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Abstract

We study asymptotic profiles for singular solutions to a class of critical strongly coupled fourth order 
systems on the punctured ball. Assuming a superharmonicity condition, we prove that sufficiently close to 
the isolated singularity, singular solutions behave like the so-called Emden–Fowler solution to the blow-up 
limit problem. On the technical level, we use an involved spectral analysis to study the Jacobi fields’ growth 
properties in the kernel of the linearization of our system around a blow-up limit solution, which may be 
of independent interest. Our main theorem positively answers a question posed by Frank and König (2019) 
[12] concerning the local behavior of singular solutions close to the isolated singularity for scalar solutions 
in the punctured ball. It also extends to the case of strongly coupled systems, the celebrated asymptotic 
classification due to Korevaar et al. (1999) [21].
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1. Description of the results

We study the local behavior for strongly positive singular solutions to the critical fourth order 
system,

�2ui = c(n)|U |2∗∗−2ui in B∗
R, (Sp,R)

where B∗
R := Bn

R(0) \ {0} ⊂ Rn with n � 5 and R < ∞ is the punctured ball, �2 is the bi-
Laplacian, U = (u1, . . . , up) : B∗

1 → Rp is a p-map solution and |U | = (
∑p

i=1 u
2
i )

1/2 is its 
Euclidean norm. System (Sp,R) is strongly coupled by the Gross–Pitaevskii nonlinearity fi(U) =
c(n)|U |2∗∗−2ui with associated potential F(U) = (f1(U), . . . , fp(U)), where 2∗∗ = 2n/(n − 4)
is the critical Sobolev exponent, and

c(n)= n(n− 4)(n2 − 4)

16
(1)

is a dimensional normalizing constant.
Let us introduce some terminology. We say that U is a classical solution to (Sp,R) if each 

component ui ∈ C4,ζ (B∗
1 ), for some ζ ∈ (0, 1), and satisfies (Sp,R) pointwise. In addition, U is 

called a singular solution to (Sp,1), if the origin is a non-removable singularity for |U |, that 
is, lim|x|→0 |U(x)| = ∞. Otherwise, the origin is called a removable singularity, and U is a 
non-singular solution of (Sp,R). By a strongly positive (nonnegative) solution U to (Sp,R), we 
understand a classical solution such that ui > 0 (ui � 0) for all i ∈ I := {1, . . . , p}. We call U
superharmonic in case −�ui > 0 for all i ∈ I := {1, . . . , p}. By the maximum principle, su-
perharmonic nonnegative solutions are weakly positive, that is, for any i ∈ I either ui > 0 or 
ui ≡ 0.

The first step to studying this local behavior is to classify the solutions to the blow-up limit 
system

�2ui = c(n)|U |2∗∗−2ui in Rn \ {0}. (Sp,∞)

These limiting profiles are often called Emden–Fowler solutions.
Let us compare our system with its scalar counterpart. Indeed, when p = 1, we get that (Sp,R)

reduces to the following fourth order critical equation,

�2u= c(n)u2∗∗−1 in B∗
R. (S1,R)

On this subject, C. S. Lin [23, Theorem 1.3] proved that all positive non-singular solutions to 
(S1,R) with R = ∞ are radially symmetric. He also obtained a closed expression for these so-
lutions. Additionally, if the origin is a non-removable singularity, R. L. Frank and T. König [12, 
Theorem 2] (see also [14, Theorem 1.3]) proved that these solutions are also classified. Recently, 
T. Jin and J. Xiong [20, Theorems 1.1 and 1.2] used a Green identity for the poly-Laplacian and 
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some localization methods to study an equivalent integral equation, proving asymptotic radial 
symmetry and sharp global estimates for singular solutions to (S1,R) with R <∞. These results 
can be compiled in the following statement.

Theorem A. Let u be a positive solution to (S1,R). Assume that
Case (I): (punctured space) R = ∞.

(i) If the origin is a removable singularity, then there exists x0 ∈ Rn and μ > 0 such that u is 
radially symmetric about x0 and, up to a constant, is given by

ux0,μ(x)=
(

2μ

1 +μ2|x − x0|2
) n−4

2

. (2)

These are called the (fourth order) spherical solutions (or bubbles).
(ii) If the origin is a non-removable singularity, then u is radially symmetric with respect to the 

origin. Moreover, there exist a ∈ (0, a0] and T ∈ (0, Ta] such that

ua,T (x)= |x| 4−n
2 va(ln |x| + T ). (3)

Here a0 = [n(n − 4)/(n2 − 4)]n−4/8 and Ta ∈ R is the fundamental period of the unique 
periodic bounded solution va to the following fourth order Cauchy problem

{
v(4) −K2v

(2) +K0v = c(n)v2∗∗−1

v(0)= a, v(1)(0)= 0, v(2)(0)= b, v(3)(0)= 0,
(4)

where

K0 = n2(n− 4)2

16
and K2 = n2 − 4n+ 8

2
.

We call both ua,T and va,T (fourth order) Emden–Fowler (or Delaunay-type) solutions.

Case (II): (punctured ball) R < ∞, and the origin is a non-removable singularity. Suppose that 
u is superharmonic. Then, u(x) = (1 +O(|x|))u(|x|) as x → 0, where u is the spherical average 
of u. Moreover, there exists ua,T as in (3) such that

u(x)= (1 + o(1))ua,T (|x|) as x → 0. (5)

Here v(j) = d(j)

dt (j)
for j ∈N denotes the j -th order ordinary derivative v with respect to t .

We now move to the vectorial case. In this situation, using sliding techniques and ODE analy-
sis, in [2] the present authors obtained the classification for solutions to the limit blow-up system 
(Sp,∞). Before, we define Sp−1

+,∗ := {x ∈ Sp−1 : xi > 0}.
192



J.H. Andrade and J.M. do Ó Journal of Differential Equations 413 (2024) 190–239
Theorem B. Let U be a strongly positive solution to (Sp,∞).

(i) If the origin is a removable singularity. Then, there exists � ∈ Sp−1
+,∗ such that U = �ux0,μ, 

where ux0,μ (see (2)) is a positive solution (S1,R) with R = ∞;

(ii) If the origin is a non-removable singularity. Then, there exists � ∈ Sp−1
+,∗ such that U =

�ua,T , where ua,T (see (3)) is a positive solution to (S1,R) with R = ∞.

Our main result in this manuscript proves that strongly positive solutions to (Sp,R) have a 
local asymptotic profile near the isolated singularity given by the radial solutions to (Sp,∞).

Theorem 1. Let U be a strongly positive superharmonic singular solution to (Sp,R). Then, there 
exist a solution Ua,T to (Sp,∞) and 0 < β∗

0 < 1 such that

U(x)= (1 +O(|x|β∗
0 ))Ua,T (|x|) as x → 0. (6)

Let us mention that Theorem B and Theorem 1 extends Theorem A for the vectorial case 
p > 1. In addition, p = 1 improves the remainder error term in the estimate (5).

Remark 2. As a by-product of our arguments, one can improve the decay of the remainder term 
in (6), using deformed Emden–Fowler solutions in the sense of Appendix A (see [21, Section 7]). 
Precisely, under the assumptions of Theorem 1, we have the following refined asymptotics

U(x)= (1 +O(|x|β∗
1 ))Ua,T ,0(|x|) as x → 0, (7)

for some β∗
1 > 1 and Ua,T ,0 deformed Emden–Fowler solution to (Sp,∞).

From the geometric point of view, R. Schoen and S.-T. Yau [32] highlighted the importance 
of studying geometric singular equations and describing their asymptotic behavior near their 
singular sets. Indeed, a positive smooth solution u ∈ C∞(Rn \ {0}) to (S1,R) with R = ∞ pro-
duces a conformally flat metric ḡ = u4/(n−4)δ0 such that ḡ has constant Q-curvature equals 
Qg = n(n2 − 4)/8, where δ0 is the standard flat metric, and

Qg = − 1

2(n− 1)
�gRg − 2

(n− 2)2 |Ricg |2 + n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2 R2
g,

is a fourth order analog of the conformal Laplacian, where �g , Rg , and Ricg are the Laplace–
Beltrami, scalar curvature and Ricci operator with respect to g. By the stereographic projection, 
(S1,R) is the particular case of the singular Q-curvature equation on the punctured round sphere⎧⎨⎩Pgu= c(n)u2∗∗−1 on (Sn \ {p,−p}, g0)

lim inf
x→±p

u(x)= ∞,
(8)

where g0 is the standard round metric and

Pgu=�2
gu− divg

(
(n− 2)2 + 4

Rgg − 4
Ricg

)
du+ n− 4

Qgu

2(n− 1)(n− 2) n− 2 2
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is the Paneitz–Branson operator (for more details, see [17] and the references therein). In this 
language, (6) with p = 1 states that any complete metric with nonnegative scalar curvature and 
constant Q-curvature is asymptotic to a Delaunay metric near an isolated singularity.

Now, we discuss some existing literature for second order equations. The singular Yamabe 
problem is a second order geometric PDE similar in spirit to (8). In the conformally flat case, 
[4] develops a measure-theoretic version of the Alexandrov technique to prove that solutions to 
this second order equation defined in the punctured ball are radially symmetry. Moreover, they 
classified these global singular solutions in the punctured space. They obtained the local behavior 
in the neighborhood of the isolated singularity, proving that any singular solution converges to 
an Emden–Fowler one.

Later, in [21], a more geometric approach for proving (6) is provided, based on the Jacobi 
field growth for the linearized operator around a blow-up limit solution. This was later extended 
to the case of general background metrics [25], at least for low dimensions. For second order 
strongly coupled systems, in [8,9] the blow-up solutions to an analog of (Sp,R) are classified. 
Also, in [5], an asymptotic classification is obtained, similar in spirit to the one Theorem 1.

Strongly coupled systems also appear in several mathematical physics branches. For instance, 
in hydrodynamics, for modeling the behavior of deep-water and Rogue waves in the ocean [10,
24]. As well as it can be used as a model in the Hartree–Fock theory for Bose–Einstein double 
condensates [1,11].

The strategy to prove Theorem 1 relies on asymptotic analysis. Roughly speaking, this is a 
combination of classification results, some a priori estimates, and linear analysis. Using a simple 
scaling argument, we may assume that R = 1 in (Sp,R), which gives us

�2ui = c(n)|U |2∗∗−2ui in B∗
1 , (Sp,1)

where c(n) > 0 is given by (1).
The first step is to show that the Jacobi fields (elements in the kernel of the linearization of 

(Sp,1) around a blow-up solution) satisfy suitable growth properties:

Proposition 3. For any a ∈ (0, a0], the projected (on the j -th eigenspace of spherical harmonics 
with j ∈ N) linearized operator (see Lemma 12) satisfies:
(i) For j = 0, the homogeneous equation La

0(�) = 0 has a solutions basis with 2p elements, 
which are either bounded or at most linearly growing as t → ∞;
(ii) For each j � 1, the homogeneous equation La

j (�) = 0 has a solutions basis with 4p ele-
ments, which are exponentially growing/decaying as t → ∞.

Inspired by [5,16], we use the spectral analysis of the linearized operator to prove the last 
proposition. The issue is that not all the Jacobi fields are generated by variations of some param-
eters in the classification of the Emden–Fowler solutions. To overcome this problem, we show 
that the spectrum of the linearized operator is purely absolutely continuous. More precisely, it 
is the union of spectral bands separated by gaps away from the origin. Therefore, the geometric 
Jacobi fields generate the zero frequency deficiency space. We also need to show that solutions 
to (Sp,1) satisfy upper and lower bounds estimate near the isolated singularity

Proposition 4. Let U be a strongly positive superharmonic solution to (Sp,1). Then, U is radially 
symmetric with respect to the origin. Moreover, either the origin is a removable singularity, or 
there exists C1, C2 > 0, satisfying
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C1|x| 4−n
2 � |U(x)| � C2|x| 4−n

2 for 0 < |x|< 1/2. (9)

The main ingredients in the proof of Proposition 4 are the blow-up method based on the clas-
sification result for non-singular solutions to (Sp,∞) given by (2) and a removable singularity 
result relying on the sign of the Pohozaev invariant associated to (Sp,1). The difficulties in our 
argument are numerous. The lack of maximum principle causes one due to the fourth order oper-
ator on the left-hand side of (Sp,1). To handle the problem with the lack of maximum principle, 
we apply a Green identity to convert (Sp,1) into an integral system [20]. Then, we prove that sin-
gular solutions satisfy an upper and lower bound near the isolated singularity; these arguments 
are based on an integral form of the moving spheres technique. We also need to deal with the 
nonlinear effects imposed by the coupling term on the right-hand side of (Sp,1). The idea is to 
use Theorem B combined with some decoupling techniques from [8,9,13,18], which yields a 
comparison involving the norm of a p-map solution and each component.

Finally, the proof of Theorem 1 is a combination of Theorem B, Proposition 3, and Proposi-
tion 4, which is called Simon’s (or slide-back technique) and arises in the theory of regularity for 
isolated singular points of minimal hypersurfaces.

Here is our plan for the rest of the paper. In Section 2, we introduce some tools to be used 
throughout the text. In section 3, we use an involved spectral analysis to prove Proposition 3. In 
Section 4, we use the integral moving spheres technique to prove Proposition 4. In Section 5, we 
apply Simon’s technique to prove Theorem 1. In Appendix A, we prove a refined asymptotics 
for singular solutions.

2. Preliminaries

This section aims to introduce some necessary background for developing our methods.

2.1. Kelvin transform

The moving spheres technique we will use later is based on the fourth order Kelvin transform 
for a p-map. For � ⊆Rn a domain, before we define the Kelvin transform, we need to establish 
the concept of inversion through a sphere ∂Bμ(x0), which is a map Ix0,μ : � → �x0,μ given by 
Ix0,μ(x) = x0 +Kx0,μ(x)

2(x − x0), where Kx0,μ(x) = μ/|x − x0| and �x0,μ := Ix0,μ(�) is the 
domain of the Kelvin transform. In particular, when x0 = 0 and μ = 1, we denote it simply by 
I0,1(x) = x∗ and K0,1(x) = x|x|−2.

The following definition is a generalization of the Kelvin transform.

Definition 5. For any U ∈ C4(�, Rp), let us consider the fourth order Kelvin transform through 
the sphere with center at x0 ∈Rn and radius μ > 0 defined on Ux0,μ :�x0,μ → Rp by

Ux0,μ(x)=Kx0,μ(x)
n−4U

(
Ix0,μ(x)

)
.

Now, we emphasize the invariance of System (Sp,1) under the action of Kelvin transform.

Proposition 6. Let U be a non-singular solution to (Sp,1), then Ux0,μ satisfies

�2(ui)x ,μ = c(n)|Ux ,μ|2∗∗−2(ui)x ,μ in (B∗)x ,μ for i ∈ I,
0 0 0 1 0
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where Ux0,μ = ((u1)x0,μ, . . . , (up)x0,μ).

Proof. It is a direct consequence of the formula

�2ux0,μ(x)=Kx0,μ(x)
n+4�2u

(
Ix0,μ(x)

)=Kx0,μ(x)
8(�2u)x0,μ(x),

which is obtained by a simple computation. �
2.2. Cylindrical transformation

This subsection introduces a transformation that converts singular solutions to (Sp,1) into 
non-singular solutions in a cylinder. Then, the local behavior of singular solutions near the origin 
reduces to understand the asymptotic global behavior for tempered solutions to a fourth order 
ODE defined on a cylinder.

