...,Ap) € Sf_;], and dNgy [Vaj] (®) = L% (D) is the Fréchet derivative of N
with ® = (¢1, ..., ¢p).

Proof. By definition, we have that L (®) := L; [V, 71(P), where

»Ci [Va,T](qD) = N(Va,T +td) (16)

i
dr l1=0
= A% — e [ =2) Ve P4 W, O V) + WV P 1]
where I1; (), 1) denotes the i-th component of the Emden—Fowler solution V, r € C (R, RP).
To prove this fact, we observe that since f; is (2** — 1)-homogeneous, we find
N(Va,T +td) _N(Va,T)
= A2 Vg +1A%,® = fi (Var +19) = AL Var + fi (Var)
=tAL® + fi Var) — fi Var +1D)

=1a2,® —1em) [ 27 = 2) Va7 Varr, O V) + Var 7721 |+ 0 (12))

which implies (16).

Moreover, using the classification formula in Theorem B (ii), one can find a unit positive
vector A =(Ay,...,Ap) € Sﬁ;] and v, 7 € C*(R) the unique T -periodic solution to (4) with
v, 7(0) =a such that V, v = Av,, 1, and so I1; (V, 1) = Ajv, 1. From this, we find

A2gdi = 00 [ (27 = 2) WVar 74 Vi, 0L V) + Ve 263

4 2
=Y — K29> + Kot

B n(n — 4)(n2 —4)
16

8 - o
|:n_4|AUa,T|2 HAvar, D) Aivar + | Ave | 2¢i]

2
+ A2 + 20 Moo — Jo Ao

n(n2—4)A

4 o) ok
= ¢V — K2> + Kogi — c(myv? 1 2i — 5

i(A, @2
2. @) ) .
+ A9¢z + 28[ A0¢l - JOA0¢1-
Hence, we can simplify (16) to obtain (15), which proves the lemma. O

3.2. Jacobi fields

Unfortunately, the linearized operator is not generally Fredholm since it does not have a closed
range [29, Theorem 5.40]. Nontrivial elements on its kernel cause this issue; these are called the
Jacobi fields [3]. Therefore, we need to introduce suitable weighted Sobolev and Holder spaces
on which the linearized operator has a well-defined right-inverse, up to a discrete set on the
complex plane. For more details, see [30, Section 2].
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Definition 13. Given k, p,q > 1 and 8 € R, for any V € L?OC(CO, R?) define the following
weighted Lebesgue norm

o0
Wy g = [ [ Vo
0 sn-1

Also, let us define the weighted Lebesgue space by L% (Co,RPY={VeLl (Cy: ”V”L%(CO,RI’) <

loc
oo}. Similarly consider the Sobolev spaces Wg’q (Co, R?) of p-maps with k weak derivatives
in LY having finite weighted norms. Here we also denote the Hilbert space W/S"Z(CO, R?) =

Hg (Co, RP) and Wk4(Cp) = Wk’q(Co, R). Notice that when 8 = 0, we recover the classical
Sobolev spaces of p-maps.

Definition 14. Given m, p > 1, f € R and ¢ € (0, 1), for any u € C2F (Co, RP) define the fol-
lowing norm

vl sup sup e PV (01,00 | — e P2V (12, 02) |
0,¢ =
gt R T 7R deyl ((11,61) , (12, 62))°

2(t1,01), (12, 62) € CT—1,741 } ,

where Cr—1741=T -1, T+1) x S"~1. Also, let us define the (zeroth order) weighted Holdér
space by

Cé Co. RN = [V e ol Co. R V] cos

X .
loc : (Co,RP) < }

One can similarly define higher order weighted Holdér spaces CZ“ (Co, RP).

Remark 15. The functional spaces defined above are suitable to obtain the asymptotic results
in Theorem 1, since v € W/];’q(Co) is equivalent to v € W54(Cp) together with the decay v =

O(e P") as t — oco. Additionally, by regularity theory, we can indistinguishably work with both
the Sobolev or the Holder spaces.

Definition 16. The Jacobi fields in the kernel of £¢ : Hg (Cop, RP) — L%(Co, RP), are the solu-
tions @ € Hg (Co, R?) to the following fourth order linear system

LY DP)=0 on Cp. a7

3.3. Fourier eigenmodes
We study the kernel of a linearized operator around an Emden—Fowler solution by decom-
posing into its Fourier eigenmodes, a separation of variables technique. First, let us consider

{Aj, xj(0)};en the eigendecomposition of the Laplace-Beltrami operator on S"~! with the nor-
malized eigenfunctions,

Aoxj @)+ Ajx;(©)=0. (18)

201



J.H. Andrade and J.M. do O Journal of Differential Equations 413 (2024) 190-239

Here the eigenfunctions {x;(6)} ;e are called spherical harmonics with associated sequence of
eigenvalues {A;};cn givenby A; = j(j +n —2) counted with multiplicity m, which are defined
by

2j+n—=2)(j+n—3)!
mp=1 and m; = -
/ (n—2)!)!

In particular, we have Ao =0, Aj=---=A,=n—1,1; >2n,if j >nand ; <Aj;;;. More-
over, these eigenfunctions are the restrictions to S”~! of homogeneous harmonic polynomials in
R". Here we denote by V; the eigenspace spanned by yx;(6). Using (18), it is easy to observe
that the eigendata of the bi-Laplace—Beltrami operator A% is given by {A%, Xj(0)}jen. Namely,
for all j € N, it follows

AGx;j(0) — A3 xj(0) =0. (19)

3.3.1. Scalar case
When p = 1, the nonlinear operator (14) becomes

N@):= Agylv —cm? ! and L%¢) = A§y1¢ - 3(”)UH2T;_2¢,

where ¢(n) = 2™ — 1)c(n) > 0 is a positive constant. Furthermore, using the decomposition
(10) combined with (18) and (19), we get

L) =8¢ — K209 + Koo + A2 + 201 Mg — JoAgp — T2 12,

which by projecting on the eigenspaces V; gives us
£46) =0 — (Kz +22)8 + [ Ko + 1, 0y + Jo) = €2 772 | . (20)

Moreover, for any ¢ € Lz(S”’l), we write

¢(1,9)=Z¢j(t))(j(9), where ¢j(l)=/¢(l,9))(j(9)d9~
Sn—1

j=0

In other terms, ¢; is the projection of ¢ on the eigenspace V. Thus, to understand the kernel of
L%, we consider the induced family of ODEs K‘} (¢;) =0for j eN.

Remark 17. For p = 1, some (low-frequency) Jacobi fields are generated by the variation of
a two-parameter family of Emden—Fowler solutions. When j = 0, they are given by ¢Zo(t) =
GT}TZOUQ,T(t) and ¢;0(t) = 04 ]azovu,f(t), where v, 7 € C(R) is the Emden—Fowler solution
defined as the unique T -periodic solution to (4) with v, 7(0) = a for any a € (0, ap]. However,
the other two Jacobi fields cannot be directly constructed as variations of some family of solutions
to the limit equation. One can show that they are not based on this zero-frequency case.
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3.3.2. System case
For p>1and ® € L2(C0, R?), we write

O(1,0)=Y ®;(N)x;@). where ®;(r)= / ®(t,0)x;(6)d6. Q1)
=0 Sn—1

Hence, foralli € I and j € N, we decompose (17) as

L8(@) =Y — (Ka +20))¢ + [Ko + 4+ Jo) — c(n)vgf;—z] i

_ n(n2—4)A

> (A, @2 (22)

Whence, to understand the kernel of (22), we again consider the induced equations E;‘j (@) =
0. Therefore, studying the kernel of £ reduces to solving infinitely many ODEs. In Fourier
analysis, it is convenient to divide any ® € L?(Cp, R?) into its frequency modes by

m
o[ @1(2, 0) = Po(2) xo(0), w1 [Pz, 0) =Z<I>j(t)x,'(9), and

j=1
myy]

m[®)(t,0)= Y D;0)x;(0).
j=m;+1

In particularly, the projections 7o, 71 and ) 2, 7r; are called respectively the zero-frequency,
low-frequency, and high-frequency modes.

3.4. Fourier—Laplace transform

Following [28, Section 4] (see also [19, Section 3]), we consider the Fourier—Laplace trans-
form, which is the suitable transformation to invert the linearized operator in the frequency space.
We can use the real parameter o« = iz for p € R}, to move the weight of the Sobolev space and
invert this transform up to some region in the complex plane. Before, we need to introduce some
background notation and tools. Here, we recall that 7,, € R is the fundamental period of the
Emden—-Fowler solution v, given by (4).

Definition 18. Let @ € Héi(Coo, R?) extended to be zero on the region Coo \ Co. We define its
Fourier—Laplace transform as

Fa(@)(t.0,0)=> e "d(t+1T,.0), (23)
leZ

where p € Ry :={a+ipeC: B < —BT,} C C for some B € R. For the sake of simplicity, we
fix the notation ®(z, 0, p) := F,(P)(,0, p).

Due to the periodicity properties of the linearized operator, it makes sense to define the fol-
lowing spaces, whose elements are sometimes referred to as Bohr a-quasi-periodic p-maps.
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Definition 19. Fixing the notation Co, 7, := [0, T,] X S"! and o € R, let us introduce the func-
tional (Hilbert) space L2 (Co,z,,C?) defined as the L?-completion of CJ (Co,7,, C?), where
2 (Co,7,.CP) :={® € C°(Co,7,, CP) : @ (T4, 0) = €'* ®(0,0)}.

The main proposition of this subsection is a direct integral (in the sense of Hilbert spaces)
decomposition of L2(Cy, RP) in terms of the parameter « € R in the Fourier—Laplace transform
(cf. [15, Definition 7.18]).

Proposition 20. For any a € [0, ag), it follows L* (Co, RP) = h e[o 2] (Co 7,, CP) da, where
f denotes the direct integral of Hilbert spaces.

Proof. We divide the proof into a sequence of claims:

Claim 1: If p € R, then the Fourier—Laplace F(p) : L?(Coo, R?) — L?(Coo, CP) transform is
well-defined. N

In fact, since ® € Hg (Co, RP) we know that |®(z, 0)| = O(eP"), which yields

| Fa(@)(t,0,p)| =) ’e""“*"ﬁ”cb (t +1T,, 9)’ =3P | (1 +1T,,0) < CP' Y et
leZ leZ leZ

where we used that each choice of p € C only gives finitely many zeros, and since p € R,, we
use the growth property to conclude that all the exponents in the series are negative. Therefore,
the last sum must converge uniformly in $i,. We can rephrase this conclusion like F is analytic
whenever @ € HZ; (Co, RP).

We invert the Fourier—Laplace transform using a contour integral in the following claim.
Claim 2: Let ® € H/gf (Co,RP) and p € R,. For each ¢ choose 7 € [0, T,) such that t =1
mod Ty, that is, there exists [y € Z satisfying r =1 + loT,. Then, we get

2
1 . . A~ -
®1.0) =5 / @B B (7 o + iB, 0)da.
a=0

Indeed, since p € R, for all i € I, we obtain

2
1
2—/ 7,6 p)d(x——/ ”OPZ ~ilo g (T +1T,,6) da

leZ
2
1 o _
=Y / A @HPOD g (7 41T, 0) da = ¢ (1, 0).
leZ ]Ta:()

We prove a type of Parseval-Plancherel identity for p-maps.
Claim 3: For each 6 € S"1, it follows

180,60 x5, 0 27 80015 g po en
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where S, = [0, T,] x [0, 2x].
As a matter of fact, for all i € I, it holds

T, 2n
//|$,~(t,9,p)|2dadt
0 0
T, 27
z//<zeilaelﬂ¢i (t—i-lTa,@)) <Zeilaelﬁ¢i (t—i—lTa,Q)) dadt
0 0 leZ leZ
T, 27 i /
= / / > 2 (E)ei“l>°‘e<€+l)ﬂ¢i (t + 1T, 0) i (¢ + 1T, 0) dardlr
0 0 leZt=—I
T, 27
=//Zew i (t + 1T, 0)* dadrt
00 leZ
T 2
=2 [ | 0,00 ar.
R

Next, we prove that ® is a section of the flat bundle T =S} x S*~! with holonomy p € C
around the S! loop, where we identify S} =R/ T,Z.
Claim 4: For each 6 € S"~!, we have

[8¢.6. )12, 0y =27 180 2 g, - 25)

Indeed, by taking 8 = 0 in (24) and using (23), we get ® (t + T,,0) = fa_l (ei/’Fa (dD)) (t,9),
which concludes the proof of the claim.
Finally, the proof of the proposition is a consequence of Claims 2,3, and 4. O

Remark 21. We stress that the dependence of the inversion on the parameter & > 0 will allow us
to change the growth rate of the solution produced later using the Green’s function of the twisted
operator.