Let us introduce the so-called (logarithmic) cylindrical transformation. First, we consider 
C0,1 = (0, 1) × Sn−1 and �2

sph the bi-Laplacian written in spherical (polar) coordinates,

�2
sph = ∂(4)r + 2(n− 1)

r
∂(3)r + (n− 1)(n− 3)

r2 ∂(2)r − (n− 1)(n− 3)

r3 ∂r

+ 1

r4�
2
σ + 2

r2 ∂
(2)
r �σ + 2(n− 3)

r3 ∂r�σ − 2(n− 4)

r4 �σ ,

where �σ denotes the Laplace–Beltrami operator on Sn−1. Then, we can rewrite (Sp,1) as

�2
sphui = c(n)|U |2∗∗−2ui in C0,1.

In addition, we apply the Emden–Fowler change of variables (or logarithm cylindrical coor-
dinates) given by V(t, θ) = rγU(r, σ), where r = |x|, t = − ln r , θ = x/|x| and γ = (n− 4)/2, 
which sends the problem to C0 = (0, ∞) × Sn−1.

Using this coordinate system and performing a lengthy computation, we arrive at the follow-
ing fourth order nonlinear PDE system on the cylinder,

�2
cylvi = c(n)|V|2∗∗−2vi on C0. (Cp,0)

Here �2
cyl is the bi-Laplacian written in cylindrical coordinates given by

�2
cyl = ∂

(4)
t −K2∂

(2)
t +K0 +�2

θ + 2∂(2)t �θ − J0�θ, (10)

where K0, K2, J0 ∈R are constants depending only on the dimension, which is defined by

K0 = n2(n− 4)2

16
, K2 = n2 − 4n+ 8

2
, and J0 = n(n− 4)

2
.

Furthermore, the superharmonicity condition −�ui > 0 is equivalent to

−∂
(2)
t vi + 2∂tvi +√

K0 −�θvi > 0.
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Notice that, in the blow-up limit case, solutions are rotationally symmetric, which transform 
(Cp,0) into the following ODE system

v
(4)
i −K2v

(2)
i +K0vi = c(n)|V|2∗∗−2vi in R, (Cp,∞)

which can be taken with suitable initial conditions to become a well-posed Cauchy problem.
Along these lines, let us introduce the cylindrical transformation defined as follows

F : C∞
c (B∗

1 ,R
p)→ C∞

c (C0,R
p) given by F(U)= rγU(r, σ ),

which sends singular solutions to (Sp,1) into solutions to (Cp,0).

Remark 7. In the geometric language, this change of variables corresponds to a restriction of 
the conformal diffeomorphism between the entire cylinder C∞ := R × Sn−1 and the punctured 
space, namely, ϕ : (C∞, gcyl) → (Rn \ {0}, δ0) defined by ϕ(t, σ) = e−t σ . Here gcyl = dt2 + dσ 2

stands for the cylindrical metric and dθ = e−2t (dt2 + dσ 2) for its volume element obtained via 
the pullback ϕ∗δ0, where δ0 is the standard flat metric. In this fashion, our choice for the symbol 
�2

cyl =�2
sph ◦ F−1 is an abuse of notation since the cylindrical background metric is not flat, we 

should have Pcyl =�2
sph ◦F−1, where Pcyl stands for the Paneitz–Branson operator of this metric 

in the new logarithmic cylindrical coordinate system.

2.3. Pohozaev invariant

In the next step, we define a type homological invariant associated with (Sp,1). This invariant 
is the main ingredient in providing a removable singularity theorem and is one of the features 
for developing the convergence method. The existence of a Pohozaev-type invariant is closely 
related to a conservation law for the Hamiltonian energy of the ODE system (Cp,∞).

Initially, let us introduce a vectorial energy that is conserved in time for all p-map solutions 
V to system (Cp,0), which depends on the angular variable.

Definition 8. For any V strongly positive solution to (Cp,∞), let us consider its Hamiltonian 
Energy given by

H(t, θ,V) := Hrad(t, θ,V)+Hang(t, θ,V), (11)

where

Hrad(t, θ,V)= −〈V(3)(t, θ),V(1)(t, θ)〉 + 1

2
|V(2)(t, θ)|2 + K2

2
|V(1)(t, θ)|2

− K0

2
|V(t, θ)|2 + ĉ(n)|V(t, θ)|2∗∗

,

Hang(t, θ,V)= |�θV(t, θ)|2 + 2|∂(2)t ∇θV(t, θ)|2 − J0|∇θV(t, θ)|2, and ĉ(n)= 2∗∗−1
c(n).

A standard computation shows that the Hamiltonian energy is invariant on the variable t , that 
is, ∂tH(t, θ, V) = 0 for all solutions V to (Cp,0). Hence, we can integrate (11) over the cylindrical 
slice to define another conserved quantity as follows
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Definition 9. For any V strongly positive solution to (Cp,0), let us define its cylindrical Pohozaev 
integral by

Pcyl(t,V)=
ˆ

Sn−1
t

H(t, θ,V)dθ.

Here Sn−1
t = {t} × Sn−1 is the cylindrical ball with volume element given by dθ = e−2tdσr , 

where dσr is the volume element of the Euclidean ball of radius r > 0.

Since that by definition P also does not depend on t , let us consider the cylindrical Pohozaev 
invariant Pcyl(V) := Pcyl(t, V). Hence, applying the inverse of cylindrical transformation, we 
recover the classical spherical Pohozaev integral defined by Psph(r, U) :=

(
Pcyl ◦ F−1

)
(t,V), 

which satisfies the following Pohozaev-type identity:

Lemma 10. Let U , ̃U ∈ C4(B∗
1 , R

p) and 0 < r1 � r2 < 1. Then, it follows

p∑
i=1

ˆ

Br2\Br1

[
�2ui〈x,∇ũi〉 +�2ũi〈x,∇ui〉 − n− 4

2

(
ũi�

2ui + ui�
2ũi

)]
dx

=
p∑
i=1

⎡⎢⎣ ˆ

∂Br2

q(ui, ũi)dσr2 −
ˆ

∂Br1

q(ui, ũi)dσr1

⎤⎥⎦ .

Here

q(ui, ũi)= 2 − n

2
〈�ui, ∂νũi〉 − r

2
〈�ui,�ũi〉 + n− 4

2
〈ui, ∂ν�ũi〉 + 〈x,∇ui〉∂ν�ũi

−�ui

n∑
j=1

xj ∂νũij ,

where ̃uij is j -th coordinate function of ui and ν is the outer normal vector to ∂Br2 .

The last lemma is a vectorial version of the fourth order Pohozaev identity in [7, Proposi-
tion 4.1] (see also [20, Propositon A.1]).

Proof. See the proof in [7, Proposition 4.1]. �
Remark 11. Using the last lemma, we present an explicit formula for the spherical Pohozaev 
invariant

Psph(U)=
ˆ

∂Br

[
p∑
i=1

q(ui, ui)− rĉ(n)|U |2∗∗
]

dσr, (12)

where
198
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q(ui, ui)= 2 − n

2
�ui, ∂νui − r

2
|�ui |2 + n− 4

2
ui, ∂ν�ui + 〈x,∇ui〉∂ν�ui −�ui

n∑
j=1

xj ∂νuij .

(13)

For easy reference, we summarize the following properties:
(i) There is a natural relation between these two invariants, Psph(U) = ωn−1Pcyl(V), where ωn−1
is the (n − 1)-dimensional surface area of the unit sphere;
(ii) In the blow-up limit case, one can check that if the non-singular solution is Ux0,μ =�ux0,μ for 
some � ∈ Sp−1

+ and ux0,μ a spherical solution, we obtain Psph(Ux0,μ) = 0. Also, if the singular 

solution has the form Ua,T = �ua,T for some � ∈ Sp−1
+ and ua,T an Emden–Fowler solution. 

Then, a direct computation shows Psph(Ua,T ) = Psph(ua,T ) = Pcyl(va,T ) = cnH(va,T ) < 0 for 
some cn > 0 dimensional constant (for more details see [31, Corollary 4]).

3. Linear analysis

The objective of this section is to prove Proposition 3. More precisely, we show the linear 
stability of the linearized operator by studying its spectrum. Consequently, we can control the 
asymptotics for solutions using the growth of the Jacobi fields, computed using Floquet theory 
(or Bloch wave theory). Namely, we prove that spec(La) is a disjoint union of nondegenerate in-
tervals with 0 ∈ Ia an isolated point. The strategy is to use a decomposition to study the spectral 
bands of the Jacobi operator. We proceed by applying the Fourier–Laplace transform combined 
with some results from holomorphic functional analysis [27,28]. For complex numbers, we de-
note ρ = α + iβ , where 
(ρ), �(ρ) stands for its real and imaginary parts, respectively.

3.1. Linearized operator

Now, we study the linearized operator around blow-up limit solutions. The heuristics are that 
when this operator is Fredholm, its indicial roots determine the rate at which singular solutions 
to the nonlinear problem (Sp,1) converge to this limit solution near the isolated singularity. Here, 
we borrow some ideas from [3,28].

First, let us consider the following nonlinear operator acting on p-maps N (U) := �2ui −
fi(U), where we recall fi(V) = c(n)|V|2∗∗−2vi for i ∈ I . Then, using the cylindrical transforma-
tion F : C∞

c (B∗
1 , R

p) → C∞
c (C0, Rp) and the homogeneity of the Gross–Pitaevskii nonlinearity, 

we obtain

Ncyl(V) :=�2
cylvi − fi(V). (14)

In what follows, we drop the subscript since we often will be using the operator written in cylin-
drical coordinates.

Lemma 12. The linearization of N : H 4(C0, Rp) → L2(C0, Rp) around an Emden–Fowler so-
lution Va,T to (Sp,∞) is given by

La
i (�)= φ

(4)
i −K2φ

(2)
i +K0φi −

[
c(n)v2∗∗−2

a,T φi + n(n2 − 4)

2
v2∗∗−2
a,T �i〈�,�〉

]
(15)

+�2
θφi + 2∂(2)t �θφi − J0�θφi,
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where � = (�1, . . . , �p) ∈ Sp−1
+,∗ , and dNcyl

[
Va,T

]
(�)= La (�) is the Fréchet derivative of N

with � = (φ1, . . . , φp).

Proof. By definition, we have that La
i (�) := Li[Va,T ](�), where

Li[Va,T ](�)= d

dt

∣∣∣
t=0

N (Va,T + t�) (16)

=�2
cylφi − c(n)

[(
2∗∗−2

) |Va,T |2∗∗−4〈Va,T ,�〉�i(Va,T )+ |Va,T |2∗∗−2φi

]
,

where �i(Va,T ) denotes the i-th component of the Emden–Fowler solution Va,T ∈ C4(R, Rp).
To prove this fact, we observe that since fi is (2∗∗ − 1)-homogeneous, we find

N (Va,T + t�)−N (Va,T )

=�2
cylVa,T + t�2

cyl�− fi
(
Va,T + t�

)−�2
cylVa,T + fi

(
Va,T

)
= t�2

cyl�+ fi
(
Va,T

)− fi
(
Va,T + t�

)
= t�2

cyl�− tc(n)
[(

2∗∗ − 2
) |Va,T |2∗∗−4〈Va,T ,�〉�i(Va,T )+ |Va,T |2∗∗−2φi

]
+O

(
t2
)
,

which implies (16).
Moreover, using the classification formula in Theorem B (ii), one can find a unit positive 

vector � = (�1, . . . , �p) ∈ Sp−1
+,∗ and va,T ∈ C4(R) the unique T -periodic solution to (4) with 

va,T (0) = a such that Va,T =�va,T , and so �i(Va,T ) =�iva,T . From this, we find

�2
cylφi − c(n)

[(
2∗∗ − 2

) |Va,T |2∗∗−4〈Va,T ,�〉�i(Va,T )+ |Va,T |2∗∗−2φi

]
= φ

(4)
i −K2φ

(2)
i +K0φi

− n(n− 4)(n2 − 4)

16

[
8

n− 4
|�va,T |2∗∗−4〈�va,T ,�〉�iva,T + |�va,T |2∗∗−2φi

]
+�2

θφi + 2∂(2)t �θφi − J0�θφi

= φ
(4)
i −K2φ

(2)
i +K0φi − c(n)v2∗∗−2

a,T φi − n(n2 − 4)

2
�i〈�,�〉v2∗∗−2

a,T

+�2
θφi + 2∂(2)t �θφi − J0�θφi.

Hence, we can simplify (16) to obtain (15), which proves the lemma. �
3.2. Jacobi fields

Unfortunately, the linearized operator is not generally Fredholm since it does not have a closed 
range [29, Theorem 5.40]. Nontrivial elements on its kernel cause this issue; these are called the 
Jacobi fields [3]. Therefore, we need to introduce suitable weighted Sobolev and Hölder spaces 
on which the linearized operator has a well-defined right-inverse, up to a discrete set on the 
complex plane. For more details, see [30, Section 2].
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Definition 13. Given k, p, q � 1 and β ∈ R, for any V ∈ L
q

loc(C0, Rp) define the following 
weighted Lebesgue norm

‖V‖q
L
q
β(C0,Rp)

=
∞̂

0

ˆ

Sn−1

e−2βt |V(t, θ)|qdθdt.

Also, let us define the weighted Lebesgue space by Lq
β(C0, Rp) = {V ∈ L

q

loc(C0) : ‖V‖Lq
β(C0,Rp)<

∞}. Similarly consider the Sobolev spaces Wk,q
β (C0, Rp) of p-maps with k weak derivatives 

in Lq having finite weighted norms. Here we also denote the Hilbert space Wk,2
β (C0, Rp) =

Hk
β (C0, Rp) and Wk,q(C0) = Wk,q(C0, R). Notice that when β = 0, we recover the classical 

Sobolev spaces of p-maps.

Definition 14. Given m, p � 1, β ∈ R and ζ ∈ (0, 1), for any u ∈ C
0,β
loc (C0, Rp) define the fol-

lowing norm

‖V‖
C

0,ζ
β (C0,Rp)

= sup
T>1

sup

{
e−βt1 |V (t1, θ1) | − e−βt2 |V (t2, θ2) |

dcyl ((t1, θ1) , (t2, θ2))
ζ

: (t1, θ1) , (t2, θ2) ∈ CT−1,T+1

}
,

where CT−1,T+1 = (T −1, T +1) ×Sn−1. Also, let us define the (zeroth order) weighted Holdër 
space by

C
0,ζ
β (C0,R

p)=
{
V ∈ C

0,β
loc (C0,R

p) : ‖V‖
C

0,β
loc (C0,Rp)

<∞
}
.

One can similarly define higher order weighted Holdër spaces Cm,ζ
β (C0, Rp).

Remark 15. The functional spaces defined above are suitable to obtain the asymptotic results 
in Theorem 1, since v ∈ W

k,q
β (C0) is equivalent to v ∈ Wk,q(C0) together with the decay v =

O(e−βt ) as t → ∞. Additionally, by regularity theory, we can indistinguishably work with both 
the Sobolev or the Hölder spaces.

Definition 16. The Jacobi fields in the kernel of La : H 4
β (C0, Rp) → L2

β(C0, Rp), are the solu-

tions � ∈H 4
β (C0, Rp) to the following fourth order linear system

La(�)= 0 on C0. (17)

3.3. Fourier eigenmodes

We study the kernel of a linearized operator around an Emden–Fowler solution by decom-
posing into its Fourier eigenmodes, a separation of variables technique. First, let us consider 
{λj , χj (θ)}j∈N the eigendecomposition of the Laplace–Beltrami operator on Sn−1 with the nor-
malized eigenfunctions,

�θχj (θ)+ λjχj (θ)= 0. (18)
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Here the eigenfunctions {χj (θ)}j∈N are called spherical harmonics with associated sequence of 
eigenvalues {λj }j∈N given by λj = j (j +n −2) counted with multiplicity mj , which are defined 
by

m0 = 1 and mj = (2j + n− 2)(j + n− 3)!
(n− 2)!j ! .

In particular, we have λ0 = 0, λ1 = · · · = λn = n − 1, λj � 2n, if j > n and λj � λj+1. More-
over, these eigenfunctions are the restrictions to Sn−1 of homogeneous harmonic polynomials in 
Rn. Here we denote by Vj the eigenspace spanned by χj (θ). Using (18), it is easy to observe 
that the eigendata of the bi-Laplace–Beltrami operator �2

θ is given by {λ2
j , χj (θ)}j∈N . Namely, 

for all j ∈N , it follows

�2
θχj (θ)− λ2

jχj (θ)= 0. (19)

3.3.1. Scalar case
When p = 1, the nonlinear operator (14) becomes

N (v) :=�2
cylv − c(n)v2∗∗−1 and La(φ)=�2

cylφ − c̃(n)v2∗∗−2
a,T φ,

where c̃(n) = (2∗∗ − 1)c(n) > 0 is a positive constant. Furthermore, using the decomposition 
(10) combined with (18) and (19), we get

La(φ)= ∂
(4)
t φ −K2∂

(2)
t φ +K0φ +�2

θφ + 2∂(2)t �θφ − J0�θφ − c̃(n)v2∗∗−2
a,T φ,

which by projecting on the eigenspaces Vj gives us

La
j (φ)= φ(4) − (K2 + 2λj )φ

(2) +
[
K0 + λj (λj + J0)− c̃(n)v2∗∗−2

a,T

]
φ. (20)

Moreover, for any φ ∈ L2(Sn−1), we write

φ(t, θ)=
∞∑
j=0

φj (t)χj (θ), where φj (t)=
ˆ

Sn−1

φ(t, θ)χj (θ)dθ.

In other terms, φj is the projection of φ on the eigenspace Vj . Thus, to understand the kernel of 
La , we consider the induced family of ODEs La

j (φj ) = 0 for j ∈N .

Remark 17. For p = 1, some (low-frequency) Jacobi fields are generated by the variation of 
a two-parameter family of Emden–Fowler solutions. When j = 0, they are given by φ+

a,0(t) =
∂T
∣∣
T=0va,T (t) and φ−

a,0(t) = ∂a
∣∣
a=0va,T (t), where va,T ∈ C(R) is the Emden–Fowler solution 

defined as the unique T -periodic solution to (4) with va,T (0) = a for any a ∈ (0, a0]. However, 
the other two Jacobi fields cannot be directly constructed as variations of some family of solutions 
to the limit equation. One can show that they are not based on this zero-frequency case.
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3.3.2. System case
For p >1 and � ∈L2(C0, Rp), we write

�(t, θ)=
∞∑
j=0

�j(t)χj (θ), where �j(t)=
ˆ

Sn−1

�(t, θ)χj (θ)dθ. (21)

Hence, for all i ∈ I and j ∈N , we decompose (17) as

La
ij (�)= φ

(4)
i − (K2 + 2λj )φ

(2)
i +

[
K0 + λj (λj + J0)− c(n)v2∗∗−2

a,T

]
φi

− n(n2 − 4)

2
�i〈�,�〉v2∗∗−2

a,T . (22)

Whence, to understand the kernel of (22), we again consider the induced equations La
ij (φj ) =

0. Therefore, studying the kernel of La reduces to solving infinitely many ODEs. In Fourier 
analysis, it is convenient to divide any � ∈L2(C0, Rp) into its frequency modes by

π0[�](t, θ)=�0(t)χ0(θ), π1[�](t, θ)=
m1∑
j=1

�j(t)χj (θ), and

πl[�](t, θ)=
ml+1∑

j=ml+1

�j(t)χj (θ).

In particularly, the projections π0, π1 and 
∑∞

l=2 πl are called respectively the zero-frequency, 
low-frequency, and high-frequency modes.

3.4. Fourier–Laplace transform

Following [28, Section 4] (see also [19, Section 3]), we consider the Fourier–Laplace trans-
form, which is the suitable transformation to invert the linearized operator in the frequency space. 
We can use the real parameter α = 
z for ρ ∈ Ra to move the weight of the Sobolev space and 
invert this transform up to some region in the complex plane. Before, we need to introduce some 
background notation and tools. Here, we recall that Ta ∈ R is the fundamental period of the 
Emden–Fowler solution va given by (4).

Definition 18. Let � ∈ Hk
β̃
(C∞, Rp) extended to be zero on the region C∞ \ C0. We define its 

Fourier–Laplace transform as

Fa(�)(t, θ, ρ)=
∑
l∈Z

e−ilρ�(t + lTa, θ) , (23)

where ρ ∈ Ra := {α + iβ ∈ C : β < −β̃Ta} ⊂ C for some β̃ ∈ R. For the sake of simplicity, we 
fix the notation �̂(t, θ, ρ) := Fa(�)(t, θ, ρ).

Due to the periodicity properties of the linearized operator, it makes sense to define the fol-
lowing spaces, whose elements are sometimes referred to as Bohr α-quasi-periodic p-maps.
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Definition 19. Fixing the notation C0,Ta := [0, Ta] × Sn−1 and α ∈ R, let us introduce the func-
tional (Hilbert) space L2

α

(
C0,Ta ,C

p
)

defined as the L2-completion of C0
α

(
C0,Ta ,C

p
)
, where 

C0
α

(
C0,Ta ,C

p
) := {

� ∈ C0
(
C0,Ta ,C

p
) :�(Ta, θ)= eiαt�(0, θ)

}
.

The main proposition of this subsection is a direct integral (in the sense of Hilbert spaces) 
decomposition of L2(C0, Rp) in terms of the parameter α ∈ R in the Fourier–Laplace transform 
(cf. [15, Definition 7.18]).

Proposition 20. For any a ∈ [0, a0], it follows L2 (C0,Rp)= ´ ⊕
α∈[0,2π]L

2
α

(
C0,Ta ,C

p
)

dα, where ´ ⊕ denotes the direct integral of Hilbert spaces.

Proof. We divide the proof into a sequence of claims:
Claim 1: If ρ ∈Ra , then the Fourier–Laplace Fa(ρ) : L2(C∞, Rp) → L2(C∞, Cp) transform is 
well-defined.
In fact, since � ∈Hk

β̃
(C0,Rp) we know that |�(t, θ)| =O(eβ̃t ), which yields

|Fa(�)(t, θ, ρ)| =
∑
l∈Z

∣∣∣e−i(α+iβ)l� (t + lTa, θ)

∣∣∣=∑
l∈Z

eβl |�(t + lTa, θ)| � Ceβ̃t
∑
l∈Z

e(α+β̃Ta)l ,

where we used that each choice of ρ ∈ C only gives finitely many zeros, and since ρ ∈ Ra , we 
use the growth property to conclude that all the exponents in the series are negative. Therefore, 
the last sum must converge uniformly in Ra . We can rephrase this conclusion like Fa is analytic 
whenever � ∈Hk

β (C0,Rp).
We invert the Fourier–Laplace transform using a contour integral in the following claim.

Claim 2: Let � ∈ Hk
β (C0,Rp) and ρ ∈ Ra . For each t choose t̄ ∈ [0, Ta) such that t = t̄

mod Ta , that is, there exists l0 ∈Z satisfying t = t̄ + l0Ta . Then, we get

�(t, θ)= 1

2π

2πˆ

α=0

eil0Ta(α+iβ)�̂(t̄ , α + iβ, θ)dα.

Indeed, since ρ ∈Ra for all i ∈ I , we obtain

1

2π

2πˆ

α=0

eβ̃ φ̂i(t̄ , θ, ρ)dα = 1

2π

2πˆ

α=0

eil0ρ
∑
l∈Z

e−ilρφi
(
t̄ + lTa, θ

)
dα

=
∑
l∈Z

1

2π

2πˆ

α=0

ei(α+iβ)(l0−l)φi
(
t̄ + lTa, θ

)
dα = φi(t, θ).

We prove a type of Parseval–Plancherel identity for p-maps.
Claim 3: For each θ ∈ Sn−1, it follows∥∥�̂(t, θ, ρ)

∥∥2
L2
(
S ,Cp

) � 2π
∥∥�̂(t, θ)

∥∥2
L2 (R,Rp)

, (24)

a β/Ta
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where Sa = [0, Ta] × [0, 2π].
As a matter of fact, for all i ∈ I , it holds

Taˆ

0

2πˆ

0

∣∣φ̂i (t, θ, ρ)∣∣2 dαdt

=
Taˆ

0

2πˆ

0

(∑
l∈Z

e−ilαelβφi (t + lTa, θ)

)(∑
l∈Z

e−ilαelβφi (t + lTa, θ)

)
dαdt

=
Taˆ

0

2πˆ

0

∑
l∈Z

l∑
�=−l

(
l

�

)
ei(�−l)αe(�+l)βφi (t + lTa, θ)φi (t + lTa, θ)dαdt

=
Taˆ

0

2πˆ

0

∑
l∈Z

e2βl |φi (t + lTa, θ)|2 dαdt

� 2π
ˆ

R

∣∣∣eβt/Taφi(t, θ)∣∣∣2 dt.

Next, we prove that �̂ is a section of the flat bundle Tn
a = S1

a × Sn−1 with holonomy ρ ∈ C
around the S1 loop, where we identify S1

a = R/TaZ.
Claim 4: For each θ ∈ Sn−1, we have

∥∥�̂(t, θ, ρ)
∥∥2
L2
(
Sa,Cp

) = 2π
∥∥�̂(t, θ)

∥∥2
L2(R,Rp)

. (25)

Indeed, by taking β = 0 in (24) and using (23), we get � (t + Ta, θ) = F−1
a

(
eiρFa (�)

)
(t, θ), 

which concludes the proof of the claim.
Finally, the proof of the proposition is a consequence of Claims 2,3, and 4. �

Remark 21. We stress that the dependence of the inversion on the parameter α > 0 will allow us
to change the growth rate of the solution produced later using the Green’s function of the twisted 
operator.

3.5. Spectral analysis

Now inspired by [27, Section 4.2], we study the geometric structure of the spectrum of the 
linearized operator around an Emden–Fowler solution. The idea is to construct a twisted operator, 
which captures the periodicity property of this linear operator, it is unitarily equivalent to the 
linearized operator, and for which a Fredholm theory is available. In this direction, let us first 
introduce the suitable domain of definition for this operator.

Definition 22. For each α ∈ R and k ∈ N , let us define the set of quasi-periodic p-maps 
Hk,4 ([0, Ta] ,Cp) to be the completion of the space of C∞ ([0, Ta] ,Cp) under the Hk-norm 
α
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with boundary conditions given by �(j) (Ta) = eiTaα�(j)(0) for j = 0, 1, . . . , k − 1. We also 
denote by La

ij,α the restriction of La
ij to Hm

α ([0, Ta]).

Initially, for any ρ ∈ Ra we use the inversion of the Fourier–Laplace transform to define 
L̂a(ρ) = Fa ◦La ◦F−1

a , or equivalently L̂a(ρ)(�̂) = ̂La(�), which by (25) yields

L̂a(ρ)(eiρ�̂)(t, θ, ρ)= eiρL̂a(ρ)(eiρ�̂)(t, θ, ρ) and e−iρL̂a(ρ)(eiρ�̂)= L̂a(ρ)(�̂).

Using the last relation, we set L̃a(ρ) :Hk+4
(
Tn
a ,C

p
)→Hk

(
Tn
a ,C

p
)
, given by

L̃a(ρ)(�̂)= eiρFa ◦La ◦F−1
a

(
e−iρt �̂

)
. (26)

Remark 23. Notice that L̂a has the same coordinate expression as La . Thus, their Fourier 
eigenmodes decomposition L̂a

j and L̃a
j are also unitarily equivalent. Moreover, by Claim 3 of 

Proposition 20 one has that La
j (α) coincides with the restriction of L̂a

j (α) to [0, Ta]. Further-

more, L̃a(ρ) acts on the same functional space for all ρ ∈C.

This motivates the following definition:

Definition 24. For each a ∈ (0, a0), j ∈ Z, and α ∈ R, let us denote by σk(a, j, α) the eigenvalues 
of La

j,α . In addition, since for each a ∈ (0, a0), j ∈ Z, one has La
j,0 = La

j,2π , it follows that 

σk(a, j, ·) : S1 →R. Therefore, let us define the k-th spectral band of La
j by

Bk(a, j)= {σk ∈ R : σk = σk(a, j,α) for some α ∈ [0,2π/Ta]}.

Remark 25. Notice that spec(La) = spec(L̃a) = ∪j,k∈NBk(a, j).

Remark 26. The eigenfunction �k corresponding to the eigenvalue σk(a, j, α) satisfies

�(t + 2π/Ta)= eiα�(t)= e(2π−α)i�(t) and �̂(t + 2π)= e−iα�̂(t).

Furthermore, σk(a, j, 2π − α) = σk(a, j, α), since La
j has real coefficients; thus, we can restrict 

σk : S1 →R to the half-circle corresponding to α ∈ [0, π].

Now, we have conditions to enunciate and prove one of the most important results in this 
section.

Proposition 27. For any a ∈ [0, a0], 0 ∈ Ia is an isolated indicial root of La .

Proof. The proof follows by estimating the endpoints of the spectral bands of La , and it will be 
divided into a sequence of claims:
Claim 1: For any a ∈ (0, a0) and j, k ∈N , the band Bk(a, j) is a nondegenerate interval.
In fact, each La

j is a fourth order ordinary differential operator such that the ODE system 
La(�) = σk(a, j, α)� has a 4p-dimensional solution space. Suppose that Bk(a, j) reduces to 
j

206



J.H. Andrade and J.M. do Ó Journal of Differential Equations 413 (2024) 190–239
a single point, then σk would be constant on [0, 2π] and La
j (�) = σk(a, j, α)� would have an 

infinite dimensional solution space, which is contradiction.
Claim 2: For any a ∈ (0, a0) and j, k ∈N , it follows that

B2k(a, j)= [σ2k(a, j,0), σ2k(a, j,π)] and B2k+1(a, j)= [
σ2k+1(a, j,π), σ2k+1(a, j,0)

]
.