3.5. Spectral analysis

Now inspired by [27, Section 4.2], we study the geometric structure of the spectrum of the
linearized operator around an Emden—Fowler solution. The idea is to construct a twisted operator,
which captures the periodicity property of this linear operator, it is unitarily equivalent to the
linearized operator, and for which a Fredholm theory is available. In this direction, let us first
introduce the suitable domain of definition for this operator.

Definition 22. For each o € R and k € N, let us define the set of quasi-periodic p-maps
Hé"“ ([0, T, 1, CP) to be the completion of the space of C* ([0, T,], C?) under the H¥-norm
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with boundary conditions given by oW (T,) = ' Ta*p() (0) for j=0,1,...,k— 1. We also
denote by E?j o, the restriction of Efj to H ([0, T, ])-

Initially, for any p € SR, we use the inversion of the Fourier—Laplace transform to define
Le (p)=F,0L%0 Fa_l, or equivalently Le (p)(a) = L4(P), which by (25) yields

L (p)(P D) (1,6, p) = P L (0) (D) (2,6, p) and e L (p) (e D) = L7 (p) (D).

Using the last relation, we set La (p) : H (T;, C”) — HK (Té’, (Cp), given by
)@ = Foo Lo Fl (e77'd). (26)

Remark 23. Notice that £¢ has the same coordinate expression as L. Thus, their Fourier
eigenmodes decomposition ll;? and E‘;. are also unitarily equivalent. Moreover, by Claim 3 of

Proposition 20 one has that E;‘. (o) coincides with the restriction of 2? (o) to [0, T,]. Further-
more, L4 (p) acts on the same functional space for all p € C.

This motivates the following definition:

Definition 24. For each a € (0, ap), j € Z,and o € R, let us denote by oy (a, j, o) the eigenvalues
of E‘;,a. In addition, since for each a € (0, ap), j € Z, one has 57,0 = E?,zn» it follows that

oxla, j,-): S! — R. Therefore, let us define the k-th spectral band of E;‘. by
Bi(a, j) ={or e R:0ox =0ox(a, j,a) for some « € [0, 27/ T,]}.
Remark 25. Notice that spec(L%) = spec(Z“) =U; reNBi(a, j).
Remark 26. The eigenfunction @ corresponding to the eigenvalue oy (a, j, o) satisfies
O (1 +27m)T,) = D(1) =P VD) and D(r+27) = *D(1).

Furthermore, ox(a, j, 27 — o) = ok (a, j, ), since /33? has real coefficients; thus, we can restrict
ox : S' = R to the half-circle corresponding to « € [0, 7].

Now, we have conditions to enunciate and prove one of the most important results in this
section.

Proposition 27. For any a € [0, ag], 0 € 3, is an isolated indicial root of L°.

Proof. The proof follows by estimating the endpoints of the spectral bands of £¢, and it will be
divided into a sequence of claims:

Claim 1: For any a € (0, ap) and j, k € N, the band B (a, j) is a nondegenerate interval.

In fact, each /33? is a fourth order ordinary differential operator such that the ODE system
£‘}(Cb) = ox(a, j,®)® has a 4p-dimensional solution space. Suppose that B (a, j) reduces to
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a single point, then o would be constant on [0, 2] and ﬁ?(@) = oy (a, j,«)® would have an
infinite dimensional solution space, which is contradiction.
Claim 2: For any a € (0, ap) and j, k € N, it follows that

%Zk(a’ j)Z[UZk(a,j, 0)702k(a,j,77)] and %2k+] (a’ J)= [02k+] (a5j7 jT),U2k+](a,j, 0)]

This is a consequence of Floquet theory, since By, are nondecreasing for any k € Z, whereas
Bor41 are all nonincreasing. Thus, we conclude og(a, j,0) < oo(a, j,7) < o1(a, j,7) <
o1(a, j,0) <...

Claim 3: For any a € (0, ap) and j, k € N, we find the lower bound

or(a, j, 0) > oo(a, 0, &) + Jok; + 7. @7

As a matter of fact, we can relate By (a, 0) to B (a, j) since Ef; — L§=—2A; 8,(2) + Jokj + 22,
which for an eigenvalue ® of E‘;’a implies

ola, j.a)® = L(®) — 23, 0@ + (Jox,- +x§) . (28)

Using the decomposition & = Z?io c;P;, where Eg (®;) = 0y(a, 0, x)d; we can reformulate
(28) as

> aoka j0®r =Y alora 0.)® =250 + (Jor; +22) @],
leN leN

which provides 24 ; CDI(Z) = — [ak(a, Jjra)—o1(a,0,a) — Joh; — A?] ®;. Finally, noticing that
the last equation admits quasi-periodic solutions, if, and only if, ox(a, j,0) > oo(a,0, @) +
JoAj + A%, we conclude the proof of the claim.

Claim 4: For any a € (0, ap) and j, k € N, it follows that B (a, j) C (0, o).

This is the most delicate part; thus, we separate the proof into some steps. By the classification
in Theorem B (ii), we can reduce our analysis to the case p = 1. From now on, we denote
Vg = Va,T,-

Step 1: For each a € (0, ag], it follows

T 1-2/2%*

1 ok
&(n) - / v} dr < o0p(a,0,0) <0, (29)
a
0

where ¢(n) =c(n) —¢(n) = —n (n2 — 4)/2 < 0. Moreover, either o1 (a, 0,0) =0oroz(a, 0,0) =
0.
In fact, we start by the upper bound. Using the Rayleigh quotient of L8, we get

T, . %a
00(a,0,0)=  inf M.

(30
per*my [ p2ds
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Since v, is a periodic, it can be taken as a test function on the right-hand side of (30); this
provides

L5(ve) = vff) — ngflz) + Kovg — ’c“(n)viT_1

2% —1

= v§4) — sz{gz) + Kovg — c(n)vgj‘;_l + 5(”)”(1]

- ¥ ]
= C(”)Ua,T s

where we used that ES and Zg have the same coordinate expression. Hence, since ¢(n) < 0, the
estimate (29) is a consequence of (30).

To prove the lower bound estimate, we observe that a combination of the results in [14] with
the classification given by (3) implies the variational characterization below

" fOTa (’¢(2)|2 K |¢,<1>|2+ Ko |¢|2) ar
Vg = n .

PEH(0,T,]) (f()Ta ¢2**dt)2/2**

Moreover, since v, satisfies (4), for all ¢ € Hé ([0, T, 1), we find

. ) ) T, 1-2/2%
= (02 = K2 [0 + Ko loF) a
T >c(n) /va dt . 31
Ta o /
(fo ¢ dr ) 0
On the other hand, using the Holder inequality, we get
T, T, 2/2**
/ p2dr <1, / ¢>"dr : (32)
0 0

Then, for all ¢ € HS‘([O, T,]) a combination of (31) and (32) yields

Ta
[ ocioa
0
T,
= / (4;(4) — K20® + Koo — E(n)vgf;*q)) dr
0
T, 1-2/2% 2/2%* T,
> c(n) / v dr / ®*"dt — () / > dt
0 0 0
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I, 2/2% I, 1—2/2%* I, 1—2/2%
= /qb " dt c(n) /vg**dt —cn) /¢2** dr
0 0 0
I, I, 1-2/2% 7, I, 1-2/2%*
> 1277 cn) / P2dr / 27 de — ) / P dr / o> dr
0 0 0 0

In particular, taking ¢ € H(‘)‘([O, T,]) such that ||¢||H§<[0’Ta]) = |lvg ”H(‘)‘([O,T,,])’ we obtain

2k _ ] )

2
161172 g0,7,7) 1Vally 20 (o, 7,1

Ta
/ PLLP)dt = Em) T,
0

which directly implies the lower bound estimate.

Finally, since ¢:,0 = 0,0, 1S a periodic solution to Lg (¢ZO) = 0, we have that there exists
an eigenfunction with associated eigenvalue A = 0 subjected to periodic boundary conditions
provided by o = 0. Besides, this eigenfunction has two nodal domains within the interval [0, 7],
which is associated either to o (a, 0) or to o> (a, 0).

In the remaining steps, we provide more precise localization of the spectral bands of £¢:
Step 2: For any a € (0, agp), it follows that B (a, 0) C (0, oo) for each k > 3 and By (a,0) C
[0, co) for each k > 2.

This is a direct consequence of Claim 2 and Step 1.

Step 3: For any a € (0, ag) and j, k € N, it holds that B (a, j) C (0, 00).

In fact, when j > n we have A ; > 2n, which by Claim 3 implies oy (a, j, 0) > og(a, 0, 0) +n3 for
all &k € N. On the other hand, since 0 < v,(¢) < 1, for all # € R, using the lower bound estimate,
we find that oy (a, 0, 0) > ¢(n) and ok (a, j, 0) > og(a,0,0)+n3 > n3+¢(n) > 0. When 1 < j <
n, it follows from the construction for the geometric Jacobi fields Remark 17, since E‘jl. (d); 1') =0
and ¢ai,j = Tt (:I:vél) + )/va) + &4, where E4 (1) =O(1) and E_(r) = O (6_2’) as t — oo are
positive periodic solutions to £‘;.

The last claim relates the spectral bands B, (a, j) and the indicial roots 3”;.

Claim 5: The ODE Kj’. (®) = 0 admits a quasi-periodic solution, if and only' if, for some k € N,

0 € By(a, j) o
Indeed, we have that ® = F”' (¢~/“' ) solves £(P) =0 since

0=L%, (@) = F, (L‘; (f;l (e—"“@))) and LY (]-“a_l (e—"“@)) —0.
Therefore, by Remark 26, the proof of the claim follows. 0O
3.6. Fredholm theory
We investigate the spectrum of the linearized operator. Our goal is to conclude that £¢ is
Fredholm, which follows by showing that J, C R is a discrete set. The last assessment is not

trivial to prove; in fact, we need to use the Fourier-Laplace transform results to find a right-inverse
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for the linearized operator. The strategy is based on some results from holomorphic functional
analysis.

To invert the twisted operator, we use the analytic Fredholm theorem. Since the symbol of
L% in cylindrical coordinates is given by 8,(4) + AZ, we conclude that if k € N, a € (0, ag) and
BeR,then L*: H §+4 (Co,RP) - H g (Co, R?) is a bounded linear elliptic self-adjoint operator.

The main result of this subsection states the invertibility of the linearized operator.

Proposition 28. If k € N and 8 ¢ 3%, then L : H§+4 (Co, RP) — Hg (Co, RP) is Fredholm.
Proof. To apply the analytic Fredholm theorem, we use the twisted operator from (26),
£9(p) : H¥4(T",CP) — HY(T",CP) givenby L%(p)(®) = e Fy 0Ll 0F] ! (e—"f’@) .