This is a consequence of Floquet theory, since B2k are nondecreasing for any k ∈ Z, whereas 
B2k+1 are all nonincreasing. Thus, we conclude σ0(a, j, 0) � σ0(a, j, π) � σ1(a, j, π) �
σ1(a, j, 0) � . . .

Claim 3: For any a ∈ (0, a0) and j, k ∈N , we find the lower bound

σk(a, j,0) > σ0(a,0, α)+ J0λj + λ2
j . (27)

As a matter of fact, we can relate Bk(a, 0) to Bk(a, j) since La
j −La

0 = −2λj∂
(2)
t + J0λj + λ2

j , 
which for an eigenvalue � of La

j,α implies

σk(a, j,α)�= La
0(�)− 2λj�

(2) +
(
J0λj + λ2

j

)
�. (28)

Using the decomposition � = ∑∞
l=0 cl�l , where La

0(�l) = σl(a, 0, α)�l we can reformulate 
(28) as ∑

l∈N
clσk(a, j,α)�l =

∑
l∈N

cl

[
σl(a,0, α)�l − 2λj�

(2)
l +

(
J0λj + λ2

j

)
�l

]
,

which provides 2λj�
(2)
l = − 

[
σk(a, j,α)− σl(a,0, α)− J0λj − λ2

j

]
�l . Finally, noticing that 

the last equation admits quasi-periodic solutions, if, and only if, σk(a, j, 0) > σ0(a, 0, α) +
J0λj + λ2

j , we conclude the proof of the claim.
Claim 4: For any a ∈ (0, a0) and j, k ∈N , it follows that Bk(a, j) ⊂ (0, ∞).
This is the most delicate part; thus, we separate the proof into some steps. By the classification 
in Theorem B (ii), we can reduce our analysis to the case p = 1. From now on, we denote 
va = va,Ta .
Step 1: For each a ∈ (0, a0], it follows

č(n)

⎛⎝ 1

Ta

Taˆ

0

v2∗∗
a dt

⎞⎠1−2/2∗∗

� σ0(a,0,0) < 0, (29)

where č(n) = c(n) − c̃(n) = −n
(
n2 − 4

)
/2 < 0. Moreover, either σ1(a, 0, 0) = 0 or σ2(a, 0, 0) =

0.
In fact, we start by the upper bound. Using the Rayleigh quotient of L̃a

0, we get

σ0(a,0,0)= inf
φ∈H 4(Tn)

´ Ta
0 φL̃a

0(φ)dt´ Ta φ2dt
. (30)
a 0
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Since va is a periodic, it can be taken as a test function on the right-hand side of (30); this 
provides

La
0(va)= v(4)a −K2v

(2)
a +K0va − c̃(n)v2∗∗−1

a,T

= v(4)a −K2v
(2)
a +K0va − c(n)v2∗∗−1

a,T + č(n)v2∗∗−1
a,T

= č(n)v2∗∗−1
a,T ,

where we used that La
0 and L̃a

0 have the same coordinate expression. Hence, since č(n) < 0, the 
estimate (29) is a consequence of (30).

To prove the lower bound estimate, we observe that a combination of the results in [14] with 
the classification given by (3) implies the variational characterization below

va = inf
φ∈H 4

0 ([0,Ta ])

´ Ta
0

(∣∣φ(2)
∣∣2 −K2

∣∣φ(1)
∣∣2 +K0 |φ|2

)
dt(´ Ta

0 φ2∗∗dt
)2/2∗∗ .

Moreover, since va satisfies (4), for all φ ∈H 4
0 ([0, Ta]), we find

´ Ta
0

(∣∣φ(2)
∣∣2 −K2

∣∣φ(1)
∣∣2 +K0 |φ|2

)
dt(´ Ta

0 φ2∗∗dt
)2/2∗∗ � c(n)

⎛⎝ Taˆ

0

v2∗∗
a dt

⎞⎠1−2/2∗∗

. (31)

On the other hand, using the Hölder inequality, we get

Taˆ

0

φ2dt � T
1−2/2∗∗
a

⎛⎝ Taˆ

0

φ2∗∗
dt

⎞⎠2/2∗∗

. (32)

Then, for all φ ∈H 4
0 ([0, Ta]) a combination of (31) and (32) yields

Taˆ

0

φLa
0φdt

=
Taˆ

0

(
φ(4) −K2φ

(2) +K0φ − c̃(n)v2∗∗−1
a,T φ

)
dt

� c(n)

⎛⎝ Taˆ
v2∗∗
a dt

⎞⎠1−2/2∗∗ ⎛⎝ Taˆ
φ2∗∗

dt

⎞⎠2/2∗∗

− c̃(n)

Taˆ
φ2∗∗

dt
0 0 0
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=
⎛⎝ Taˆ

0

φ2∗∗
dt

⎞⎠2/2∗∗ ⎡⎢⎣c(n)
⎛⎝ Taˆ

0

v2∗∗
a dt

⎞⎠1−2/2∗∗

− c̃(n)

⎛⎝ Taˆ

0

φ2∗∗
⎞⎠1−2/2∗∗

dt

⎤⎥⎦

� T
2/2∗∗−1
a

⎡⎢⎣c(n) Taˆ

0

φ2dt

⎛⎝ Taˆ

0

v2∗∗
a dt

⎞⎠1−2/2∗∗

− c̃(n)

Taˆ

0

φ2dt

⎛⎝ Taˆ

0

φ2∗∗
⎞⎠1−2/2∗∗

dt

⎤⎥⎦ .

In particular, taking φ ∈H 4
0 ([0, Ta]) such that ‖φ‖H 4

0 ([0,Ta ]) = ‖va‖H 4
0 ([0,Ta ]), we obtain

Taˆ

0

φLa
0(φ)dt � č(n)T

2/2∗∗−1
a ‖φ‖2

L2([0,Ta ])‖va‖
2∗∗−2
L2∗∗

([0,Ta ]),

which directly implies the lower bound estimate.
Finally, since φ+

a,0 = ∂ava is a periodic solution to La
0(φ

+
a,0) = 0, we have that there exists 

an eigenfunction with associated eigenvalue λ = 0 subjected to periodic boundary conditions 
provided by α = 0. Besides, this eigenfunction has two nodal domains within the interval [0, Ta], 
which is associated either to σ1(a, 0) or to σ2(a, 0).

In the remaining steps, we provide more precise localization of the spectral bands of La:
Step 2: For any a ∈ (0, a0), it follows that Bk(a, 0) ⊂ (0, ∞) for each k � 3 and Bk(a, 0) ⊂
[0, ∞) for each k � 2.
This is a direct consequence of Claim 2 and Step 1.
Step 3: For any a ∈ (0, a0) and j, k ∈ N , it holds that Bk(a, j) ⊂ (0, ∞).
In fact, when j > n we have λj > 2n, which by Claim 3 implies σk(a, j, 0) > σ0(a, 0, 0) +n3 for 
all k ∈ N . On the other hand, since 0 < va(t) < 1, for all t ∈ R, using the lower bound estimate, 
we find that σ0(a, 0, 0) � č(n) and σk(a, j, 0) > σ0(a, 0, 0) +n3 � n3 + č(n) > 0. When 1 � j �
n, it follows from the construction for the geometric Jacobi fields Remark 17, since La

j (φ
±
a,j ) = 0

and φ±
a,j = e±t

(
±v

(1)
a + γ va

)
+ E±, where E+(t) = O(1) and E−(t) = O

(
e−2t

)
as t → ∞ are 

positive periodic solutions to La
j .

The last claim relates the spectral bands Bk(a, j) and the indicial roots Iaj .
Claim 5: The ODE La

j (�) = 0 admits a quasi-periodic solution, if and only if, for some k ∈ N , 
0 ∈Bk(a, j)
Indeed, we have that � =F−1

a

(
e−iαt �̂

)
solves La

j (�) = 0 since

0 = La
j,α(�̂)= eiαtFa

(
La
j

(
F−1
a

(
e−iαt �̂

)))
and La

j

(
F−1
a

(
e−iαt �̂

))
= 0.

Therefore, by Remark 26, the proof of the claim follows. �
3.6. Fredholm theory

We investigate the spectrum of the linearized operator. Our goal is to conclude that La is 
Fredholm, which follows by showing that Ia ⊂ R is a discrete set. The last assessment is not 
trivial to prove; in fact, we need to use the Fourier-Laplace transform results to find a right-inverse 
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for the linearized operator. The strategy is based on some results from holomorphic functional 
analysis.

To invert the twisted operator, we use the analytic Fredholm theorem. Since the symbol of 
La in cylindrical coordinates is given by ∂(4)t + �2

θ , we conclude that if k ∈ N , a ∈ (0, a0) and 
β ∈R, then La :Hk+4

β (C0, Rp) →Hk
β (C0, Rp) is a bounded linear elliptic self-adjoint operator.

The main result of this subsection states the invertibility of the linearized operator.

Proposition 28. If k ∈N and β /∈ Ia , then La :Hk+4
β (C0, Rp) →Hk

β (C0, Rp) is Fredholm.

Proof. To apply the analytic Fredholm theorem, we use the twisted operator from (26),

L̃a(ρ) :Hk+4(Tn
a ,C

p)→Hk(Tn
a ,C

p) given by L̃a(ρ)(�̂)= eiρFa ◦La ◦F−1
a

(
e−iρt �̂

)
.

In what follows, we divide the proof into some claims:
Claim 1: If α ∈ (0, 2π), then L̃a

α is Fredholm.
For each α ∈ (0, 2π), the operator L̃a(ρ) is linear, bounded, elliptic and depends holomorphically 
on ρ. Thus, this operator is either never Fredholm or it is Fredholm for ρ outside a discrete set. We 
take ρ = α ∈ (0, 2π) and suppose there exists �̂ ∈Hk+4(Tn

a , R
p) such that L̃a(ρ)(�̂) = 0; thus, 

La(ρ)(�), where � = F−1
a (e−iρt �̂). Then, � is quasi-periodic; in particular, � is bounded. 

However, by Proposition 27, any bounded Jacobi field is a multiple of �+
0 , which is not quasi-

periodic. Hence, La(α) is injective. Finally, since this operator is formally self-adjoint, it follows 
that L̃a(ρ) is Fredholm.
Claim 2: If a ∈ (0, a0) and β ∈ Ia , then there exists G̃a(ρ) : Hk(Tn

a , C
p) → Hk+4(Tn

a , C
p)

such that G̃a(ρ) is a right-inverse for L̃a(ρ).
Using Claim 1, we can find a discrete set Da ⊂ Ra and a meromorphic operator G̃a(ρ) :
Hk(Tn

a , C
p) →Hk+4(Tn

a , C
p) such that �̂= (

G̃a(ρ) ◦ L̃a(ρ)
)
(�̂) for ρ /∈Da .

Claim 3: If a ∈ (0, a0) and β ∈ Ia , then there exists Ga : Hk
β (C0, Rp) → Hk+4

β (C0, Rp) right-
inverse for La .
Indeed, notice that Ia = {β ∈R : β = �(ρ) for some ρ ∈ Da}, which provides

Ga(�)= F−1
a

(
e−iρTat

(
G̃a
(
e−iρTat (Fa(�))

)))
.

Furthermore, by construction, we obtain that �̂= Ga(�) ∈Hk+4
−�(ρ) (C0,Rp), which by the Fred-

holm alternative concludes the proof of the claim. The last claim proves the proposition. �
Proposition 29. The set Ia is discrete.

Proof. Note that each element in Ia is the imaginary part of a pole to G̃a , which by the analytic 
Fredholm theory is a discrete subset of C. On the other hand, the operator La(ρ) is unitarily 
equivalent to La(ρ + 2πl) for each l ∈ Z; thus, ρ is a pole of Ga , if and only if ρ + 2πl also is 
for any l ∈ Z. Therefore, Ga can only have finitely many poles in each horizontal strip. �
Corollary 30. If k ∈N and β /∈ (0, 1), then
(i) the operator La :Hk+4

β (C0, Rp) →Hk
β (C0, Rp) is surjective;

(ii) the operator La :Hk+4(C0, Rp) →Hk (C0, Rp) is injective.
−β −β
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Proof. It follows from the proof of Proposition 28 that La(ρ) is injective for each ρ ∈ C with 
−1 < �(ρ) < 0, which implies La : Hk+4

−β (C0,Rp) → Hk−β (C0,Rp) is injective, and thus (ii) 

is proved. Besides, since by duality the operator La :Hk+4
β (C0,Rp)→ Hk

β (C0,Rp) is formally 
self-adjoint; thus, the surjectiveness follows, and (i) is proved. �
3.7. Existence of singular solutions

We prove the existence of solutions to (Sp,1). We proceed by studying the spectral prop-
erties of the linearized operator around an Emden–Fowler solution. Let us remark that by the 
implicit function theorem, the existence of solutions to (Sp,1) can be obtained by showing that 
the linearized operator La is Fredholm. We already know that La sometimes does not satisfy 
this property since its kernel is not closed. To overcome this issue, we introduce the following 
definition:

Definition 31. For each va,T , let us consider the deficiency space generated by the Jacobi fields 
basis of the linearized operator. In other words,
(i) for j = 0, we have Da,0(C0, Rp) = span{�+

a,0, �
−
a,0};

(ii) for j � 1, we have Da,j (C0, Rp) = span{�+
a,j , �

−
a,j , ̃�

+
a,j , ̃�

−
a,j }.

The fact that there are only two Jacobi fields in (i) of the last definition is a consequence 
of Proposition 27. Namely, any zero-frequency Jacobi field with growth less than exponential 
(tempered) is generated by the ones obtained by varying geometric parameters in the Emden–
Fowler solution.

Now, we can present the main result of the subsection:

Proposition 32. Let Va,T be an Emden–Fowler solution.

(i) If β ∈ (βa,0, βa,1), then La : C4,ζ
β (C0, Rp) ⊕ Da,0(C0, Rp) → C

0,ζ
β (C0, Rp) is a surjective 

Fredholm mapping with bounded right-inverse, given by

Ga
0 : C0,ζ

β (C0,R
p)→ C

4,ζ
β (C0,R

p)⊕Da,0(C0,R
p).

(ii) If β ∈ (βa,1, βa,2), then La : C4,ζ
β (C0, Rp) ⊕Da,0(C0, Rp) ⊕Da,1(C0) → C

0,ζ
β (C0, Rp) is a 

surjective Fredholm mapping with bounded right-inverse, given by

Ga
1 := C

0,ζ
β (C0,R

p)→ C
4,ζ
β (C0,R

p)⊕Da,0(C0,R
p)⊕Da,1(C0,R

p).

Proof. We proceed as in Proposition 28. First, we decompose the linearized operator into Fourier 
modes and apply the Laplace–Fourier transform. Then, by conjugation, let us define a family of 
transformations satisfying the assumptions of classical analytic Fredholm theory. We can there-
fore invert the conjugated operator L̃a

j (ρ). Afterward, we reconstruct the function by undoing 
the Fourier–Laplace transform inverse. In other terms, for all j ∈N , we take the right-inverse,

Ga
j (�)= F−1

a

(
e−iρt

(
G̃j

a
(
e−iρt (Fa(�))

)))
.

This provides the proof of the proposition. �
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Remark 33. The necessity of adding the deficiency spaces Da,j (C0, Rp) comes from a 
simple form of the linear regularity theorem from [28, Lemma 4.18] and some ODE the-
ory. In addition, note that if β = ±βa,j , then La does not have closed range. Moreover, 
we have Schauder estimates in the sense of weighted spaces. More precisely, if V is so-
lution to the inhomogeneous problem La (V) = �, then V ∈ C

4,ζ
β (C0, Rp) whenever � ∈

C
0,ζ
β (C0, Rp). More generally, it should be possible to find an inverse like Ga

j := C
0,ζ
β (C0, Rp) →

C
4,ζ
β (C0, Rp) 

⊕j

l=0 Da,l(C0, Rp), which would give us refined information.

As a consequence of our results, we present the main result of this subsection.

Corollary 34. There exists at least one strongly positive solution V to (Cp,0).

Another application is the following improved regularity theorem for solutions to (Sp,1) in 
cylindrical coordinates:

Corollary 35. Let V be a strongly positive solution to La (V)=�. Assume that V ∈ C
4,ζ
β̃

(C0, Rp)

and � ∈C
0,ζ
β̂

(C0, Rp).

(i) If 0 < β̃ < β̂ < 1, then V ∈ C
4,ζ
β2

(C0, Rp);

(ii) If 0 < β̃ < 1 < β̂ < βa,2, then V ∈ C
4,ζ
β̂

(C0, Rp) ⊕Da,1(C0, Rp).

Proof. First, we use the right-inverse operator Ga
0 in Proposition 32 to obtain that Ṽ + c�+

a,0 =
Ga

0 (�) ∈ C
4,ζ
β (C0, Rp) ⊕Da,1(C0, Rp) is also a solution to Ga

0 (V) =�, which implies that V̂ =
V − Ṽ satisfies Ga

0 (V̂) = 0. Then, V̂ is exponentially decaying, that is, V̂ ∈ C
4,ζ
1 (C0, Rp). Finally, 

V ∈ C
4,ζ
β2

(C0, Rp) since V = V̂ + Ṽ , which finishes the proof of (i). The proof of (ii) follows the 
same argument, so we omit it. �
3.8. Growth properties for the Jacobi fields

In this part, we apply the spectral analysis developed before to investigate the growth/decay 
rate in which the Jacobi fields on the kernel of the linearized operator grow/decay.

Let us begin with some considerations concerning the scalar case p = 1. First, by [12, The-
orem 2], the operator (20) has periodic coefficients. Second, by Proposition 27, we can use 
classical Floquet theory (or Boch wave theory) to study the asymptotic behavior of the Jacobi 
fields on the projection over Vj . For this, we transform the fourth order operator (20) into a 
first order operator on R4. More precisely, defining X = (φ, φ(1), φ(2), φ(3)), we conclude that 
the fourth order equation La

j (φ) = 0 is equivalent to the first order system X′(t) = Na,j (t)X(t). 
Here

Na,j (t)=

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 −Bj +Ca,j (t)

⎤⎥⎥⎦ ,

where Bj :=K2 + 2λ and Ca,j (t) =K0 + λj (λj + J0) − c̃(n)va,T (t)
2∗∗−2.
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Notice that Na,j (t) is a Ta-periodic matrix. Hence, the monodromy matrix associate to this 
ODE system with periodic coefficients is given by Ma,j (t) = exp

´ t

0 Na,j (τ )dτ . Finally, we 
define the Floquet exponents, denoted by Ĩaj , as the complex frequencies associated with the 
eigenvectors of Ma,j (t), which forms a four-dimensional basis for the kernel of La

j . Using Abel’s 
identity, we get that Na,j (t) is constant, which yields

det(Ma,j (t))= exp

T̂

0

trNa,j (τ )dτ = exp

⎛⎝−
T̂

0

Ca,j (τ )dτ

⎞⎠= 1.

Since Na,j (t) has real coefficients, all its eigenvalues are pairs of complex conjugates. Equiva-
lently, ̃Iaj = {±ρa,j , ±ρ̄a,j }, where ρa,j = αa,j + iβa,j and ρ̃a,j = α̃a,j − iβa,j . Then, the set of 
indicial roots of La

j are given by Iaj = {−βa,j , βa,j }. Moreover, for any φ ∈ ker(La
j ), we have

φ(t)= b1φ
+
a,j (t)+ b2φ

−
a,j (t)+ b3φ̃

+
a,j (t)+ b4φ̃

−
a,j (t),

where φ±
a,j (t) = e±ρa,j t and φ̃±

a,j (t) = e±ρ̃a,j t . Hence, the Jacobi fields’ exponential de-
cay/growth rate is controlled by |βa,j |. Therefore, the asymptotic properties of La

j are obtained 
by the study of Ia . Remember that in the definition of indicial roots, we are not considering the 
multiplicity; that is, βa,2 stands for all the low-frequency (j = 1) Jacobi fields.

In the following lemma, we give some structure to the set of indicial roots of La.

Lemma 36. Let a ∈ [0, a0].
(i) If j = 0, then 0 ∈ Ia0 .
(ii) If j = 1, then {−1, 1} ⊂ Ia1 .
(iii) If j > 1, then minj>1 I

a
j > 1.

Moreover, Ia is a discrete set, namely, Ia = {. . . , −βa,2, −1, 0, 1, −βa,2, . . . }. In particular, the 
indicial root 0 is isolated.

Proof. Let us divide the proof into three case steps, namely, a = 0, a = a0 and a ∈ (0, a0). In the 
first two ones by (3) we know that va,T is constant; thus, the indicial exponents are the solutions to 
a fourth order characteristic equation. In this fashion, let us also introduce the following notation 
for the discriminant of this indicial equation, Da,j := B2

j − 4Ca,j .
We also divide each step into three cases with respect the Fourier eigenmodes, namely j = 0

(zero-frequency), j = 1 (low-frequency) and j > 1 (high-frequency).
Step 1: (spherical solution) a = 0.
When a = 0, we have that va,T ≡ 0, then the linearized operator becomes

L0
j (φ)= φ(4) − (K2 + 2λj )φ

(2) +
(
K0 + λ2

j + λjJ0

)
φ.

Therefore, we shall compute the roots of the characteristic equation ρ4 −Bjρ
2 −C0,j ρ = 0.

Case 1: j = 0, m0 = 1 and λ0 = 0.
The operator has the following expression

L0(φ)= φ(4) −K2φ
(2) +K0φ.
0
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Notice that when Da,j > 0, then βa,j = 0. More generally, the sign of Da,j controls the nature 
of the complex roots. It is straightforward to check that the indicial roots of this operator are 
ρ0,0 = n

2 and ρ̃0,0 = n−4
2 .

Case 2: j = 1, m1 = n and λ1 = · · ·λn = n − 1.
Here we obtain,

L0
1(φ)= φ(4) −B1φ

(2) +C0,1φ,

and the indicial roots are given by ρ0,1 = 1
2 (n + 2) and ρ̃0,1 = 1

2 (n − 2).
Case 3: j > 1, mj > n and λj = �(n − 2 + �), for some � ∈N .
Here we obtain,

L0
j (φ)= φ(4) −Bjφ

(2) +C0,j φ,

and the indicial roots are given by ρ0,� = 1
2 (2 +√D0,�) and ̃ρ0,� = 1

2

(
2 −√

D0,�
)
, where D0,� =

n2 − 4n + 4 + 4�(n + � − 2). Notice that D0,� > 0 for � > 1. Using a direct argument, we can 
check that �ρ0,j > �ρ0,1 and �ρ0,j > �ρ̃0,1 for all j > 1, which by the last case concludes the 
proof of Step 1.
Step 2: (cylindrical solution) a = a0.
Since va0,T ≡ a0 = [n(n − 4)/(n2 − 4)]n−4/8, we proceed identically as in the last step. First, we 
have

La0
j (φ)= φ(4) − (K2 + 2λj )φ

(2) +
(
K0 + λ2

j + λjJ0 − c̃(n)a2∗∗−2
0

)
φ.

As before, we shall divide our approach as follows
Case 1: j = 0, m0 = 1 and λ0 = 0.

ρa0,0 = 1

2

√
n2 − 4n+ 8 +√

Da0,0 and ρ̃a0,0 = 1

2

√
n2 − 4n+ 8 −√

Da0,0,

where Da0,0 = n4 − 64n + 64.
Case 2: j = 1, m1 = n and λ1 = · · ·λn = n − 1.

ρa0,1 =
√
n2 + 2

2
and ρ̃a0,1 = 1.

Case 3: j > 1, mj > n and λj = �(n − 2 + �), for some � ∈N .

ρa0,j = 1

4

√
[(n+ 2(�− 1))]2 +√

Da0,� and ρ̃a0,j = 1

4

√
[(n+ 2(�− 1))]2 −√

Da0,�,

where Da0,� = n4 + 64(� − 1)(n + � − 1).
Step 3: (Emden–Fowler solution) a ∈ (0, a0).
This is the most delicate case since va,T is periodic, so the zeroth order term in the operator La

j

is also Ta-periodic. In this case, it is impossible to compute the Floquet exponents explicitly. 
Nonetheless, we can show that they are strictly bigger than one when j > 1.
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Case 1: j = 0, m0 = 1 and λ0 = 0.
By Remark 17, it follows that φ+

a,0 is bounded and φ−
a,0 is linearly growing, then 0 ∈ Ia with 

multiplicity 2.
Case 2: j = 1, m1 = n and λ1 = · · ·λn = n − 1.
Again using Remark 17, it follows φ±

a,1 = · · · = φ±
a,n is exponentially growing/decaying, then 

{−1, 1} ⊂ Ia .
Case 3: More generally, note that the indicial roots form an increasing sequence,

βa,0 � βa,1 � · · · � βa,j � βa,j+1 → ∞ as j → ∞,

which is a consequence of a comparison principle on a ∈ (0, a0) for the linearized operator in 
cylindrical coordinates. �
Lemma 37. The indicial set Iaj is discrete. Moreover, Iaj = {. . . , −βa,2, −1, 0, 1, βa,2, . . . }. In 
particular, the indicial root 0 is isolated.

Proof. It follows directly by Proposition 27. �
Notice that Lemma 36 only provides exponential growth/decay for the Jacobi fields. Never-

theless, we need something slightly more robust to apply Simon’s technique. Namely, for j = 0, 
we must show that the Jacobi fields are either periodic (bounded) or linearly growing. For the 
first two Jacobi fields φ+

a,0 and φ−
a,0, this follows because they arise respectively as the variation 

of the necksize and translation parameters that appear in the classification for the Emden–Fowler 
solutions. The difficulty here is to show that they generate the zero-frequency space. We over-
come this issue observing that by the direct computation in Lemma 36, we know that 0 ∈ Ia0 with 
multiplicity two.

Next, we proceed as in [26, Proposition 4.14] to prove the following asymptotic expansion

Proposition 38. Let ψ ∈ C∞
0 (C0), β ∈ (0, 1) and φ ∈ H 4−β (C0) satisfying La(φ) = ψ . Then, 

φ has an asymptotic expansion φ = ∑
j∈N φj with La

(
φj
) = 0 and φj ∈ H 4−β (C0) for any 

β ∈ (0, βa,j ).

Proof. We divide the proof into some steps.
Step 1: For β ∈ (0, 1), it follows φ ∈Hk+4

−β (C0).

Indeed, take ρ ∈ C with 0 < β < �(ρ) and consider the transformed equation L̃a(ρ)(φ̂) = ψ̃ , 
where φ̃ = eiρt φ̂ and ψ̃ = eiρt ψ̂ . By applying the inverse operator G̃a(ρ) in both sides of the last 
equation, we get that φ̂ = L̃a(ρ)(ψ̃). Then, since ψ ∈ C∞

0 (C0), it follows that ψ̃(ρ) is an entire 
function on ρ and smooth on (t, θ). Notice that φ̃ is analytic on the half-plane �(ρ) > β , since 
the poles of Ga(ρ) coincide with the zeros of ψ̃ . Finally, take β ′ ∈ (β, 1) and since Ga(ρ) has 
no poles in �(ρ) ∈ (β ′, β), by the Cauchy formula, we can define the contour integral F−1

a up to 
�(ρ).
Step 2: For each β ∈ (0, 1), there exist β ′′ ∈ (1, βa,2), φ′′ ∈Hk+4

−β ′′ (C0), and φ′ ∈Hk+4
−β (C0) with 

La(φ′) = 0 satisfying φ = φ′ + φ′′.
Choose β ′′ ∈ (1, βa,2) and ρ′′ such that �(ρ′′) = β ′′. Now let us define φ̃′′ = G̃a(ρ′′). Finally, we 
apply the inverse F−1

a on the two contour lines �(ρ) = β and �(ρ) = β ′′, which by periodicity 
does not take into account the vertical sides of the rectangle [β, β ′′] × [0, 2π] ⊂ C. In fact, 
φ̃ − φ̃′′ = G̃a(ρ) − G̃a(ρ′′) is the residue of a meromorphic function with pole at −i.
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We can continue this process by shifting the contour integral to the other poles in the strip. �
Corollary 39. Let β ∈ (0, 1), ψ ∈ C∞

c (C0)∩L2−β (C0) and φ ∈H 4−β (C0) satisfying La(φ) =ψ . 

Then, there exist φ′ ∈H 4−β (C0) and φ′′ ∈Da,0 (C0) such that φ = φ′ + φ′′.

Corollary 40. The following properties hold for the projected scalar linearized operator:
(i) Assume j = 0, then the homogeneous equation La

0(φ) = 0 has a solutions basis with two 
elements, which are either bounded or at most linearly growing as t → ∞;
(ii) Assume j � 1, then the homogeneous equation La

j (φ) = 0 has a solutions basis with four 
elements, which are exponentially growing/decaying as t → ∞.

Proof. For (i), we use Corollary 39. Notice that (ii) follows directly from Lemma 36. �
When p > 1, we can use a similar strategy to study (17). For p = 1, we have constructed 

a Jacobi field basis with four elements (two in the zero-frequency case). Now, we must find a 
base with 4p elements (2p in the zero-frequency case), sharing the same growth properties in 
Corollary 40.

Proof of Proposition 3. First, notice that by Theorem B (ii), there exist a ∈ [0, a0], T ∈ [0, Ta]
and � ∈ Sp−1

+ that provides p + 1 families of solutions given by T �→ �va(t + T ), a �→
�va,T (t), and θ �→ �(θ)va,T (t), which by differentiation gives rise to some elements of the 
basis. Namely �∂T

∣∣
T=0va,T (t), �1/a∂a

∣∣
a=0va,T (t), and ∂θi�(θ)va,T (t) for i = 1, . . . , p − 1.

Second, to construct all the Jacobi fields basis, let us consider {ei}i∈I ⊂ Sp−1 a linearly inde-
pendent set in Rp with e1 = �, which provides four families with p Jacobi fields each given by 
�+

a,j,i = eiφ
+
a,j , �−

a,j,i = eiφ
−
a,j , �̃+

a,j,i = ei φ̃
+
a,j , and �̃−

a,j,i = ei φ̃
−
a,j .