In what follows, we divide the proof into some claims:
Claim 1: If @ € (0, 27), then £“ is Fredholm.
For each « € (0, 27), the operator La (p) is linear, bounded, elliptic and depends holomorphically
on p. Thus, this operator is either never Fredholm or it is Fredholm for p outside a discrete set. We
take p = « € (0, 27) and suppose there exists de Hk+4(TL’}, RP) such that L’“(,o)(a;) = 0; thus,
LY(p)(D), where & = f;l(e’i”’5). Then, @ is quasi-periodic; in particular, ® is bounded.
However, by Proposition 27, any bounded Jacobi field is a multiple of CID(T , which is not quasi-
periodic. Hence, £(e) is injective. Finally, since this operator is formally self-adjoint, it follows
that £%(p) is Fredholm.
Claim 2: If a € (0,a9) and B € 3, then there exists g“(p) Hk(T ,CP) —» Hk+4(11"6’f, CPr)
such that G¢ (p) is a right-inverse for Le (p). ~
Using Claim 1, we can find a discrete set ®, C R, and a meromorphic operator G*(p) :
H*(T}, CP) — H*(T2, CP) such that & = (G*(p) 0 L (p)) (D) for p ¢ D.
Claim 3: If a € (0, ap) and B € 3¢, then there exists G : Hf(Co, R?) — H§+4(co, R?) right-
inverse for £4.
Indeed, notice that J* = {8 € R : 8 = J(p) for some p € ®,}, which provides

G (@) = F, ! (e70Tat (G (70Tt (Fu(@)))).

Furthermore, by construction, we obtain that ® = G4(®) € H kf?p) (Co, R?), which by the Fred-

holm alternative concludes the proof of the claim. The last claim proves the proposition. O
Proposition 29. The set 3¢ is discrete.

Proof. Note that each element in J¢ is the imaginary part of a pole to Ea, which by the analytic
Fredholm theory is a discrete subset of C. On the other hand, the operator £(p) is unitarily
equivalent to £%(p + 2nl) for each [ € Z; thus, p is a pole of G, if and only if p + 27/ also is
for any [ € Z. Therefore, G, can only have finitely many poles in each horizontal strip. O

Corollary 30. Ifk € N and B ¢ (0, 1), then
(1) the operator L : H§+4 (Co, RP) — H/Sf (Co, RP) is surjective;

(ii) the operator L* : Hf;“(co, RP) — Hfﬁ (Co, RP) is injective.
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Proof. It follows from the proof of Proposition 28 that £%(p) is injective for each p € C with
—1 < 3J(p) < 0, which implies £ : Hfjf (Co, RP) — Hfﬁ (Co, R?) is injective, and thus (ii)
is proved. Besides, since by duality the operator £ : H g +*(Co,R?) > H g (Co, R?) is formally
self-adjoint; thus, the surjectiveness follows, and (i) is proved. O

3.7. Existence of singular solutions

We prove the existence of solutions to (S, 1). We proceed by studying the spectral prop-
erties of the linearized operator around an Emden—-Fowler solution. Let us remark that by the
implicit function theorem, the existence of solutions to (S, 1) can be obtained by showing that
the linearized operator £¢ is Fredholm. We already know that £ sometimes does not satisfy
this property since its kernel is not closed. To overcome this issue, we introduce the following
definition:

Definition 31. For each v, r, let us consider the deficiency space generated by the Jacobi fields
basis of the linearized operator. In other words,

(i) for j =0, we have Dy ¢(Co, R?) = span{cb;(), Dok

(ii) for j > 1, we have D, ;(Co, RP) = span{@j’j, CIJ;J., CD;]., @;j}.

The fact that there are only two Jacobi fields in (i) of the last definition is a consequence
of Proposition 27. Namely, any zero-frequency Jacobi field with growth less than exponential
(tempered) is generated by the ones obtained by varying geometric parameters in the Emden—
Fowler solution.

Now, we can present the main result of the subsection:

Proposition 32. Let V, t be an Emden—Fowler solution.

@) If B € (Bao. Ba,t). then L% : C* (Co.RP) & Dq0(Co. RP) — Cy* (Co. RP) is a surjective
Fredholm mapping with bounded right-inverse, given by

Gg : Cy* (Co. RP) > Cy* (Co. RP) & Dy 0(Co, RP).

i) If B € (Ba1. Pa2), then L7 Cy* (Co. RP) @ Dy 0(Co. R?) @ Dy 1(Co) — Cy* (Co.RP) is a
surjective Fredholm mapping with bounded right-inverse, given by

¢ = Cy(Co, R?) > C (Co, RP) @ Dy 0(Co, R?) @ Dy 1 (Co, RP).
Proof. We proceed as in Proposition 28. First, we decompose the linearized operator into Fourier
modes and apply the Laplace—Fourier transform. Then, by conjugation, let us define a family of
transformations satisfying the assumptions of classical analytic Fredholm theory. We can there-

fore invert the conjugated operator Zj‘ (p). Afterward, we reconstruct the function by undoing
the Fourier—Laplace transform inverse. In other terms, for all j € N, we take the right-inverse,

gi@)=F;t (e (G (e (Fa@n))).
This provides the proof of the proposition. O
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Remark 33. The necessity of adding the deficiency spaces Dy, j(Co, R?) comes from a
simple form of the linear regularity theorem from [28, Lemma 4.18] and some ODE the-
ory. In addition, note that if § = £f, ;, then £ does not have closed range. Moreover,
we have Schauder estimates in the sense of weighted spaces. More precisely, if V is so-

lution to the inhomogeneous problem L% (V) = W, then V € C;’{ (Co, R?) whenever W €
Cg’g (Co, R?). More generally, it should be possible to find an inverse like g;? =C 2’§ (Co, RP) —
C;M (Co, RP) @Ijzo D,.1(Co, R?), which would give us refined information.

As a consequence of our results, we present the main result of this subsection.
Corollary 34. There exists at least one strongly positive solution V to (C ) o).

Another application is the following improved regularity theorem for solutions to (S 1) in
cylindrical coordinates:

Corollary 35. Let V be a strongly positive solution to L* (V) = W. Assume that V) € C%’g (Co, RP)
and W € c%4 (Co, RP).

D If0<B <P <1, thenV e Cyf (Co.RP);

() IFO<B <1<PB<Pao thenV e c%*‘(co, RP) @ Dy 1(Co, RP).

Proof. First, we use the right-inverse operator Gg in Proposition 32 to obtain that V+ CCD;;O =
Gy (W) e C;’z (Co, RP) @ Dg,1(Co, RP) is also a solution to Gg (V) = W, which implies that V=
V — Y satisfies g (]7) =0. Then, V is exponentially decaying, that is, Ve C?’{ (Co, RP). Finally,

Ve Cyf(Co.RP) since V =V + V, which finishes the proof of (i). The proof of (ii) follows the
same argument, so we omit it. O

3.8. Growth properties for the Jacobi fields

In this part, we apply the spectral analysis developed before to investigate the growth/decay
rate in which the Jacobi fields on the kernel of the linearized operator grow/decay.

Let us begin with some considerations concerning the scalar case p = 1. First, by [12, The-
orem 2], the operator (20) has periodic coefficients. Second, by Proposition 27, we can use
classical Floquet theory (or Boch wave theory) to study the asymptotic behavior of the Jacobi
fields on the projection over V;. For this, we transform the fourth order operator (20) into a
first order operator on R*. More precisely, defining X = (¢, ¢(1), ¢(2), ¢>(3)), we conclude that
the fourth order equation Ej’. (¢) = 0 is equivalent to the first order system X'(t) = N, ;j ()X ().
Here

01 0 0
00 1 0

Naj®O=14 0o o ! :
0 0 —=B; +C4 ;1)

where B; := K3 + 2 and Cq,j (1) = Ko + 2 (xj + Jo) = €m)va,r (1)*" 2.
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Notice that N, ;(¢) is a T,-periodic matrix. Hence, the monodromy matrix associate to this
ODE system with periodic coefficients is given by M, ;(t) = exp fot Ng, j(r)dr. Finally, we
define the Floquet exponents, denoted by 5‘1‘, as the complex frequencies associated with the
eigenvectors of M, ;(t), which forms a four-dimensional basis for the kernel of £7. Using Abel’s
identity, we get that N, ;(¢) is constant, which yields

T T

det(M,, (1)) :exp/trNa,j(t)dt =exp —/Ca,j(r)dr =1.
0 0

Since Ny, j(1) has real coefficients, all its eigenvalues are pairs of complex conjugates. Equiva-
lently, fi‘jl. ={%pa,j, £Pa,j}, Where p, j = 0tq j +iBa,j and Py, j = 0a,j — iBa, ;. Then, the set of
indicial roots of 5‘; are given by 3;‘. ={—Ba,j, Ba,j}. Moreover, for any ¢ € ker(ﬁ‘j‘.), we have

¢() =b1g; (1) + bad, () + D30, (1) + bad, ),

where ¢;E HOES e*tra.i! and $;t 0= e*Pa.jt . Hence, the Jacobi fields’ exponential de-
cay/growth rate is controlled by |8, ;|. Therefore, the asymptotic properties of E‘J’. are obtained
by the study of J¢. Remember that in the definition of indicial roots, we are not considering the
multiplicity; that is, B, 2 stands for all the low-frequency (j = 1) Jacobi fields.

In the following lemma, we give some structure to the set of indicial roots of £¢.

Lemma 36. Let a € [0, ap].

(i) If j =0, then 0 € 7.

(i) If j =1, then {—1,1} C J{.

(iii) If j > 1, then min - | 3? > 1.

Moreover, 3 is a discrete set, namely, 3* ={..., —Ba2,—1,0,1, =B .2, ...}. In particular, the
indicial root O is isolated.

Proof. Let us divide the proof into three case steps, namely, a =0, a = ag and a € (0, ap). In the
first two ones by (3) we know that v, r is constant; thus, the indicial exponents are the solutions to
a fourth order characteristic equation. In this fashion, let us also introduce the following notation
for the discriminant of this indicial equation, Dy ; := B,Z. —4Cqy, ;.

We also divide each step into three cases with respect the Fourier eigenmodes, namely j =0
(zero-frequency), j = 1 (low-frequency) and j > 1 (high-frequency).
Step 1: (spherical solution) a = 0.
When a = 0, we have that v, 7 = 0, then the linearized operator becomes

£99) = — (K2+ 2282 + (Ko +33 +240) .
Therefore, we shall compute the roots of the characteristic equation p* — B | p?— Co,jpo =0.
Case1: j =0, mp=1and Ao =0.

The operator has the following expression

£0(@®) =9 — K29 + Ko

213



J.H. Andrade and J.M. do O Journal of Differential Equations 413 (2024) 190-239

Notice that when D, ; > 0, then B, ; = 0. More generally, the sign of D, ; controls the nature

of the complex roots. It is straightforward to check that the indicial roots of this operator are
_n d ~ _ n—4

00,0 =73 and po,0 = —&—-

Case2: j=1l,m=nandA;=---A,=n—1.

Here we obtain,

L3(¢) =0 — Bi1p@ + Co19.

and the indicial roots are given by po.1 = %(n +2)and pp,1 = %(n —2).
Case3: j>1,m;>nand A; =£(n — 2+ (), for some £ € N.
Here we obtain,

£3¢) =9 - Bj¢® + Co ¢,

and the indicial roots are given by pg ¢ = %(24— VDo) and pp ¢ = % (2 -\ /D()’g), where Do ¢ =
n:—4dn+4+ 4€(n + £ — 2). Notice that Dg ¢ > 0 for £ > 1. Using a direct argument, we can
check that Jpg, j > Jpo,1 and IJpg,; > Ipp,1 for all j > 1, which by the last case concludes the
proof of Step 1.

Step 2: (cylindrical solution) a = ay.

Since vy, =ap=[n(n—4)/ (n2 =448 we proceed identically as in the last step. First, we
have

LL(@) =W — (Kz+22))9? + (Ko + A%+ 00— z‘(n)ag**—z) ¢.