Then, using Theorem B (ii), it is easy to check that Ba
j = ∪i∈I {�±

a,j,i , ̃�
±
a,j,i} is a basis to the 

kernel of La
j with 4p elements for each j � 1, and Ba

0 = ∪i∈I {�±
a,0,i} a basis with 2p elements 

when j = 0. �
4. Qualitative properties and a priori estimates

This section is devoted to proving Proposition 4. We show that solutions to (Sp,1) are asymp-
totic radially symmetric and satisfy an upper and lower bound estimate near the isolated sin-
gularity. Our strategy is to convert (Sp,1) into a system of integral equations. Then, we use the 
Kelvin transform to perform a moving sphere technique and the Pohozaev invariant with a bar-
rier construction to obtain the a priori estimates. Here, we are inspired by some techniques from 
[20]. The main difference in the proofs is that we need to deal with many components of System 
(Sp,1).

4.1. Integral representation formulas

We now use a Green identity to transform the fourth order differential system (Sp,1) into 
an integral one. In this way, we can avoid using the classical form of the maximum principle. 
Besides, it is also possible to prove regularity using a barrier construction in this setting.

For n � 3, the following expression for the Green function of the Laplacian in the unit ball is 
well-known
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G1(x, y)= 1

(n− 2)ωn−1

(
|x − y|2−n −

∣∣∣∣ x|x| − x|y|
∣∣∣∣2−n

)
,

where ωn−1 is the surface area of the unit sphere. In addition, for any u ∈C2 (B1)∩C
(
B̄1
)
, the 

next decomposition holds,

u(x)=
ˆ

B1

G1(x, y)�u(y)dy +
ˆ

∂B1

H1(x, y)u(y)dσy,

where

H1(x, y)= −∂νyG1(x, y)= 1 − |x|2
ωn−1|x − y|n for x ∈ B1 and y ∈ ∂B1,

with νy the outward normal vector at y.
Similarly, in the fourth order case with n � 5, for any u ∈C4 (B1)∩C2

(
B̄1
)
, it follows

u(x)=
ˆ

B1

G2(x, y)�
2u(y)dy +

ˆ

∂B1

H1(x, y)u(y)dσy −
ˆ

∂B1

H2(x, y)�u(y)dσy,

where

G2(x, y)=
ˆ

B1×B1

G1 (x, y1)G1 (y1, y)dy1 and H2(x, y)=
ˆ

B1×B1

G1 (x, y1)H1 (y1, y)dy1.

By a direct computation, we have

G2(x, y)= C(n,2)|x − y|4−n −A(x,y), (33)

where C(n, 2) = �(n−4)
24πn/2�(2)

, A : B1 ×B1 →R is a smooth map and Hi(x, y) � 0 for i = 1, 2.
In the following lemma, we find an integral representation for solutions to (Sp,1).

Lemma 41. Let U ∈ C4(B̄∗
1 , R

p) ∩L1(B1, Rp) be a strongly positive singular solution to (Sp,1). 
Then, |x|−qu2∗∗−1

i ∈ L1 (B1) for any q < n − 4 2∗∗−1
2∗∗−2 and i ∈ I . Moreover,

ui(x)=
ˆ

B1

G2(x, y)�
2ui(y)dy +

ˆ

∂B1

H1(x, y)ui(y)dσy −
ˆ

∂B1

H2(x, y)�ui(y)dσy.

Proof. It is a straightforward adaptation of [33, Lemma 2.1] to the context of systems. �
In the following proposition, we use the Green identity to convert (Sp,1) into an integral 

system, which is the main result of this section. Here the superharmonicity condition is assumed.
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Proposition 42. Let U be a strongly positive superharmonic solution to (Sp,1). Then, there exists 
r0 > 0 such that

ui(x)=
ˆ

Br0

|x − y|4−nfi(U)dy +ψi(x) in B∗
1 , (Ip,1)

where ψi > 0 satisfies �2ψi = 0 in Br0 . Moreover, one can find a constant c > 0, depending on 
r̃ such that

‖∇ lnψi‖C0(Br̃ )
� c for all i ∈ I and 0 < r̃ < r0. (34)

Proof. Using that −�ui > 0 in B∗
1 and ui > 0 in B̄1, it follows from the maximum principle that 

c1 := infB1 ui = min∂B1 ui > 0. In addition, by Lemma 41, we get that fi(U) ∈ L1 (B1), which 
implies that there exists r0 < 1/4 satisfying the following inequality 

´
Br0

|A(x, y)|fi(U)dy �
c1/2 for x ∈ Br0 , where A(x, y) is given by (33). Hence, for x ∈ Br0 , we get

ψi(x)= −
ˆ

Br0

A(x,y)fi(U)dy +
ˆ

B1\Br0

G2(x, y)fi(U)dy

+
ˆ

∂B1

H1(x, y)ui(y)dσy −
ˆ

∂B1

H2(x, y)�ui(y)dσy

� −c1

2
+
ˆ

∂B1

H1(x, y)ui(y)dσy

� −c1

2
+ inf

B1
ui = c1

2
.

By hypothesis ψi is biharmonic, then a removable singularity theorem, and elliptic regularity 
shows that ψi ∈ C∞(Br0) for all i ∈ I , which provides that |∇ψi | � c2 in Br̃ for all ̃r < r0 and 
i ∈ I , where c2 > 0 depends only on n, r0 − r̃ , and in the L1 norm of fi(U). Consequently, 
‖∇ lnψi‖C0(Br̃ )

� 2 c2
c1

for all i ∈ I , which finishes the proof. �
4.2. Upper bound estimate

The objective is to prove the upper bound estimate in Proposition 4.
First, we use the integral form of the moving spheres technique.

Lemma 43. Let U be a strongly positive solution to (Ip,1). For any x ∈ B1, z ∈ B2 \({0} ∪Bμ(x)
)

and μ < 1, it follows that ui(z) − (ui)x,μ(z) > 0 for all i ∈ I .

Proof. If U is a strongly positive solution to (Ip,1), then, replacing ui(x) by rγ ui(rx) for r =
1/2 and i ∈ I , we may consider the equation defined in B∗ for convenience. Namely, we have
2
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ui(x)=
ˆ

B2

|x − y|4−nfi(U(y))dy +ψi(x) in B∗
2 (Ip,2)

such that ui ∈ C
(
B∗

2

) ∩ L2∗∗−1 (B2) and |∇ lnψi | � c in B3/2. Extending ui to be identically 
zero outside B2, we find

ui(x)=
ˆ

Rn

|x − y|4−nfi(U(y))dy +ψi(x) in B∗
2 .

Using the identities in [22, page 162], one has

(
μ

|z− x|
)n−4 ˆ

|y−x|�μ

∣∣Ix,μ(z)− y
∣∣n−4

fi(U(y))dy =
ˆ

|y−x|�μ

|z− y|n−4 fi(U(z))dy (35)

and(
μ

|z− x|
)n−4 ˆ

|y−x|�μ

∣∣Ix,μ(z)− y
∣∣n−4

fi(U(y))dy =
ˆ

|y−x|�μ

|z− y|n−4 fi(U(y))dy, (36)

which implies

(ui)x,μ(z)=
ˆ

Rn

|z− y|n−4 fi(U(y))dy + (ψi)x,μ(z) for z ∈ Ix,μ(B2).

Consequently, for any x ∈ B1 and 0 <μ < 1, it follows

ui(z)− (ui)x,μ(z)=
ˆ

|y−x|�μ

E(x, y,μ, z)
[
fi(U)− fi(Ux,μ)

]
dy + [

(ψi)x,μ(z)−ψi(z)
]
,

for z ∈ B∗
2 ∪Bμ(x), where

E(x,y, z,μ)= |z− y|4−n −
( |z− x|

μ

)4−n ∣∣Ix,μ(z)− y
∣∣4−n

is used to estimate the difference between a p-map U and its Kelvin transform Ux,μ. Finally, it 
is straightforward to check that E(x, y, z, μ) > 0 for all |z − x| > μ > 0, which concludes the 
proof of the lemma. �

Second, we use a contradiction argument based on the blow-up classification.

Proposition 44. Let U ∈ C
(
B∗

2 ,R
p
) ∩ L2∗∗−1 (B2,Rp) be a strongly positive solution to 

(Ip,2). Suppose that ψi ∈ C1 (B2) is a positive function satisfying (34) for any i ∈ I . Then, 
lim sup|x|→0 |x|γ |U(x)| <∞.
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Proof. We assume by contradiction that there exist i ∈ I and {xk}k∈N ⊂ B2 such that 
limk→∞ |xk| = 0 and |xk|γ ui (xk) → ∞ as k → ∞. In this fashion, for |x − xk| � 1/2|xk|, 
we define ũki(x) := (|xk|/2 − |x − xk|)γ ui(x). Hence, using that ui is positive and continu-
ous in B̄|xk |/2 (xk), there exists a maximum point x̄k ∈ B|xk |/2 (xk) of ũki , that is, ũki (x̄k) =
max|x−xk |�|xk |/2 ũki(x) > 0. Taking 2μk := |xk|/2 − |x̄k − xk|> 0, we get

0 < 2μk � |xk|
2

and
|xk|

2
− |x − xk| � μk for |x − x̄k| � μk. (37)

Moreover, it follows that 2γ ui (x̄k)� ui(x) for |x − x̄k| � μk and

(2μk)
γ ui (x̄k)= ũki (x̄k)� ũki (xk)= 2−γ |xk|γ ui (xk)→ ∞ as k → ∞. (38)

We consider wki(y) =ui(x̄k)
−1ui(x̄k+yui(x̄k)

−1/γ ) and hki(y) =ui(x̄k)
−1ψi(x̄k+yui(x̄k)

−1/γ )

in �k , where �k = {y ∈ Rn : x̄k + yui(x̄k)
−1/γ ∈ B∗

2 }. Now, extending wki to be zero outside of 
�k and using Proposition 42, we get

wki(y)=
ˆ

Rn

fi(Wk)|y − x|4−ndx + hki(y) for y ∈�k (39)

and wki(0) = 1 for k ∈ N , where Wk = e1wki . Moreover, from (37) and (38), it holds 
‖hki‖C1(�k)

→ 0 and wki(y) � 2γ in BRki
, where Rki := μkiui(x̄k)

1/γ → ∞ as k → ∞. Using 

the regularity results in [22], one can find w0i > 0 such that wki → w0i as k → ∞ in C4,ζ
loc (R

n)

for some ζ ∈ (0, 1), where w0i > 0 satisfies

w0i (y)= c(n)

ˆ

Rn

|y − x|4−nw2∗∗−1
0i dx in Rn,

or, equivalently �2w0i = fi(w0i ) in Rn. Furthermore, by construction, we conclude w0i(0) = 1, 
which by Theorem B (i), implies that there exist μ > 0 and y0 ∈Rn such that

w0i (y)=
(

2μ

1 +μ2 |y − y0|2
)γ

. (40)

In the next claim, we use the last classification formula to apply the moving spheres technique.
Claim 1: For any μ > 0, it holds that (w0i)x,μ(y) �w0i (y) for |y − x| � μ.
Indeed, for a fixed μ0 > 0, we have 0 <μ0 <Rk/10 when k � 1. We also consider �̃k := {y ∈
Rn : x̄k + yui(x̄k)

−1/γ ∈ B∗
1 } ⊂⊂�k .

Now let us divide the proof of the claim into three steps as follows:
Step 1: For k � 1, it holds that (wki)x,μ0

(y) �wki(y) for y ∈ �̃k such that |y| � μ0.
In fact, by Lemma 43, there exists r̄ > 0 such that for all 0 <μ � r̄ and x̄ ∈ B1/100,

(
μ
)n−4

ψki

(
I0,μ(y)+ x̄

)
�ψki(y + x̄) for |y| � μ and y ∈ B149/100. (41)
|y|
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Let k � 1 be sufficiently large such that μ0ui (x̄k)
(4−n)−1

< r̄ . Hence, for any 0 < μ � μ0, it 
holds

(ψki)x,μ (y)�ψki(y) in �̃k \Bμ, (42)

which by passing to the limit as k → ∞ concludes the proof of Step 1.
Step 2: For k � 1, there exists μ1 > 0, independent of k, such that (wki)x,μ (y) � wki(y) in 
�̃k \Bμ for 0 <μ <μ1.
As matter of fact, since wki → w0i as k → ∞ in C4,ζ -topology and w0i is given by (40) we get 
that there exists c1 > 0 satisfying wki � c1 > 0 on B1 for k � 1. On the other hand, by (39) and 
standard regularity results, it follows that 

∣∣D(j)wki

∣∣ � c1 < ∞ on B1 for j = 1, 2, 3, 4. Using 
Lemma 43, there exists r0 > 0, not depending on k � 1, such that for all 0 <μ � r0, it holds

(wki)x,μ (y) < wki(y) for 0 <μ< |y| � r0. (43)

Again, since wki � c1 > 0 on B1 for k � 1, there exists c2 > 0 satisfying

wki(x)� c2∗∗−1
1

ˆ

B1

|x − y|4−ndy � 1

c2
(1 + |x|)4−n in �k.

Therefore, one can find 0 <μ1 � r0 � 1 sufficiently small such that for all 0 <μ <μ1, we have

(wki)μ (y)�
(
μ1

|y|
)n−4

max
Br0(x)

wki � c1

(
μ1

|y|
)n−4

�wki(y) for y ∈�k and |y| � r0,

which combined with (43) proves Step 2.
Step 3: For k � 1, it holds that μ∗ = μ0, where

μ∗ := sup
{
0 <μ� μ0 : (wki)x,μ (y)�wki(y), y ∈ �̃k with |y − x0| � μ and 0 <μ<μ0

}
.

Indeed, using (35), (36) and (42), it follows

wki(y)− (wki)0,μ (y)

=
ˆ

Rn\Bμ

E(0, y, z,μ)
[
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

]
dz+ [

ψki(y)− (ψki)0,μ (y)
]

(44)

�
ˆ

�̃k\Bμ

E(0, y, z,μ)
[
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

]
dz+ J (μ,wki, y) ,

for any μ∗ � μ � μ∗ + 1/2 and y ∈ �̃k with |y| >μ, where
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J (μ,wki, y)=
ˆ

Rn\�̃k

E(0, y, z,μ)
[
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

]
dz

=
ˆ

�k\�̃k

E(0, y, z,μ)
[
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

]
dz

−
ˆ

Rn\�k

E(0, y, z,μ) (wki)0,μ (z)
2∗∗−1dz.

For z ∈ Rn \ �̃k and μ∗ � μ � μ∗ + 1, we obtain that |z| � 1/2u (x̄k)−1/γ and thus

(wki)0,μ (z)�
(
μ

|z|
)n−4

max
Bμ∗+1

wki � c2ui (x̄k)
−2 .

In addition, since ui � c1 > 0 in B2 \B1/2, by the definition of wki , we have wki(y) � c1
ui(x̄k)

in 

�k \ �̃k , which in turns yields

J (μ,wki, y)� 1

2

(
c1

ui (x̄k)

)2∗∗−1 ˆ

�k\�̃k

E(0, y, z,μ)dz− c2

ˆ

Rn\�k

E(0, y, z,μ)

(
μ

|z|
)n+4

dz

(45)

�
{ 1

c2
(|y| −μ)ui (x̄k)

−1, if μ� |y| � μ∗ + 1
1
c2
ui (x̄k)

−1, if |y|>μ∗ + 1 and y ∈ �̃k.

Indeed, E(0, y, z, μ) = 0 for |y| = μ, and y∇yE(0, y, z, μ)
∣∣|y|=μ

= (n − 4)|y − z|4−n−2(|z|2 −
|y|2) > 0, for |z| � μ∗ + 2, which together with the positivity and smoothness of E implies the 
existence of 0 < δ1 � δ2 <∞ satisfying

δ1|y − z|4−n(|y| −μ)�E(0, y, z,μ)� δ2|y − z|4−n(|y| −μ), (46)

for μ∗ � μ � |y| � μ∗ + 1, μ∗ + 2 � |z| � R < ∞. Furthermore, if R � 1 is large, it follows 
that 0 < c1 � y · ∇y

(|y − z|n−4E(0, y, z,μ)
)
� c1 <∞ for all |z| � μ, μ∗ � μ � |y| � μ∗ + 1. 

Thus, (46) holds for μ∗ � μ � |y| � μ∗ + 1 and |z| � R. Besides, by the definition of 
E(0, y, z, μ), there exists 0 < δ3 � 1 such that

δ3|y − z|4−n �E(0, y, z,μ)� |y − z|4−n, (47)

for |y| � μ∗ + 1 and |z| � μ∗ + 2. Therefore, for k � 1 and μ � |y| � μ∗ + 1, we find c3, c4 > 0
satisfying

J (μ,wki, y)� 1

2

(
c1

ui (x̄k)

)2∗∗−1 ˆ

˜
δ1|y − z|4−n(|y| −μ)dz
�k\�k
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− c2

ˆ

Rn\�k

δ2|y − z|4−n(|y| −μ)

(
μ

|z|
)n+4

dz

� 1

c3
(|y| −μ)ui (x̄k)

−1 − 1

c4
(|y| −μ)ui (x̄k)

−2∗∗

� 1

2c3
(|y| −μ)ui (x̄k)

−1 .

Similarly, for |y| � μ∗ +1 and y ∈ �̃k , since ui (x̄k)→ ∞ as k → ∞, there exist c5, c6 > 0 such 
that J (μ,wki, y)� 1

c5
ui (x̄k)

−1 − 1
c6
ui (x̄k)

−2∗∗ � 1
2c5

ui (x̄k)
−1, which verifies (45).

Next, by (44) and (45), there exists ε1 ∈ (0, 1/2), depending on k, such that for |y| �μ∗ + 1, 
it holds wki(y) − (wki)0,μ∗ (y) � ε1|y|4−n in �̃k . Using the last inequality and the formula for 
(wki)0,μ, there exists 0 < ε2 < ε1 � 1 such that for |y| � μ∗ + 1, μ∗ � μ � μ∗ + ε2, we get

wki(y)− (wki)0,μ (y)� ε1|y|4−n + [
(wki)0,μ∗ (y)− (wki)μ (y)

]
� ε1

2
|y|4−n. (48)

For ε ∈ (0, ε3] that will be chosen later, by (44) and (45) combined with the inequality, we obtain 

c7 > 0 such that 
∣∣∣(wki) (z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

∣∣∣� c7(|z| −μ), which implies

wki(y)− (wki)0,μ (y)�
ˆ

μ�|z|�μ∗+1

E(0, y, z,μ)
(
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

)
dz

+
ˆ

μ∗+2�|z|�μ∗+3

E(0, y, z,μ)
(
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

)
dz

� −c7

ˆ

μ�|z|�μ+ε

E(0, y, z,μ)(|z| −μ)dz

+
ˆ

μ+ε�|z|�μ∗+1

E(0, y, z,μ)
(
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

)
dz

+
ˆ

μ∗+2�|z|�μ∗+3

E(0, y, z,μ)
(
wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1

)
dz,

for μ∗ � μ � μ∗ + ε and μ � |y| � μ∗ +1. From (48), there exists δ5 > 0 such that for μ∗ +2 �
|z| � μ∗ + 3, it follows wki(z)

2∗∗−1 − (wki)0,μ (z)
2∗∗−1 � δ5. Moreover, since there exists some 

constant c8 > 0, not depending on ε, such that ‖wki‖C1(B2)
� c8 (independent of k) for μ∗ � μ �

μ∗ +ε, we get |(wki)0,μ∗(z)2∗∗−1 − (wki)0,μ(z)
2∗∗−1| � c8(μ −μ∗) � c8ε, for μ � |z| � μ∗ +1. 

Also, for μ � |y| � μ∗ + 1, we find

ˆ
∗

E(0, y, z,μ)dz �

∣∣∣∣∣∣∣
ˆ

∗

(
|y − z|4−n − |I0,μ(y)− z|4−n

)
dz

∣∣∣∣∣∣∣
μ+ε�|z|�μ +1 μ+ε�|z|�μ +1
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+
ˆ

μ+ε�|z|�μ∗+1

∣∣∣∣∣
(
μ

|y|
)n−4

− 1

∣∣∣∣∣ ∣∣I0,μ(y)− z
∣∣n−4dz

� c8

(
ε3 + | ln ε| + 1

)
(|y| −μ)

and

ˆ

μ�|z|�μ+ε

E(0, y, z,μ)(|z| −μ)dz �

∣∣∣∣∣∣∣
ˆ

μ�|z|�μ+ε

(
|z| −μ

|y − z|n−4 − |z| −μ∣∣I0,μ(y)− z
∣∣n−4

)
dz

∣∣∣∣∣∣∣
+ ε

ˆ

μ�|z|�μ+ε

∣∣∣∣∣
(
μ

|y|
)n−4

− 1

∣∣∣∣∣ ∣∣I0,μ(y)− z
∣∣4−ndz

� I + c8ε(|y| −μ),

where, for |y| � μ + 10ε, we arrive at

I =

∣∣∣∣∣∣∣
ˆ

μ�|z|�μ+ε

(
|z| −μ

|y − z|n−4 − |z| −μ∣∣I0,μ(y)− z
∣∣n−4

)
dz

∣∣∣∣∣∣∣� c8ε
(
ε3 + | ln ε| + 1

)
(|y| −μ).

On the other hand, for μ � |y| � μ + 10ε, it follows

I �

∣∣∣∣∣∣∣
ˆ

μ�|z|�μ+10(|y|−μ)

(
|z| −μ

|y − z|n−4 − |z| −μ∣∣I0,μ(y)− z
∣∣n−4

)
dz

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
ˆ

μ+10(|y|−μ)�|z|�μ+ε

(
|z| −μ

|y − z|n−4 − |z| −μ∣∣I0,μ(y)− z
∣∣n−4

)
dz

∣∣∣∣∣∣∣
� c8(|y| −μ)

ˆ

μ�|z|�μ+10(|y|−μ)

(
1

|y − z|n−4 + 1∣∣I0,μ(y)− z
∣∣n−4

)
dz

+ c8
∣∣y − I0,μ(y)

∣∣ ˆ

μ+10(|y|−μ)�|z|�μ+ε

|z| −μ

|y − z|n−3 dz

� c8(|y| −μ) sup
z̃∈Rn

ˆ

μ�|z|�μ+100ε

|̃z− z|n−4dz

� c8(|y| −μ)ε4/n.

Finally, using (47), for μ < |y| � μ∗ + 1 and 0 < ε � 1 sufficiently small, it holds
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wki(y)− (wki)0,μ (y)� −c8ε
4
n (|y| −μ)+ δ1δ5(|y| −μ)

ˆ

μ+2�|z|�μ∗+3

|y − z|4−ndz

�
(
δ1δ5 − c8ε

4
n

)
(|y| −μ)� 0,

which together with (48) contradicts the definition of μ∗ > 0, if μ∗ < μ0. Hence, the proof of 
Step 3 is finished, so Claim 1. Besides, this is also a contradiction with (40), which concludes 
the proof of the proposition. �

Consequently, we obtain the upper bound estimate of Proposition 4.

Corollary 45. Let U be a strongly positive singular solution to (Sp,1). Then, there exists C2 > 0
satisfying |U(x)| � C2|x|−γ for 0 < |x| < 1/2.

4.3. Asymptotic radial symmetry

Here, we prove the convergence of singular solutions to (Sp,1) to their spherical average 
U(x) = −́

∂B1
U(rθ)dθ . In particular, this approximation implies that they are asymptotic radi-

ally symmetric with respect to the origin.

Proposition 46. Let U be a strongly positive singular solution to (Sp,1). Then, |U | is radially 
symmetric with respect to the origin and |U(x)| = (1 +O(|x|))|U(x)| as x → 0, where |U | is its 
spherical average.

Proof. First, we prove the following claim:
Claim 1: There exists 0 < ε < min{1/10, ̄r} such that |Ux,μ(y)| � |U(y)| in B1(x) \ Bμ(x) for 
0 <μ < |x| < ε, where r̄ is such that (41) holds for all 0 <μ � r̄ .

We divide the proof of the claim into two steps as follows:
Step 1: The critical parameter

μ∗(x) := sup
{
0 <μ� |x| : |Ux,μ(y)| � |U(y)| for y ∈ B2 \ (Bμ(x)∪ {0}) and 0 <μ<μ∗}

is well-defined and positive.
Indeed, using Lemma 43, for every x ∈ B∗

1/10 one can find 0 < rx < |x| such that for all 0 <μ �
rx , it follows |Ux,μ(y)| � |U(y)| for 0 <μ < |y−x| � rx . Moreover, as a consequence of (Ip,2), 
we get

|U(x)| � 44−n

ˆ

B2

|fi(U)|(y)dy := c1 > 0, (49)

which implies that there exists 0 <μ1 � rx such that, for every 0 <μ � μ1, it holds

|Ux,μ(y)| � |U(y)| for y ∈ B2 \ (Brx (x)∪ {0}) . (50)

Hence, as a combination of (49) and (50), it follows the proof of Step 1.
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Step 2: There exists ε > 0 such that μ∗ = |x| for all |x| � ε, μ∗ � μ < |x| � r̄ , and y ∈ B1, we 
get

ui(y)− (ui)x,μ(y)�
ˆ

B1\Bμ(x)

E(0, y, z,μ)
[
fi(U(z))− fi(Ux,μ(z))

]
dz+ J (μ,u, y),

for any i ∈ I , where

J (μ,ui, y)=
ˆ

B2\B1

E(x,y, z,μ)
[
fi(U(z))− fi(Ux,μ(z))

]
dz

−
ˆ

Rn\B2

E(x,y, z,μ)fi(Ux,μ(z))dz.

In fact, for y ∈Rn \B1 and μ < |x| < ε < 1/10, we have

Ix,μ(y)=
∣∣∣∣x + μ2(y − x)

|y − x|2
∣∣∣∣� |x| − 10

9
μ2 � |x| − 10

9
|x|2 � 8

9
|x|.

Using Proposition 43, there exists c2 > 0 such that |U(Ix,μ(y))| � c2|x|−γ , which, for all y ∈
Rn \B1, yields

|Ux,μ(y)| =
(

μ

|y − x|
)n−4

|U (Ix,μ(y)) | � c2μ
n−4|x|−γ � c2|x|γ � c2ε

γ .

By (49), we find |Ux,μ(y)| < |U(y)| for y ∈ B2 \ B1. In addition, combining (49) and (50) with 
the proof of (45), there exist c3 > 0, independent of x, such that

J (μ, |U |, y)

�
ˆ

B2\B1

E(x,y, z,μ)
(
c2∗∗−1

1 − c2∗∗−1
2 εn+4

)
dz

− c2

ˆ

Rn\B2

E(x,y, z,μ)
(
|x − z|4−n|x|γ

)2∗∗−1
dz

� 1

2
c2∗∗−1

1

ˆ

B2\B1

E(x,y, z,μ)dz− ε
n+4

2 c2

ˆ

Rn\B2

E(x,y, z,μ)|x − z|n+4dz

� 1

2
c2∗∗−1

1

ˆ

B19/10\B11/10

E(0, y − x, z,μ)dz− ε
n+4

2 c2

ˆ

Rn\B19/10

E(0, y − x, z,μ)|x − z|n+4dz

� 1

c
(|y − x| −μ),
3
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for y ∈ B1\ 
(
Bμ(x)∪ {0}) and 0 < ε � 1. Eventually, if μ∗ < |x|, by Lemma 43, we get a 

contradiction with the definition of μ∗. Hence, Step 2 is proved, and so Claim 1.
Finally, for any i ∈ I , choose 0 < ri < ε2 and x1i , x2i ∈ ∂Bri satisfying ui(x1i ) = max∂Bri

ui
and ui(x2i ) = min∂Bri

ui . Now choosing

x3i = x1i + εi (x1i − x2i )

4 |x1i − x2i | and μi =
√
εi

4

(
|x1i − x2i | + εi

4

)
,

it follows from Claim 1 that (ui)x3i ,μi (x2i )� ui (x2i ). Furthermore, we have

(ui)x3i ,μi (x2i )=
(

μi

|x1i − x2i | + εi/4

)n−4

ui (x1i )=
(

1

4 |x1i − x2i | ε−1
i + 1

)γ

ui (x1i )

�
(

1

8rε−1
i + 1

)γ

ui (x1i ) ,

which implies max∂Bri
ui �

(
8riε−1 + 1

)γ
min∂Bri

ui and this proves the proposition. �
As a consequence of the upper estimate, we prove the following Harnack inequality for solu-

tions to (Sp,1), whose scalar version can be found in [6, Theorem 3.6].

Corollary 47. Let U be a strongly positive solution to (Sp,1). Then, there exists c > 0 such that

max|x|=r
|U(x)| � c min|x|=r

|U(x)| for 0 < r < 1/4.

Moreover, |D(j)U(x)| � c|x|−j |U(x)| for j = 1, 2, 3, 4 and 0 < r < 1/4.

Proof. For any i ∈ I , let us define ̃ui(y) = rγ ui(ry). Thus,

ũi (y)=
ˆ

B2

|y − z|4−nfi(Ũ(z))dz+ h̃i (y), (51)

where ψ̃i(y) = rγ ψi(ry). By Corollary 45, there exists C2 > 0, such that ̃ui � C2 in B2 \B1/10. 
Taking |x| = 1, let us consider (�i)x(y) =

´
B2/r (x)\B9/10(x)

|y − z|4−nfi(Ũ(z))dz. Hence, for any 
y1, y2 ∈ B1/2(x), there exists c1 > 0 such that

(�i)x(y1)� c1

ˆ

B2/r (x)\B9/10(x)

|y − z|4−nfi(Ũ(z))dz � c1(�i)x(y2),

which implies that �i satisfies the Harnack inequality in B1/2(x). On the other hand, ψi also 
satisfies the Harnack inequality in B1/2(x) and

ũi (y)=
ˆ

B (x)

|y − z|4−nfi(Ũ)dz+ (�i)x(y)+ h̃i (y) in B1/2(x).
9/10
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Now by [22, Theorem 2.3], there exists c2 > 0 such that supB1/2(x)
ũi � c2 infB1/2(x) ũi , which by 

a covering argument provides sup1/2�|y|�3/2 ũi � c2 inf1/2�|y|�3/2 ũi , and, by rescaling back to 
u, the proof of the first part follows.