As before, we shall divide our approach as follows
Casel: j=0,mp=1and Ao =0.

1 - 1
Pao,OZE\/n2_4n+8+w/Dao,0 and pao)ozi\/n2—4n+8—‘/Da0,(),

where D0 =n* — 64n + 64.
Case2: j=1l,m=nandA;=---A,=n—1.

In?+2 ~
Pap,1 = ) and Pag,1 = L.

Case3: j>1,m;>nand A; =£L(n — 2+ (), for some £ € N.

1 ~ 1
paaci = 7y 100 +20C = )P + /Dy e and i = /100420 = D) = Dag.r

where Dy =n* +64(¢ — 1)(n + £ — 1).

Step 3: (Emden—Fowler solution) a € (0, agp).

This is the most delicate case since v, 7 is periodic, so the zeroth order term in the operator C?
is also T,-periodic. In this case, it is impossible to compute the Floquet exponents explicitly.
Nonetheless, we can show that they are strictly bigger than one when j > 1.
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Case1: j =0, mp=1and Ao =0.
By Remark 17, it follows that ‘75;,0 is bounded and ¢,  is linearly growing, then 0 € 3 with
multiplicity 2.

Case2: j=1l,m=nand A =---A,=n—1.
Again using Remark 17, it follows ¢jﬁ | == ¢(fn is exponentially growing/decaying, then
{—1,1} C 7%

Case 3: More generally, note that the indicial roots form an increasing sequence,

Ba.0 < Pa1 <+ < Paj < Pajr1—> 00 as  j— 00,

which is a consequence of a comparison principle on a € (0, ap) for the linearized operator in
cylindrical coordinates. O

Lemma 37. The indicial set 3¢ is discrete. Moreover, 3‘]‘- ={..,—Bu2—1,0,1,842,...}. In
particular, the indicial root 0 is isolated.

Proof. It follows directly by Proposition 27. O

Notice that Lemma 36 only provides exponential growth/decay for the Jacobi fields. Never-
theless, we need something slightly more robust to apply Simon’s technique. Namely, for j =0,
we must show that the Jacobi fields are either periodic (bounded) or linearly growing. For the
first two Jacobi fields ¢:,0 and ¢, ), this follows because they arise respectively as the variation
of the necksize and translation parameters that appear in the classification for the Emden—Fowler
solutions. The difficulty here is to show that they generate the zero-frequency space. We over-
come this issue observing that by the direct computation in Lemma 36, we know that 0 € Jgj with
multiplicity two.

Next, we proceed as in [26, Proposition 4.14] to prove the following asymptotic expansion

Proposition 38. Let v € C3° (Co), B €(0,1) and ¢ € H* Zp (Co) satisfying L(¢p) = . Then,

Z) hcg) clléa a;ymptotlc expansion ¢ = ZjeN ¢; with L (¢>1) =0and ¢; € Hfﬁ (Co) for any
c (U, a,j)

Proof. We divide the proof into some steps
Step 1: For 8 € (0, 1), it follows ¢ € Hk (Co).

Indeed, take p € C with 0 < ,8 < J(p) and consider the transformed equation La (,o)(d)) w
where q§ = el ¢ and w = e’p’ w By applying the inverse operator ga (p) in both sides of the last
equation, we get that ¢ £“(p)(1/f) Then, since ¥ € C5°(Cop), it follows that 1//(,0) is an entire
function on p and smooth on (¢, ). Notice that q) is analytic on the half-plane J(p) > B, since
the poles of G%(p) coincide with the zeros of J Finally, take B’ € (8, 1) and since G%(p) has
no poles in J(p) € (B, B), by the Cauchy formula, we can define the contour integral F,° Lup to
().

Step 2: For each B € (0, 1), there exist 8” € (1, B4.2), ¢” € H 1} (Co), and ¢’ € Hk+4 (Co) with
L%(¢") = 0 satisfying ¢ = ¢’ + ¢”. ~

Choose B” € (1, Ba.2) and p” such that 3(p”) = B”. Now let us define ¢” = G%(p”). Finally, we
apply the inverse F, ! on the two contour lines J(p) = B and J(p) = B”, which by periodicity
does not tgvke into account the vertical sides of the rectangle [8, 8”1 x [0,2n] C C. In fact,
é—@" =G%p) — G9(p") is the residue of a meromorphic function with pole at —i.
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We can continue this process by shifting the contour integral to the other poles in the strip. O

Corollary 39. Let € (0, 1), ¥ € CX (Co) N L? 5 (Co) and ¢ € H* s (Co) satisfying L(¢) = .
Then, there exist ¢’ € Hfﬁ (Co) and ¢ € Dy o (Co) such that g = ¢’ + ¢”.

Corollary 40. The following properties hold for the projected scalar linearized operator:

(i) Assume j =0, then the homogeneous equation Lj(¢p) =0 has a solutions basis with two
elements, which are either bounded or at most linearly growing as t — oo;

(i1) Assume j > 1, then the homogeneous equation E? (¢) = 0 has a solutions basis with four
elements, which are exponentially growing/decaying as t — 00.

Proof. For (i), we use Corollary 39. Notice that (ii) follows directly from Lemma 36. O

When p > 1, we can use a similar strategy to study (17). For p = 1, we have constructed
a Jacobi field basis with four elements (two in the zero-frequency case). Now, we must find a
base with 4p elements (2p in the zero-frequency case), sharing the same growth properties in
Corollary 40.

Proof of Proposition 3. First, notice that by Theorem B (ii), there exist a € [0, ag], T € [0, T,]
and A € Sfr_l that provides p + 1 families of solutions given by T +— Av,(t + T), a —
Avg 7(t), and 6 = A(0)v, 7 (1), which by differentiation gives rise to some elements of the
basis. Namely Adr |, _qva.7 (1), Al/ada|,_ova,r(t), and 05, AO)va,7 (1) fori=1,...,p—1.

Second, to construct all the Jacobi fields basis, let us consider {e;};c; C Sr—la linearly inde-
pendent set in R?” with e; = A, which prov1des four families with p Jacobi fields each given by
@:Jl _el¢;_j’ (I);]l ¢u]’ (D:ji _e’(paj’andcpaji_eld)a_]

Then, using Theorem B (ii), it is easy to check that B = U,EI{Cba i @ j ;
kernel of E“ with 4p elements for each j > 1, and Bjj = Uj¢ H{oE 2.0.; abasis with 2p elements
when j = O O

-} is a basis to the

4. Qualitative properties and a priori estimates

This section is devoted to proving Proposition 4. We show that solutions to (S, 1) are asymp-
totic radially symmetric and satisfy an upper and lower bound estimate near the isolated sin-
gularity. Our strategy is to convert (S, 1) into a system of integral equations. Then, we use the
Kelvin transform to perform a moving sphere technique and the Pohozaev invariant with a bar-
rier construction to obtain the a priori estimates. Here, we are inspired by some techniques from
[20]. The main difference in the proofs is that we need to deal with many components of System

(Sp.)
4.1. Integral representation formulas

We now use a Green identity to transform the fourth order differential system (S, |) into
an integral one. In this way, we can avoid using the classical form of the maximum principle.
Besides, it is also possible to prove regularity using a barrier construction in this setting.

For n > 3, the following expression for the Green function of the Laplacian in the unit ball is
well-known
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2—n)

where w,,_1 is the surface area of the unit sphere. In addition, for any u € C 2 (B)NC (Bl), the
next decomposition holds,

G y) = ——— (=P = | —xpy)
Y = = 2 won Y Y

u(x)=/G1(x,y)Au(y)dy+/H1(x,y)u(y)d0y,

B 9B
where

1— |x|?

Hi(x,y)=—-08,,G1(x,y) = —/——
’ Wp—11x — Y|

for xe€B; and ye€dBi,

with v, the outward normal vector at y. B
Similarly, in the fourth order case with n > 5, for any u € ct (BN Cc? (31 ), it follows

u(x):/Gz(x,y)Azu(y)dy-l-/Hl(x,y)u(y)dﬁy—/H2(X,Y)Au(y)d0y7
B dB 9B

where

Ga(x,y) = / G1(x,y1)G1(y1,y)dyr and Hz(x,y)= / G1 (x, y1) Hy (y1,y)dy1.
B x B By x By

By a direct computation, we have

Ga(x,y) =C(m,2)|x — y[*™" — A(x, y), (33)

where C(n,2) = 2};1&”/7;122), A: By x By — R is a smooth map and H;(x,y) > 0fori =1,2.

In the following lemma, we find an integral representation for solutions to (S, 1).
Lemmad4l. LetU € C4(Bi“, RP)N LY (B, RP) be a strongly positive singular solution to (Sp.1)-
Then, |)c|_‘7uiz**_l e LY (By) forany g <n — 4%::—:% and i € I. Moreover,

ui(x) = / Ga(x, y)A%u;(y)dy + / Hi(x, y)ui(y)doy — / Hy(x, y)Aui(y)doy.
By 3B 3B

Proof. It is a straightforward adaptation of [33, Lemma 2.1] to the context of systems. O

In the following proposition, we use the Green identity to convert (S, 1) into an integral
system, which is the main result of this section. Here the superharmonicity condition is assumed.
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Proposition 42. Let U be a strongly positive superharmonic solution to (S, 1). Then, there exists
ro > 0 such that

i) = / =y f@dy + 90 i B o)
By,

where ;> 0 satisfies A>; =0 in B,,. Moreover, one can find a constant ¢ > 0, depending on
¥ such that

IVInillcop,y <c forall iel and 0<7 <ry. (34)

Proof. Using that —Au; > 0in Bi" and u; > 01in By, it follows from the maximum principle that
c1 :=infp, u; = minypg, u; > 0. In addition, by Lemma 41, we get that f; (/) € L' (By), which
implies that there exists ro < 1/4 satisfying the following inequality fBrO [A(x, y)| filh)dy <
c1/2 for x € B,,, where A(x, y) is given by (33). Hence, for x € B, we get

Vi) = — / Alx,y) fi Udy + / Ga(x. y) fiU)dy

Bro B \Bro

+ / H (e y)ui (v)doy — / Hy(x, y) Au; (y)doy

0B 9B

C1
= Y + / Hi(x, y)u;(y)doy
dB
. Cq
> —— fu; = —.
p TR =
By hypothesis y; is biharmonic, then a removable singularity theorem, and elliptic regularity
shows that ¥; € C*°(By,) for all i € I, which provides that |V;| < ¢z in By for all 7 < rp and

i € I, where ¢y > 0 depends only on n,rg — 7, and in the L' norm of fiUf). Consequently,
IVInyillcopsy < 22—? for all i € I, which finishes the proof. O

4.2. Upper bound estimate

The objective is to prove the upper bound estimate in Proposition 4.
First, we use the integral form of the moving spheres technique.

Lemma 43. Let U be a strongly positive solution to (L, ). For any x € By, z € By \
({0} U Bﬂ(x)) and p < 1, it follows that u;(z) — (u;)x,.(z) > 0 foralli e I.

Proof. If I/ is a strongly positive solution to (Z, 1), then, replacing u; (x) by r”u;(rx) for r =
1/2 and i € I, we may consider the equation defined in B} for convenience. Namely, we have
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u;(x) :/|x — " UGy +¥i(x) in B} Zp.2)
By

such that u; € C (B3) N L? ' (B,) and [VIny;| < ¢ in B3jp. Extending u; to be identically
zero outside B, we find

ui(x) =/|x — iUy + ¥i(x) in Bj.
R7

Using the identities in [22, page 162], one has

n—4
( - ) / |Ix,M(Z)—y|n74ﬁ(U(y))dy= / e =" iUy (35)

|z — x|
ly—x|Zn [y—xI<p

and

n—4
( a ) / e @ =" fiU(y)dy = / Iz —yI"™* fiU(y))dy, (36)

|z — x|
ly—x|<p [y—x|>pn

which implies
(i) @) = / = " AUy + (i) 0@ for 2 e T u(B).
Rn

Consequently, for any x € By and 0 < u < 1, it follows

ui(2) = (Ui)x,u(2) = / E(x,y, 1k, 2) [ih) = fiUe,)]dy + [(¥i)x,u(2) = ¥i ()],

ly—x|Zp

for z € B3 U B, (x), where

_ Iz — x| \*" 4
E(x,y,z,m=|z—y|4"—( p 1 Ze @ =y

is used to estimate the difference between a p-map U/ and its Kelvin transform Uy . Finally, it
is straightforward to check that E(x, y, z, u) > 0 for all |z — x| > w > 0, which concludes the
proof of the lemma. O

Second, we use a contradiction argument based on the blow-up classification.
Proposition 44. Let U € C (B}, R”) N L¥"~1(By,RP) be a strongly positive solution to
(Zp2). Suppose that ; € C Y(By) is a positive function satisfying (34) for any i € I. Then,

limsup),_,q [x|"[U(x)| < 0.
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Proof. We assume by contradiction that there exist i € I and {xx}reny C B2 such that
limg o0 [xk| = 0 and |xx|” u; (x¢) — 00 as k — oo. In this fashion, for |x — x| < 1/2]xx],
we define uy; (x) := (|xg|/2 — |x — xx|)Yu; (x). Hence, using that u; is positive and continu-
ous in B\ku/Z (xx), there exists a maximum point Xy € By, /2 (xx) of uy;, that is, ux; (Xx) =
MaX |y, |<|xe|/2 Uki (X) > 0. Taking 2y := |xx| /2 — |xx — xx| > 0, we get

0<2uk<% and '—2"'—|x—xk|>uk For | — ¢l < ur. 37

Moreover, it follows that 2¥u; (xx) > u;(x) for |x — x| < ug and
Qur)” wi (%) = tgi (Xx) = tgi (k) =277 el () —> 00 as k — oo. (38)

We consider wy; (y) =u; (Xx) ™ i Gk + yu; (5) ~1/7) and g (v) =ui (%)~ i G+ yui () /%)
in Q, where Q ={y e R" : x; + yu,-()Ek)’l/V € B;‘}. Now, extending wy; to be zero outside of
Q2 and using Proposition 42, we get

Wi (y) = / FOVOLy —x*dx + hu(y) for ey (39)
R~

and wg;(0) = 1 for k € N, where Wi = ejwyg;. Moreover, from (37) and (38), it holds
Akillcr () — 0 and wi; (y) <2V in Bg,;, where Ry; = pg;u; G'" = 00 as k — oo. Usmg
the regularity results in [22], one can find wg; > 0 such that wg; — wo; as k — oo in ck (R”)
for some ¢ € (0, 1), where wg; > 0 satisfies

loc
. — _ 4-n 2% —1 . n
sz(y)—C(n)/ly x[*Mwg; T'dxin R”,
Rn

or, equivalently Azw()i = fi(wo;) in R". Furthermore, by construction, we conclude wq; (0) =1,
which by Theorem B (i), implies that there exist & > 0 and yg € R” such that

woi ( )—(2—“)y (40)
=T 2y =)

In the next claim, we use the last classification formula to apply the moving spheres technique.
Claim 1: For any p > 0, it holds that (wo;)x, . (y) < wo; () for |y — x| > p.
Indeed, for a fixed ug > 0, we have 0 < o < Rr/10 when k£ >> 1. We also consider Qk ={ye
R” : X 4 yu; )~ 17 € Bf} CC .

Now let us divide the proof of the claim into three steps as follows:
Step 1: For k > 1, it holds that (w;) ,, (V) < wki(y) for y € flk such that |y| > uo
In fact, by Lemma 43, there exists ¥ > 0 such that for all 0 < u <7 and x € By,100,

n—4
r = -
<m> Vii (Zo,u(v) + %) <yri(y+%) for |y|>u and y € Biag/ioo. 41)
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Let k£ > 1 be sufficiently large such that pou; ()Ek)(“_”yl < r. Hence, for any 0 < u < uo, it
holds

Wkide ) <Y (v) in - S\ By, 42)

which by passing to the limit as k — oo concludes the proof of Step 1.

Step 2: For k >> 1, there exists u1 > 0, independent of k, such that (wg;), , (¥) < wki(y) in
SNZk\BM for0 < u < .

As matter of fact, since wy; — wg; as k — 0o in C“-topology and wy; is given by (40) we get
that there exists ¢; > 0 satisfying wg; = ¢ > 0 on Bj for k > 1. On the other hand, by (39) and
standard regularity results, it follows that |D(j)wk,-| <c1 <ooon By for j =1,2,3,4. Using
Lemma 43, there exists ro > 0, not depending on k >> 1, such that for all 0 < p < ry, it holds

(Wri)y, o (V) <wii(y) for 0<p<|y|<ro. 43)
Again, since wg; > c¢1 > 0 on Bj for k > 1, there exists ¢; > 0 satisfying
sk 1
w0 > e [lr-y Ty St i e
1)
B

Therefore, one can find 0 < 1 < rgp < 1 sufficiently small such that for all 0 < < 1, we have

n—4 n—4
i K
(wii)y (¥) < <|y—|> max Wki < €1 <m> Swii(y) for ye and |y|=ro,
ro(x)

which combined with (43) proves Step 2.
Step 3: For k > 1, it holds that u* = g, where

= sup {0 < 0 < po s (W), () < wii (»), y € e with [y — xo] > 1 and 0 < e < o).

Indeed, using (35), (36) and (42), it follows

wii (¥) — (Wii)o, 0 (V)

- / E(O,y,z,u)[wki(z)z**"—(wki)o,u(z)z**’]]dZJr[%ﬁki(Y)—Wki)o,u(y)] (44

R™\B,

> / EO, v,z ) [wi @™ = i 7 dz 4 7 gawna ),
ﬁk\B/L

forany p* <u<u*+1/2and y e §~2k with |y| > u, where
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2**_1 2**_1
Jw = [ EQy.zm [wi@* ™ = i 0z
R\

- / EQ,y,z, 1) [wki 69 R (Wki)o, (Z)z*tl] dz

Qu\

- / EQ,y, 2, 1) (o, (0 ~dz.
Rn\gk

For z e R\ Qr and pu* < o < u* + 1, we obtain that |z] > 1/2u (%)~ "7 and thus

n—4
M - =2
(Wki)o, . (2) < (—) max wg; < caui (Xk) ™~ .
|Z| B;L*-H

In addition, since u; > ¢ > 0in B3 \ By 2, by the definition of wy;, we have wy; (y) > oy (Xk) in
Qi \ €, which in turns yields
1 ‘l 2% 1 n+4
T i, y) > ( ) | Eoyzwgz-a [ E(Oyzu)< ) &
u; (50) 5 2l
Q\ R\
45)

><g(|y|—u)u,~(xk)‘, if w<lyl<u*+1

éui()fk)_l, if |y|>wp*4+1 and yeﬁk.

Indeed, E(0,y,z, 1) =0 for |y| = e, and yVyE(O.y. 2, 1)\, = (n = Dy —2* "2 (1z* -
ly|?) > 0, for |z| > u* 4 2, which together with the positivity and smoothness of E implies the
existence of 0 < §; < &, < oo satisfying

Sily — 21"yl — w) S E0, y,z, 1) < &1y — 21" Iyl — w), (46)

for W* <pu <yl <p*+1, u*+2<|z] < R < oo. Furthermore, if R > 1 is large, it follows
that0<61 <y-Vy(ly—z"” 4E(O,y,z,/w))<61 <ooforall |z > p, p* <pu < |yl <p*+ 1.
Thus, (46) holds for w* <<yl < u*+ 1 and |z] > R. Besides, by the definition of
E(0,y, z, n), there exists 0 < §3 < 1 such that

Sly —z* "< E©,y,z, 1) < |y —zI*", (47)

for |y| > u*+ 1 and |z| > u* 4 2. Therefore, fork > 1 and u < |y| < u*+ 1, we find ¢3,¢4 > 0
satisfying

1 c1 2%k _ ~
J(u,wk,-,y»—( - ) / Sily — 21" (Iyl — wdz
2 \ui (Xk) 5
Qi \ 2%
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n+4
-0 / Saly —2* "Iyl - M)<| |> dz

R\

1 1
> —(yl — wu; G~ = =yl — wu; )~
c3 Cc4
1
> 5yl =i ()~ !
c3

Similarly, for |y| > u*+1land y € E’zk, since u; (xx) — oo as k — oo, there exist cs, cg > 0 such
that J (i, wii, y) > ui (5) ™' — Lu,» G2 > si-ui (%), which verifies (45).

Next, by (44) and (45) there ex1sts g1 € (0, 1/ 2), depending on k, such that for |y| > u* 4+ 1,
it holds wy; (y) — (wki)o,u+ (¥) = €1 ly|*~" in Qk Using the last 1nequa11ty and the formula for
(wki)o, ., there exists 0 < &2 < €1 < 1 such that for |y| > pu* + 1, u* < u < u* + &2, we get

wii (¥) = (Wi, () 2 a1y 1" + [(wiido o () = (i) (0] = %lly|4_n~ (48)

For ¢ € (0, €3] that will be chosen later, by (44) and (45) combined with the inequality, we obtain

2**—1‘

¢7 > 0 such that |(wg;) (z)z**_1 — (Wki)o,p (2) < ¢7(|z| — ), which implies

wii (¥) = (Wi, (¥) > / E©, v,z (w7 ™ = (o 7 dz
n<lzl<pt+1

[ By (@ = o )z
W2z <43
> —c7 / EQ,y,z, w)(|z| — w)dz
u<lzI<pute

+ / EQ©,y,z, 1) (wki @)% - (Wki)o, (Z)z**_l> dz

nte<|z|<p*+1

[ By (e @ = o )
W2z SpuF+3
foru* <u<pu*+eand u < |y| u + 1. From (48) there exists 85 > 0 such that for u* 42 <

lz] < u* + 3, it follows wy; (z)2" ! — (Wkido, 4 (2)2" =1 > §5. Moreover, since there exists some
constant cg > 0, not depending on ¢, such that || wii[|c1(p,) < ¢s (independent of k) for uw <<

¥+ e, we get [(wii)o s ()7 = (wiido.u () T < es(pe—pu*) < cge, for < 2] < p*+1.
Also, for u < |y| < u* + 1, we find

/ EQ,y,2,1)dz < / (v =2 = 1T, () — 21*™") dz

putelzl<pu*+1 +e<lzl<p+1
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N

pte|zl<pu*+1
<ey (24 Inel+1) (y1 = w

|To.u(y) — 2| dz

and
/ EQ©,y,z, w)(|z] — u)dz < / (| |Z_|Z|rfi4 _ |z| — 1 n4>dz
n<lzlSpute <lzl<pu+e Y }IO,M(y)_Z|
w n—4 i
A () B s
u<lzlSpte

< T +cse(lyl — w),

where, for |y| > u + 10¢, we arrive at

/- / ( |zl —n 2l - )dz <c88(53+|ln8|+1)(|y|—u).

|y—z|”‘4_ T __n—4
<lzlSput+e |0,u(y) Z|

On the other hand, for u < |y| < u + 10g, it follows

[ < / ( LT M)dz
Iy =z |Zo.u(v) — 2|

<lzI<p+10(lyl—p)

Z|— Z| —
N / <||5_4_ 2] "n_4)dz
ly—zl |Zo..(») — 2|

+10(yl-w)<lzISp+e

1 1
<cg(lyl—w) / < + dz
|y _Z|n—4 T. _ n—4
U< 100y ~) [Zo.u () =2

|z| —p
+08‘y—10,u()’)| m

uA10(y - <zl pnte
<cs(lyl = p) sup / F—zl"dz
ZeRn
n<|z|<pu+100e
<es(lyl—we?".
Finally, using (47), for u < |y] < ©* 4+ 1 and 0 < ¢ « 1 sufficiently small, it holds
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4 _
wii (¥) — (Wkido, e (¥) = —cgen (Jy] — w) +8195(|y[ — w) / ly —z|*™"dz
uH2L |z St +3

4
> (3185 —ese ) Iyl =) >0,
which together with (48) contradicts the definition of u* > 0, if u* < uo. Hence, the proof of

Step 3 is finished, so Claim 1. Besides, this is also a contradiction with (40), which concludes
the proof of the proposition. O

Consequently, we obtain the upper bound estimate of Proposition 4.

Corollary 45. Let U be a strongly positive singular solution to (S, 1). Then, there exists C» >0
satisfying [U(x)| < Ca|x|7Y for 0 < |x| < 1/2.

4.3. Asymptotic radial symmetry

Here, we prove the convergence of singular solutions to (S, 1) to their spherical average
Ux) = fd B U(r8)do. In particular, this approximation implies that they are asymptotic radi-
ally symmetric with respect to the origin.

Proposition 46. Let U be a strongly positive singular solution to (S, 1). Then, |U| is radially
symmetric with respect to the origin and {U(x)| = (1 + O(|x|))[U(x)| as x — 0, where |U| is its
spherical average.

Proof. First, we prove the following claim:
Claim 1: There exists 0 < & < min{1/10, v} such that [U, , (¥)| < [U(y)| in Bi(x) \ B, (x) for
0 < u < |x| < e, where 7 is such that (41) holds forall 0 < u <r.
We divide the proof of the claim into two steps as follows:
Step 1: The critical parameter

W) s=sup {0 < < x| < Uy ) < UG for y € Ba \ (Bu(x) U{0}) and 0 < o < p*}
is well-defined and positive.
Indeed, using Lemma 43, for every x € B{,,, one can find 0 < ry < |x| such that for all 0 < u <

ry,itfollows Uy, (y)| < |U(y)| for 0 < u < |y — x| < rx. Moreover, as a consequence of (7, 2),
we get

U@)| =44 / | fi@)|(y)dy :=c1 >0, (49)
B

which implies that there exists 0 < 1 < ry such that, for every 0 < u < pu1, it holds
U DI < U for y e By\ (B, (x) U{0}). (50)
Hence, as a combination of (49) and (50), it follows the proof of Step 1.
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Step 2: There exists € > 0 such that u* = |x| for all |x| <&, u* < < |x| <7, and y € B, we
get

ui(y) = i)z, u(y) 2 / EQ,y,2,w) [fiU@) — fiUsu(@)]dz+ J (. u, ),
B1\By (x)

forany i € I, where

J(p,ui,y) = / E(x,y, 2,10 [fiU(2)) = fiUsu(2))]dz
B\ By

- / E(.X, Y, 2, M)fi(ux,u(Z))dZ.
R”\Bz

In fact, for y e R" \ B; and u < |x| <& < 1/10, we have

w2y —x)

X+ | Z x| — = u” = x| = —lx]” = Slxl.
ly — x| 9

Ix,u(y) = 9 9

Using Proposition 43, there exists ¢ > 0 such that |/(Zy ,,(¥))| < c2]x|™Y, which, for all y €
R™\ By, yields

"
ly — x|

By (49), we find U, (y)| < [U(y)| for y € B> \ B;. In addition, combining (49) and (50) with
the proof of (45), there exist ¢3 > 0, independent of x, such that

n—4
|ux,,u(y)| = ( ) 124 (Ix,;/.(y)) | < CZMn_4|x|_y < C2|x|y < e’

J (s U1, y)
2 / E(_x’y’z’ M) <C]2**_1 _Cg**_18n+4) dZ
B2\B)
**_1
o [ Beovzw (w-atrar)T e
R\ B,

1 *k n+4
> / E(x,y.z.)dz—&"T ¢y / E(x,y,z,wlx — 2" dz
B>\ By R\ B,
1 ¥k __] n+4 n+4
2561 EQ,y—x,z,)dz —e 7 ¢ EQ,y —x,z,Wlx —z|"dz
Big/10\B11/10 R™\By9/10
1
2 _(|y_x| _:u/)a
Cc3
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for y € B\ (Bu(x) U {0}) and 0 < ¢ < 1. Eventually, if ©* < |x|, by Lemma 43, we get a
contradiction with the definition of u*. Hence, Step 2 is proved, and so Claim 1.

Finally, for any i € 1, choose 0 < r; < ¢Z and x|, xp; € 9B, satisfying u;(x1;) = maxyg,. Ui
and u; (xp;) = miny By, Wi- Now choosing

& (x1; — x27) \/Si &
X3 =x1; +————— and u; = —(x-—x-+—),
3i 1i 41x1; — x| Mi 4 |x1; 2 | 4

it follows from Claim 1 that (4;) s, u; (¥2;) < u; (x2;). Furthermore, we have
_ Y
Wy s (620) = (“—) ey = 1 ui (x17)
PRI lx1; — x2i| +&i /4 e 4\x1; —le-lsi’l +1 e

| 12
2| ——— ) uix),
<8reil+1> e

which implies maxyp, Ui < (8r,~€’] + l)y ming By, Ui and this proves the proposition. O

As a consequence of the upper estimate, we prove the following Harnack inequality for solu-
tions to (S, 1), whose scalar version can be found in [6, Theorem 3.6].

Corollary 47. Let U be a strongly positive solution to (S, 1). Then, there exists ¢ > 0 such that

max |[U(x)| < cmin |[U(x)] for O0<r<1/4.
lx|=r |x|=r

Moreover, | DDU(x)| < clx| {U)| for j =1,2,3,4and 0 <r < 1/4.

Proof. For any i € I, let us define #;(y) = r”u; (ry). Thus,

i (y) = / ly — 217" fi U (2))dz + hi (), (51)
By

where Jf,-(y) =rYy;(ry). By Corollary 45, there exists Cp > 0, such thaL'zZl- < C2in By \ Byj10-
Taking |x| = 1, let us consider (g;)x(y) = fBz/,(x)\Bg/m(x) ly — z|*™" f; (U(z))dz. Hence, for any
Y1, Y2 € By2(x), there exists ¢; > 0 such that

(01)x (1) < ci / ly — 2I*7" f: U(2))dz < c1(01)x (2),
By (x)\Bg/10(x)

which implies that o; satisfies the Harnack inequality in Bj,2(x). On the other hand, ; also
satisfies the Harnack inequality in By/2(x) and

i (y) = / ly — 2" fi@hdz + (01)x(y) + hi(y) in Byjp(x).
Bg/10(x)
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Now by [22, Theorem 2.3], there exists ¢ > 0 such that SUPg, 5 (x) ul c 1nf31/2(x) u;, which by
a covering argument provides sup; ,»<|y<3/2 u; < cainfy/2<|y<3/2 Ui, and, by rescaling back to
u, the proof of the first part follows. _

Next, for any fixed x and i € I, let r = |x| and @;(y) = r¥u;(ry). Thus, U satisfies (51)
and, by Corollary 45, it holds that #; < C; in B3y \ By for all i € I. Finally, using the lo-
cal estimates from [22, Section 2.1] and the smoothness of ;, one can find c¢3 > 0 satisfying
IDW;(x)| < c3 for |x| = 1and j = 1,2, 3,4, which, by scaling back to u;, concludes the proof
of this corollary. O

4.4. Lower bound estimate

Next, we use the Pohozaev invariant, the Harnack inequality, and a barrier argument to prove
a removable classification result, which implies the lower bound estimate in Proposition 4.

Lemma 48. Let U € C (B; R”) N L2 =1 (By,RP) be a strongly positive solution to (Zp2).
Assume y; € C°(By) foralli € I. If lim SUP|y |0 [ (x)| = 00, then liminf|y|¢ [U(x)| = 00

Proof. Let us consider {x;}reN C By satisfying ry = |xx| — 0 and u; (xz) — oo as k — oo. By
the Harnack inequality, we have inf, B, Ui — 00 as k — oo. Thus, we obtain —A(u; — ¢;) >0
in Bj forall i € I. Hence, since y; € C*°(By) for all i € I, it follows minBrk\Brk_H u; (x) - 0o
as k — oo. Therefore, we conclude minBrk\B (u; — ;) = minaBrk uaB,, . (u; — i), which
proves the lemma. 0O

Tk+1 Tk+1

Lemma 49. Let Y € C (Bi“ ]Rp) N LY =1 (B,, RP) be a strongly positive solution to (Zpo) If
lim o |x ]V [Ux)| =0, then [U| can be extended as a continuous function to the whole Bj.

Proof. Let us consider the barrier functions from [22]. For any i € [ and § > 0, we choose
0 < p < 1 such that u; (x) < 8|x|77 in B;‘. Fixing ¢ > 0, « € (0, y) and ¢ > 1 to be chosen
later, we define

) cilx| ™ Felx*"F, if0<|x|<p
() =
o ui(x), if p < x| <2.

Notice that for every 0 <k <n —4 and 0 < |x| < 2, one can find ¢, > 0 such that

4—n
J R G e e e e A
R~ R~

4—n
=|X|7K+4/’|X|71X_Z‘ |Z|K*4>dZ
R”7

1 1 e
<o—F—+—+1)x
n—4—«x «
which, for 0 < [x| <2 and 0 < § < 1, yields
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ok _ % _ _ *k_ 1
/u,2 2(Msi(lx — y[*"dy < 8* 2/gi(y)lx—yl” Hyl Ty <8 gi(x) < 55i().
B, R

Moreover, for 0 < |x| < p and X = px|x| ™", we get

_ 4 2**_1 2**_1
2%k _) den g [x — "™ u; » n—da u; »
/ up TMsiMlx —y["dy = / =y |i_y|,,_4dy<2 4|x_y|n_4dy

B>\B, B>\B, B)\B,

" ui (%)
—4 maxu;.
9B,

<2
<2

The last inequality implies that for 0 < |x| < 7 and ¢; > maxyp , Uiy, WE have

2% 2
uy “C(Msi(y) - 1
g(x)+/%dy<gi<x>+2” Ymaxu + =6 (x) < 6 (x).
lx — y[*=" 3B, 2
B

In the following claim, we show that ¢; can be taken indeed as a barrier for any u;.
Claim 1: For any i € I, it holds that u; (x) < ¢;(x) in B;.
Indeed, assume it does not hold. Since u;(x) < 8|x|~7 in B}, by the definition of ¢;, there exists
T € (0, p), depending on ¢, such that ¢; > u; in BE and ¢; > u; near 9B,. Let us consider
T .= inf{t >1:7¢; >u;in B;}. Then, we have that T € (1, 00) and there exists x € B, \ B>
such that T ¢; (x) = u; (x). Furthermore, for 0 < |x| < 7, it follows

Foi() > / )T W x — y [y T () > / 2076l =y dy 46 (o),
By B

which gives us T¢g; (x) —u; (x) > fBz ul.z**_z(y)(fgi (y) — u; (y))|x — y|*~"dy. Finally, by evalu-
ating the last inequality at x € B, \ Bz, we get a contradiction, which proves the claim.

As a consequence of the claim, we get that u;(x) < ¢;i(x) < cp]|x|™* + elx|*"% in B;‘,
which, by passing to the limit as ¢ — 0, implies that uiz**—z el’ (BZ) for some s > n/4 and any
i € I. Hence, using standard elliptic regularity, the proof of the lemma follows. O

Proposition 50. Let U € C (B;) N LY =1 (By) be a strongly positive solution to (Sp1). As-
sume ; € C*®°(By) is a positive function in R" satisfying A*W; =0 in By for all i € I. If
liminf)yj—o [x]Y [U(x)| =0, then limx o |x| U (x)| = 0.

Proof. Assume by contradiction that there exists ¢; > 0 such that limsup,_, o |x|” [U(x)| =c1 >
0; thus, from Lemma 48, we get liminf||_.¢ [/ (x)| = oco. Using the assumption and the Harnack
inequality in Lemma 47, there exists {ri}ren such that vy — 0 and r,f u; (rg) > 0as k — oo.
As well as, ry is a local minimum point of ¥ u; (r). Furthermore, let e, = (0,...,1) € R"” and

define @i (y) = :["((::ey")), which combined with (Z, »), gives us
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2+ ) wn_ _ .
ki (y) = / (rfui (reen)) o (? My — 2"z + Y (y) in By
BZ/rk

where Wi (v) = u; (ren) ™' i (ry).

Claim 1: For any i € 1, it follows that limy_, o0 1 (¥) = 1/2(|y|*™ 4+ 1) in C12OC R™\ {0}).

In fact, since u; (rye,) — 0o, we have that ¥, (y) — 0 as k — oo in C} . (R"). Next, using
the Harnack inequality, we obtain that r,l/ u; (rye,) — 0, and @y; is locally uniformly bounded
in Bé"/rk. Hence, limy_, oo (r,’(’ui (rken))2 -2 Oki (y)z**_1 =01in C}{ (R"\ {0}). Thus, for any
T>1,0<|y|<tand 0 < ¢ < |y|/100, up to subsequences, it follows

2%k _D ok 2%k -2 o
(uen)” “gu@>t /(rZ ulien)” " eu@ !

lim d
k—00 |y—z|”_4 k—o00 |y—z|"_4 .
B Be
(1+0()) .. y PARE) x|
= MT klirgo (rk u (rke,,)) @ki (2) dz.

By

By sending ¢ — 0, we have that limg_, o fo (r,i/u(rken))z**_2 <pki(z)2**_1|y —z|4_”dz =
e y|4_”, for some ¢y > 0. Moreover, since the left-hand side of the last equation is locally

uniformly bounded in Cﬁjc'l (By), for any i € I, there exists o; € C* (B;) satisfying

. 2%% -2 ok — .
Jin [ o) @y~ =000 20 in Gl (B,
B>\ B

In addition, for any fixed R > 1 and y € B, we have

. ¥k _D Hok _
lim / (7 s (reen))” 2 @2y — 2[*"dz =0,

k— o0
t<|yI<R

and for any y;, y» € By, we obtain

22 wr_ _
(rfui (reen)) o (@) My — 2tz
B/ \Br
R +T n—4 ¥k _9 % _
< (R — T) / (rl ui (reen))” @i (@7 Hyo — z1*dz.

Ba/r \BRr
. R n—4 . . ..
Therefore, it follows g; (y1) < (R—J_r;) 0i (32), which, by passing to the limit as R — oo

and exchanging the roles of y; and y», implies o; (y2) = @i (y1). Whence, 0;(y) = 0;(0) for all
y € Br and i € I. Since gy; is locally uniformly bounded in B} 10 it is also locally uniformly

bounded in C”H(B;/rk). Hence, up to subsequence, ¢; — @; as k — oo in Cji (R™\ {0}),
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for some o;, which yields that limg_ oo @i (¥) = c2|y[*™" 4+ ¥, (0) in Cl. R™\ {0}). Using that
@ki (en) =1 and

d - d
AT o = e T )| =0,

r=ry

by taking the limit k — oo, it follows that ¢ = ¥; (0) = 1/2, which proves the claim.
Claim 2: lim, oo Psph (rx, U) = 0.
In fact, for any i € I, let us consider u;(x) = fBz fi@h)|x — y|*"dy + ¥;(x) in R" \ {0},
which provides that i; = u; in B}, and u; (x) = fBz fi(ﬁ)lx — y|**dy 4+ i (x) in R™ \ {0}.
Consequently, using that A%y; =0 in B, for any i € I, it follows that A%%; = f;(U) in Bj.
On the other hand, we know that Pg,n(ri,Uf) is a constant on r. Moreover, since there ex-
ists c3 > 0 such that |[DWgy;| < C near 9B, and r,l/u(rken) =o(l) as k — oo, we have
IDDu;(x)| < ez ulrie,) = o(l)rk_y_k for all |x| =r¢ and j = 1,2, 3,4, which proves the
second claim.

Hence, using Claim 2, it holds that Py, (¢, ) = 0 for k € N. Thus, by (12), we get

P P
~ 22 o
> / q (pri (%), @ri (0)) dx + () (rf wi (rien))” > / lgxi () > dx =0,
i=lyp, i=lyp,
where we recall that g is defined by (13). Next, sending k — oo, and doing some manipulation,
we obtain [,z ¢(1x|*™" + 1, [x|*~" 4+ 1)dx =0.

Y
On the other hand, by Theorem B (i), we know that Uy , (x) = A ( ) satisfies (S, o)

2u
1+|x|2u?
for some A € Sf_;l, which, for any u > 0, implies that Py, (1, Uy, ;) = lim, s o0 Pspn (r, Up, 1) =
0. Hence, we find

P 14
> / q (17 @) 177 @i)o,) dx +Empt ™"y / (Ui} dx =0,
i=ly7p, i=lgp,

which, by taking the limit as u — 0, provides
0= [ Lo (b 1t 1) =g (1 1) | aor
dB

=(n—4) / 3,A (|x|4_") do #£0,

dB
which is a contradiction. This concludes the proof of the proposition. O
Using the last lemma, we can present a removable singularity theorem.

Corollary 51. Let U be a strongly positive solution to (S, 1). Then, Pspn(U) < 0 and Psph(U) =
0, if, and only if, U has a removable singularity at the origin.
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The lower bound estimate is a direct consequence of the last results.

Corollary 52. Let U be a strongly positive singular solution to (S 1). Then, there exists C1 > 0
such that Ci|x|77 < |[U(x)| for 0 < |x| < 1/2.

Ultimately, we have the proof of the main theorem in this section.
Proof of Proposition 4. It is a combination of Corollaries 45 and 52. O
5. Local asymptotic behavior

In this section, we present the proof of Theorem 1. To this end, we use the growth properties
of the Jacobi fields in Proposition 3 and the a priori estimates in Proposition 4. We know that in
the high-frequency case, there is a basis of four linearly independent Jacobi fields, two of which
grow unbounded and the others exponentially decay. Surprisingly, this Jacobi field basis has only
two elements in the zero-frequency case.

We employ the so-called Simon’s convergence technique for strongly positive solutions to
(Cp,00), which can be summarized in following steps:

(a) There exist Cy, C2 > 0 such that any strongly positive solution to (C, o) satisfies the uniform
estimate C; < |[V(¢,0)| < Co;

(b) If 7p — oo and Vi (t,0) := V(¢ + 1%, 0). Then, the slide back sequence {V;};cN converges
uniformly on compact sets to a bounded solution Ve to (Cp,0);

(c) Any angular derivative |dpV(¢, )| converges to 0 as t — 00;

(d) There exists S > 0 such that for any infinitesimal rotation dg of S"=1, and for any t — 00,
if we set Ag = sup, > |09V (2, 0)|, and if |99 Vi (tk, 0)| = A for some (i, 6k) € Co, then s < S;
(e) 189 V(t, 0)| converges to 0 exponentially as r — oo, as well as |V (¢, 60) — V(t)|, where V is a
spherical average of V;

(f) There exists a bounded solution V, 7 of (C) ~) and o > 0 such that V(¢,6) converges to
V(t + o) exponentially as t — oo.

The steps above are verified by combining Theorem B, Proposition 3 and Proposition 4.
Namely, we prove a result equivalent to Theorem 1 written in cylindrical coordinates.

Proposition 53. Let V be a strongly positive singular solution to (C o). Then, there exists f; > 0
and an Emden—Fowler solution V, T such that

V()= +0EHN)W,r(t) as t— oco. (52)

Proof. Initially, by Remark 11, the origin is a non-removable singularity. Thus, using Corol-
lary 51, we have that Pspn(Uf) < 0. Let V = FU) and {7i}xcN be such that 1p — 00 as k — oo.
We define the sequence of translations Vi(t, 6) = V(t + 11, 0) defined in Cy, := (—1x, 00) X
S"~!. Hence, applying Proposition 4, we get C; < |Vi(t,8)| < Ca, which yields that {Vi}ren
is uniformly bounded in Cﬁo’f (Co, RP) for some ¢ € (0, 1). Hence, by standard elliptic regular-

ity, there exists a limit solution V, € Cﬁ;f (R, R?) such that, up to subsequence, Vy — Vo as
k — oo, where Vo, satisfies (C o). Thus, by Theorem B (ii), Vw, is an Emden—Fowler solution,

that is, there exist a € (0, ap) and T € (0, T;) such that Vo, =V, 7 and does not depend on the
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variable 0, where V; 7 = Av, 7 with v, 7 a solution to (4) and A = (Aq,...,Ap) € S+ . » that
is, A; >0foralli €.
We divide the rest of the proof into some claims.
Claim 1: The following elliptic estimates hold:
(1) Vi(1,0) =Vi(1)(1 +0(1));
(i) VVi(2,0) = =V, () (1 + o(1));
(i) AVt 8) = Vi (1)(1 + o(1)):
(iv) VAVL(1,6) = =V (1)(1 + o(1)).
Indeed, if (i) is not valid, there would exist £ > 0 and 7z — 00, 6 — o0 such that |M 11>
€, which is a contradiction since Vy — Vs and Vs is radially symmetric. The same argument
holds for (ii), (iii), and (iv). This estimate implies (b), that is, any angular derivative |dgVk|
converges uniformly to zero.
Claim 2: The necksize of V, does not depend on k € N.
In fact, this is a consequence of the following identity

Pcyl(voo) = Pcyl(o, Vo) = kll{lgo PCyl(O’ Vi) = kll>rgo Pcyl(fka V)= Pcyl(v)v

which says that for each {ri};cN, the correspondent sequence {Vi}rcN converges to V, 1 1=
Av, 1 as k — oo, where T does not depend on k.

In the following claim, we prove (c), (d), (e), and (f).
Claim 3: There exist o € R and 8§, c2 > 0 such that [V, (¢,0) — Va7 (¢)| < c2ePo! on Co.
As a matter of fact, we divide this argument into three steps. First, let 7, € R be the funda-
mental period of the Emden—Fowler solution v, 7 and define A; = Sup;>o |09 V:|. Since |09 V¢ |
converges uniformly to zero as t — 0o, we have A; < 00.
Step 1: For every ¢ > 0, there exists an integer N > 0 such that, for any 7 > 0 either:
(i) A; < ce 27 or
(ii) A, is attained at some point in 50 Iy =1In X S"=1, where Iy = [0, NT,].
Suppose that the claim is not true. Then, there exists ¢; > 0 and Tr, O — oo such that
[0gVr (s, k)| = Ag, and Ag > cre 2% a5 k — o0. We_define Vk(t 0) = Vi (t + sr,0) and
o) = 189Vk In addition, we have that |®;| < 1 and Vk satisfy (C,,0), which by differenti-
ation w1th respect to 6 implies that £ (P) = 0. Now, using standard elliptic regularity, we can
extract a subsequence {®y},cn Which converges in compact subsets to a nontrivial bounded Ja-
cobi field satisfying £ (&) = 0. Finally, since ® has no zero eigencomponent relative to Ap and
thus is unbounded, this contradiction proves Step 1.

Assuming that Vi (¢, 8) converges to V,(t + T) as k — oo, we define Wy (¢,0) = Vi (t,0) —
Vo (t +T), nk = omaxy, [Wkl|, and &y = nk_IVk, where ¢ > 0 will be chosen later and satisfies
|Dr| < Q_l in I . Then, by Theorem B (ii), it follows

A2 Wi — [ [0 = AvZ T*‘] —0, (53)

where

Vi |2**—2 2 *—2 p

aT Z
Vkj + Aiva,T) -
W2 =v2, = )

fiVo) = A2 7 = Wil ok + Aivar
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Multiplying (53) by nk_l and taking the limit as k — oo we get £ (®*) = 0, where ®* =
limk_)oo Cbk.

Step 2: The Jacobi filed ®* is bounded for all ¢ > 0.

Using Proposition 3 and the Fourier decomposition (21), we get ®* = b1¢;0 + 0@, + o,
where  is the projection on the subspace generated by the eigenfunctions associated to the
nonzero eigenvalues of Ag. We will use Proposition 3 to show that ® is bounded. Indeed,
we need to verify that 3953 = 0y D is bounded for ¢ > 0. In this fashion, we have that dy® =
limg—; oo Nk 09 Vi. Furthermore, the result follows if dy® is zero. Then, we suppose that dg P is

nontrivial. In this case, if (i) of Step 1 happens, we get sup; > (n,jl |89Vk|> < cn,?le_zu <ec.
On the other hand, if (ii) of Step 1 happens, since nk_l |89 Vk| converges in the C*¢-topology,

we have sup, > (nk |89Vk|> supy, (nk |89Vk|) c. The last two inequalities imply that o
is bounded.

To finish the proof of Step 2, we must show that by = 0. Indeed, since & = 17,:] Wi — @ as
k — 00, we obtain

Vi =Var + m®* +o(p) = T+77k(b1q3a0+b2¢’ 0+<I>)+0(77k)

On the other hand,
Peyi(0, Vi) = Peyi (th, V) = Peyi(V) + Oe2%) = Peyi(T, Vy) + O(e>%).

Then, if by # 0, we would have a contradiction, since n,jle’%k =o0(1) as k — oo and the two
sides of the last equality would differ for sufficiently large k.

Let us define W, (¢,0) = V(¢ + 7,0) — V,(t + T) and n(r) = omaxy, |W;|, where Iy is
defined in Step 1 and p > 0 will again be chosen later. For a fixed ¢, > 0, we have the following:
Step 3: Assume that N, 0,7 > 1 and 0 < nn < 1. Then, there exists § > 0 such that for |§] <
con(t), it holds

2n(t + NT, +6) < n(v). (54)

Suppose that (54) does not hold. Then, there would exist tx — oo such that n(tx) — 0 and for
s > 0 satisfying |s| < can(tx) we have n(tx + NT, +5) > 1/2n(7;). Similarly to the previous
step, let us define &y = r;(rk)_Ier; thus by Step 2, we can suppose that {®y };cN converges to
a bounded Jacobi Field ®*, which provides

O* =b0F+ D, (55)
where ® has exponential decay. Since |<i>| <o~ 'on Iy, we get that by is uniformly bounded and
independent of 7 > 0. Moreover, we know that or 00 = = 04V, 1 1s bounded and & 00 = =0 Va1
is linearly growing. Setting sy = —n(tx)b1, we can choose ¢y >> 1 sufficiently large such that
Isk| < |can(tx)]. Hence, for t € [0,2N T,], we get

Wets (8,0) =V + 7 — n(t)b1,0) — Vo1 ()

Va,r(t = n(m)b1) — Va1 (1)

=V (t —n(t)b1,0) — Vo, (t — n(ti)b1) — n(ti)by
—n(t)by
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= (@) x(t — n(x)b1,0) — (b1 D + o(n(w))
=W (1,60) — n(w)b1 ®,  + o(n ().

Therefore, by (55), we obtain Wy, = n(rk)dVD + o(n(zx)) on [0,2NT,], which implies
maxyy Wryts+nN1, | = max(nt, 2N T, [Wey 45| < n(t) maxpy, (|P]) +o0(n (k). Then, since ||
decreases exponentially in a fixed rate, one can choose N, ¢ > 1 sufficiently large satisfying
maxjy Wy 454N, | < 271y (zx), which implies n(z + NT, + s) < n(z). This is a contradic-
tion, and this step is proved.

Now, we use Step 3 to construct a sequence that converges to the correct translation parameter.
Step 4: There exists o > 0 such that |[WW, (¢, 8)| converges exponentially to 0 as t — oo.
First, choose 79, N > 1 such that Step 3 is satisfied and c2n(7g) < 2-INT,. Set s = —n(70)b1
as above; thus [sg| < c2n(19) < 2-INT,. Let us define inductively three sequences:

k-1
ok=T0+ Y Si, =T 1+ 1 +NL=0x +kNTs sp=-n(m)bi.
i=0

Notice that by induction, it follows that n(tx) < 27 *n(w0) and |sg| < 2¥"'NT,. Then, there
exists o = limy_ 0k < 79 + NT, and so tx — 0o as k — co. Now choosing k € N such that
t =kNT, + [t] with [t] € Iy, we can write

Wo(t,0) =V(t +0,0) — Ava,r =V(t +0,0) = V(t + 0k, 0) + V(1 + 0k, 0) — Avg,7(1).

Since 9;V is uniformly bounded, we get V(t 4+ o, 0) — V(t 4 ok, ) = 9;V(to) Zﬁk si =027k,
for some 19 > 0 and V(¢ + 0, 0) — Va1 (t) = V(i + [t],60) — Va.r([t]) = W([¢], 8), which
provides Wy (t,0) = Wy, ([t],6) + O@27%). Therefore, using that bmaxy, Wy | = n(w) <
27ky(0), we obtain that |Wj (¢, 0)| = O(27%) as k — 00, or in terms of t = kN T, + [r], it fol-
lows |[W, (t,0)| < cze_’{’LTzat, which, by taking ,3(’)k = —In2/NT,, concludes the proof of Step 4.
Finally, we observe that Claim 3 directly implies (52), and so the theorem is proved. O

At last, the proof of our main result is followed by a direct consequence using the inverse of
the cylindrical transformation.

Proof of Theorem 1. It follows by undoing the cylindrical transformation in (52) and rescaling
back to the original ball. O
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Appendix A. Deformed Emden-Fowler solutions

In this appendix, we follow [21] to introduce the family of deformed Emden—Fowler solutions.

Here, recall that y = (n — 4)/2 the Fowler rescaling exponent. We construct a 2n-parameter
family of solutions using the pullback of a composition of three conformal transformations de-
scribed below. First, take p = 1 and consider an Emden—Fowler solution with 7' = 0, given
by ugs0(x) = |x|7Yvs(—In|x]); thus, using an inversion about the unit sphere, we obtain
Ug,0(x) =|x|7"vs(In]x]). Second, we employ an Euclidean translation about xo € R" \ {0} to
get g 0,x(X) = Ix|x|72 = xo| 7Y va(In |x|x]| =2 = x0]). Finally, applying another inversion, we
find ug 0,5, (x) = [x|7V16 — x0lx|| 7Y v (= In|x]| +In |0 — x0x]), where 6 = x|x|~!. Moreover, in
cylindrical coordinates, we have

Va,0,x0 (1, 0) =10 — x0e ™| 7V v (t +1n |6 — xp0e ™). (56)
Finally, taking a time translation T' € (0, 7)), we construct the families u, 7 x, and vg, T x,. Sec-
ond, in the case p > 1, we can proceed similarly to define the family of vectorial deformed
Emden—Fowler solutions U, 7,x, and V, 7 x,. The parameters xo € R” and T € (0, T,) corre-
spond to conformal motions. In contrast, the so-called Fowler parameter a € (0, ap) does not

have a geometrical interpretation.

Remark 54. In the light of Theorem B (ii), for p > 1, it follows that U, 7 x, = Aua, 1,5, and
Vi, T.xo = AVa,T,xy, Where A € Si;l and u,, 1 x, and vy, T 5, are scalar Emden—Fowler solutions.

Lemma 55. For any a € (0, ag) and xo € R", we have Uy 0,x,(x) = (1 + O(|x)Uy,0(Ix|) as
|x] — 0.

Proof. Initially, we take p = 1 and calculate the Taylor series of u, ¢, x, nearby |x| =0,
el ™! = xolx]]” =1+ y (x0 - x) + O(1x ). (57)
Similarly, In |x|x| ™! — xq|x|| = —(x0 - x) + O(|x|?), which implies
va(=1In x| = (0 - x) + O(1x[%) = va (= In|x]) = v (= Inlx))(xo - 1) + O(x ). (58)
Combining, (57) and (58), we obtain

a0, () = X7 o (= In|x]) + (x0 - ) (0" (= In|x]) + y va (= In[x]) + O(lx[)]
= 1q,0(X) + x| 7 (xo - ) (=" + yva) + O(lx| 77 72),

which together with Theorem B (ii) yields
Ua 050 (X) = Ua 0(x) + [x]77 (x0 - ) (= VP + ¥ V) + O(1x| 77 72); (59)
this concludes the proof of the Proposition. O
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Remark 56. Since the Jacobi fields and the indicial roots of the linearized operator £ are not

counted with multiplicity, we have CDZI == CDI ,, and (59) can be reformulated as
n
Un 0,000 = [xI” | Va | =t fxl+ x| [ Y xx@) @ | +Ox) (60)
j=1

= x| Va(=In|x| + (x0 - )@ | (= In|x]) + O(x[*))] as [x|— 0.

In cylindrical coordinates, we can rewrite

Vaoxo 6, 0) =Va(t) + 7 (0,a) (VY +yVo) + O(e™) as t — o0. 61)

Nevertheless, for the translation f/a, xo(t,0) =V, (t — 19, 0) with tg = —1In|xg|, we have

Varo 0.0) = (=VD + V) +O(1) as 1 — oo.

Also, notice that when (a,6) > 0, then |Vu.0.x,(t,0)| > [Va(®)| and [Va.0.,(t, 0)| > [Va(@®)].
Moreover, the opposite inequality holds when (a, 6) < 0.

We discuss the statement in Remark 2 to complete our analysis. Based on the surjectiveness of
the linearized operator stated in Proposition 30, we provide a higher order expansion for solutions
to (Cp,o0), Which can be stated as

Proposition 57. Let U be a strongly positive superharmonic singular solution to (S, ). Then,
for any xo € R" there exists an Emden—Fowler solution V, 1 such that

UC) = 13177 [Va(=In x| + ) + (o - 007 (= Infx| + T) + Ol | as Jx| =0,
(62)
where B} :=min{2, B, 2} > 1.

Proof. We start with p = 1. Using the asymptotics proved in Theorem 1, we deduce

u(x) = x| v (=Inlx]) = x| [va (= Inlx] + 7o) + w(=In|x ],

where ¢ € C4_’g (C) for some B > 0. Moreover, since v, satisfies (4), we get LY () = V¥ (¢),
where

V() = e+ )2 =02 = a2 2.

It is straightforward to see that if ¢ € CT/’;S (C), then ¥ (¢) € CT’Z’; (C) for any m € N. Now,
we can run an iterative method. First, assume that g € (0, 1/2), then using Claim 1, we obtain
¥ (¢) € C94(C). In addition, by (i) of Corollary 35, we have ¢ € C*3,(C) and ¥/ (¢) € C*,(0),

which implies w € Ci’fﬁ (C). After some steps, we conclude that w € Cg‘,'S (C) for some B’ €

(1/2, 1). Therefore, ¥ (¢) € cﬁg‘ﬁ, (C) and by (ii) of Corollary 35, we find that ¢ € cﬁg‘ﬁ, ©) ®
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D, 1(C), which provides ¢ € Cg"s(C) for 8/ = min{2p’, B, 2}. In addition, we observe that 8’ >
B is optimal.
Finally, (62) follows as consequence of Theorem B (ii). O

In conclusion, we have the following refined asymptotics.

Corollary 58. Let V be a solution to (C, o) and V, T an Emden—Fowler solution to (C, ). Then,
there exists B} > 1 such that

WV(t,0) = Var (@) —mo[V](,0) —m [V](2,0)] < ce Pt for >0,
where ,3;“’1 =min{2, B;2} > .
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