Next, for any fixed x and i ∈ I , let r = |x| and ũi (y) = rγ ui(ry). Thus, Ũ satisfies (51)
and, by Corollary 45, it holds that ũi � C2 in B3/2 \ B1/2 for all i ∈ I . Finally, using the lo-
cal estimates from [22, Section 2.1] and the smoothness of ψi , one can find c3 > 0 satisfying 
|D(j)ũi(x)| � c3 for |x| = 1 and j = 1, 2, 3, 4, which, by scaling back to ui , concludes the proof 
of this corollary. �
4.4. Lower bound estimate

Next, we use the Pohozaev invariant, the Harnack inequality, and a barrier argument to prove 
a removable classification result, which implies the lower bound estimate in Proposition 4.

Lemma 48. Let U ∈ C
(
B∗

2 ,R
p
) ∩ L2∗∗−1 (B2,Rp) be a strongly positive solution to (Ip,2). 

Assume ψi ∈ C∞(B1) for all i ∈ I . If lim sup|x|→0 |U(x)| = ∞, then lim inf|x|→0 |U(x)| = ∞.

Proof. Let us consider {xk}k∈N ⊂ B1 satisfying rk = |xk| → 0 and ui (xk)→ ∞ as k → ∞. By 
the Harnack inequality, we have inf∂Brk

ui → ∞ as k → ∞. Thus, we obtain −�(ui −ψi) � 0
in B∗

2 for all i ∈ I . Hence, since ψi ∈ C∞(B1) for all i ∈ I , it follows minBrk
\Brk+1

ui(x) → ∞
as k → ∞. Therefore, we conclude minBrk

\Brk+1
(ui − ψi) = min∂Brk

∪∂Brk+1
(ui − ψi), which 

proves the lemma. �
Lemma 49. Let U ∈ C

(
B∗

2 ,R
p
) ∩ L2∗∗−1 (B2,Rp) be a strongly positive solution to (Ip,2). If 

lim|x|→0 |x|γ |U(x)| = 0, then |U | can be extended as a continuous function to the whole B1.

Proof. Let us consider the barrier functions from [22]. For any i ∈ I and δ > 0, we choose 
0 < ρ � 1 such that ui(x) � δ|x|−γ in B∗

ρ . Fixing ε > 0, κ ∈ (0, γ ) and c1 � 1 to be chosen 
later, we define

ςi(x)=
{
c1|x|−κ + ε|x|4−n−κ , if 0 < |x|< ρ

ui(x), if ρ < |x|< 2.

Notice that for every 0 < κ < n − 4 and 0 < |x| < 2, one can find c2 > 0 such that

ˆ

Rn

|x − y|4−n|y|−4−κdy = |x|4−n

ˆ

Rn

∣∣∣|x|−1x − |x|−1y

∣∣∣4−n |y|κ−4dy

= |x|−κ+4
ˆ

Rn

∣∣∣|x|−1x − z

∣∣∣4−n |z|κ−4dz

� c2

(
1

n− 4 − κ
+ 1

κ
+ 1

)
|x|−κ ,

which, for 0 < |x| < 2 and 0 < δ � 1, yields
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ˆ

Bρ

u2∗∗−2
i (y)ςi(y)|x − y|4−ndy � δ2∗∗−2

ˆ

Rn

ςi(y)|x − y|n−4|y|−4dy � c2δ
2∗∗−2ςi(x) <

1

2
ςi(x).

Moreover, for 0 < |x| < ρ and x̄ = ρx|x|−1, we get

ˆ

B2\Bρ

u2∗∗−2
i (y)ςi(y)|x − y|4−ndy =

ˆ

B2\Bρ

|x̄ − y|n−4

|x − y|n−4

u2∗∗−1
i (y)

|x̄ − y|n−4 dy � 2n−4
ˆ

B2\Bρ

u2∗∗−1
i (y)

|x̄ − y|n−4 dy

� 2n−4ui(x̄)

� 2n−4 max
∂Bρ

ui .

The last inequality implies that for 0 < |x| < τ and c1 � max∂Bρ ui , we have

ςi(x)+
ˆ

B2

u2∗∗−2
i (y)ςi(y)

|x − y|4−n
dy � ςi(x)+ 2n−4 max

∂Bρ

u+ 1

2
ςi(x) < ςi(x).

In the following claim, we show that ςi can be taken indeed as a barrier for any ui .
Claim 1: For any i ∈ I , it holds that ui(x) � ςi(x) in B∗

ρ .
Indeed, assume it does not hold. Since ui(x) � δ|x|−γ in B∗

ρ , by the definition of ςi , there exists 
τ̄ ∈ (0, ρ), depending on ε, such that ςi � ui in B ∗̃

ρ and ςi > ui near ∂Bρ . Let us consider 
τ̄ := inf

{
τ > 1 : τψi > ui in B∗

ρ

}
. Then, we have that τ̄ ∈ (1, ∞) and there exists x̄ ∈ Bρ \ B̄τ̃

such that τ̄ ςi(x̄) = ui(x̄). Furthermore, for 0 < |x| < τ , it follows

τ̄ ςi(x)�
ˆ

B2

u2∗∗−2
i (y)τ̄ςi(y)|x − y|4−ndy+ τ̄ ςi(x)�

ˆ

B2

u2∗∗−2
i (y)τ̄ςi(y)|x − y|4−ndy+ςi(x),

which gives us τ̄ ςi(x) − ui(x) �
´
B2

u2∗∗−2
i (y)(τ̄ ςi(y)− ui(y))|x − y|4−ndy. Finally, by evalu-

ating the last inequality at x̄ ∈ Bρ \ B̄τ̄ , we get a contradiction, which proves the claim.
As a consequence of the claim, we get that ui(x) � ςi(x) � c1|x|−κ + ε|x|4−n−κ in B∗

ρ , 

which, by passing to the limit as ε → 0, implies that u2∗∗−2
i ∈ Ls(B∗

ρ) for some s > n/4 and any 
i ∈ I . Hence, using standard elliptic regularity, the proof of the lemma follows. �
Proposition 50. Let U ∈ C

(
B∗

2

) ∩ L2∗∗−1 (B2) be a strongly positive solution to (Sp,1). As-
sume ψi ∈ C∞(B1) is a positive function in Rn satisfying �2ψi = 0 in B2 for all i ∈ I . If 
lim inf|x|→0 |x|γ |U(x)| = 0, then lim|x|→0 |x|γ |U(x)| = 0.

Proof. Assume by contradiction that there exists c1 > 0 such that lim supx→0 |x|γ |U(x)| = c1 >

0; thus, from Lemma 48, we get lim inf|x|→0 |U(x)| = ∞. Using the assumption and the Harnack 
inequality in Lemma 47, there exists {rk}k∈N such that rk → 0 and rγk ūi (rk) → 0 as k → ∞. 
As well as, rk is a local minimum point of rγ ūi(r). Furthermore, let en = (0, . . . , 1) ∈ Rn and 
define ϕki(y) = ui(rky) , which combined with (Ip,2), gives us
ui(rken)
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ϕki(y)=
ˆ

B2/rk

(
r
γ

k ui (rken)
)2∗∗−2

ϕki(η)
2∗∗−1|y − z|4−ndz+ψki(y) in B∗

2/rk ,

where ψki(y) = ui(rken)−1ψi (rky).
Claim 1: For any i ∈ I , it follows that limk→∞ ϕki(y) = 1/2(|y|4−n + 1) in C2

loc (R
n \ {0}).

In fact, since ui (rken) → ∞, we have that ψki(y) → 0 as k → ∞ in Cn
loc (R

n). Next, using 
the Harnack inequality, we obtain that rγk ui (rken) → 0, and ϕki is locally uniformly bounded 

in B∗
2/rk

. Hence, limk→∞
(
r
γ

k ui (rken)
)2∗∗−2

ϕki(y)
2∗∗−1 = 0 in Cn

loc (R
n \ {0}). Thus, for any 

τ > 1, 0 < |y| < τ and 0 < ε < |y|/100, up to subsequences, it follows

lim
k→∞

ˆ

Bτ

(
r
γ

i u (rken)
)2∗∗−2

ϕki(z)
2∗∗−1

|y − z|n−4 dz = lim
k→∞

ˆ

Bε

(
r
γ

k u (rken)
)2∗∗−2

ϕki(z)
2∗∗−1

|y − z|n−4 dz

= (1 +O(ε))

|y|n−4 lim
k→∞

ˆ

Bε

(
r
γ

k u (rken)
)2∗∗−2

ϕki(z)
2∗∗−1dz.

By sending ε → 0, we have that limk→∞
´
Bτ

(
r
γ

k u (rken)
)2∗∗−2

ϕki(z)
2∗∗−1|y − z|4−ndz =

c2|y|4−n, for some c2 � 0. Moreover, since the left-hand side of the last equation is locally 
uniformly bounded in Cn+1

loc (Bτ ), for any i ∈ I , there exists �i ∈ C2 (Bτ ) satisfying

lim
k→∞

ˆ

B2\Bτ

(
r
γ

k ui (rken)
)2∗∗−2

ϕki(z)
2∗∗−1|y − z|4−ndz = �i(y)� 0 in Cn

loc (Bτ ) .

In addition, for any fixed R � 1 and y ∈ Bτ , we have

lim
k→∞

ˆ

t�|y|�R

(
r
γ

k ui (rken)
)2∗∗−2

ϕki(z)
2∗∗−1|y − z|4−ndz = 0,

and for any y1, y2 ∈ Bτ , we obtain

ˆ

B2/rk \BR

(
r
γ

k ui (rken)
)2∗∗−2

ϕki(z)
2∗∗−1|y1 − z|4−ndz

�
(
R + τ

R − τ

)n−4 ˆ

B2/rk \BR

(
r
γ

k ui (rken)
)2∗∗−2

ϕki(z)
2∗∗−1|y2 − z|4−ndz.

Therefore, it follows �i (y1) �
(
R+τ
R−τ

)n−4
�i (y2), which, by passing to the limit as R → ∞

and exchanging the roles of y1 and y2, implies �i (y2) = �i (y1). Whence, �i(y) ≡ �i(0) for all 
y ∈ Bτ and i ∈ I . Since ϕki is locally uniformly bounded in B∗

2/rk
, it is also locally uniformly 

bounded in Cn+1(B∗ ). Hence, up to subsequence, ϕki → �i as k → ∞ in Cn (Rn \ {0}), 
2/rk loc
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for some �i , which yields that limk→∞ ϕki(y) = c2|y|4−n +ψi(0) in Cn
loc (R

n \ {0}). Using that 
ϕki (en)= 1 and

d

dr

{
rγ ϕ̄ki(r)

} ∣∣
r=1 = r

−γ+1
k ui (rken)−1 d

dr

{
rγ ūi(r)

} ∣∣∣
r=rk

= 0,

by taking the limit k → ∞, it follows that c2 =ψi(0) = 1/2, which proves the claim.
Claim 2: limk→∞ Psph (rk,U)= 0.
In fact, for any i ∈ I , let us consider ũi (x) =

´
B2

fi(U)|x − y|4−ndy + ψi(x) in Rn \ {0}, 
which provides that ũi = ui in B∗

2 , and ũi (x) =
´
B2

fi(Ũ)|x − y|4−ndy + ψi(x) in Rn \ {0}. 
Consequently, using that �2ψi = 0 in B2 for any i ∈ I , it follows that �2ũi = fi(U) in B∗

2 . 
On the other hand, we know that Psph(rk, U) is a constant on r . Moreover, since there ex-
ists c3 > 0 such that |D(j)ϕki | � C near ∂B1 and rγk u(rken) = o(1) as k → ∞, we have 

|D(j)ui(x)| � c3r
−j
k u(rken) = o(1)r−γ−k

k for all |x| = rk and j = 1, 2, 3, 4, which proves the 
second claim.

Hence, using Claim 2, it holds that Psph(rk, U) = 0 for k ∈N . Thus, by (12), we get

p∑
i=1

ˆ

∂B1

q (ϕki(x),ϕki(x))dx + ĉ(n)
(
r
γ

k ui (rien)
)2∗∗−2

p∑
i=1

ˆ

∂B1

|ϕki(x)|2∗∗
dx = 0,

where we recall that q is defined by (13). Next, sending k → ∞, and doing some manipulation, 
we obtain 

´
∂B1

q(|x|4−n + 1, |x|4−n + 1)dx = 0.

On the other hand, by Theorem B (i), we know that U0,μ(x) =� 
(

2μ
1+|x|2μ2

)γ
satisfies (Sp,∞)

for some � ∈ Sp−1
+,∗ , which, for any μ > 0, implies that Psph(1, U0,μ) = limr→∞ Psph(r, U0,μ) =

0. Hence, we find

p∑
i=1

ˆ

∂B1

q
(
μ−γ (ui)0,μ,μ

−γ (ui)0,μ
)

dx + ĉ(n)μ4−n

p∑
i=1

ˆ

∂B1

(ui)
2∗∗
0,μdx = 0,

which, by taking the limit as μ → 0, provides

0 =
ˆ

∂B1

[
q
(
|x|4−n + 1, |x|4−n + 1

)
− q

(
|x|4−n, |x|4−n

)]
dσ

= (n− 4)
ˆ

∂B1

∂ν�
(
|x|4−n

)
dσ �= 0,

which is a contradiction. This concludes the proof of the proposition. �
Using the last lemma, we can present a removable singularity theorem.

Corollary 51. Let U be a strongly positive solution to (Sp,1). Then, Psph(U) � 0 and Psph(U) =
0, if, and only if, U has a removable singularity at the origin.
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The lower bound estimate is a direct consequence of the last results.

Corollary 52. Let U be a strongly positive singular solution to (Sp,1). Then, there exists C1 > 0
such that C1|x|−γ � |U(x)| for 0 < |x| < 1/2.

Ultimately, we have the proof of the main theorem in this section.

Proof of Proposition 4. It is a combination of Corollaries 45 and 52. �
5. Local asymptotic behavior

In this section, we present the proof of Theorem 1. To this end, we use the growth properties 
of the Jacobi fields in Proposition 3 and the a priori estimates in Proposition 4. We know that in 
the high-frequency case, there is a basis of four linearly independent Jacobi fields, two of which 
grow unbounded and the others exponentially decay. Surprisingly, this Jacobi field basis has only 
two elements in the zero-frequency case.

We employ the so-called Simon’s convergence technique for strongly positive solutions to 
(Cp,∞), which can be summarized in following steps:
(a) There exist C1, C2 > 0 such that any strongly positive solution to (Cp,0) satisfies the uniform 
estimate C1 � |V(t, θ)| � C2;
(b) If τk → ∞ and Vk(t, θ) := V(t + τk, θ). Then, the slide back sequence {Vk}k∈N converges 
uniformly on compact sets to a bounded solution V∞ to (Cp,∞);
(c) Any angular derivative |∂θV(t, θ)| converges to 0 as t → ∞;
(d) There exists S > 0 such that for any infinitesimal rotation ∂θ of Sn−1, and for any τk → ∞, 
if we set Ak = supt�0 |∂θV(t, θ)|, and if |∂θVk(τk, θ)| =Ak for some (τk, θk) ∈ C0, then sk � S;

(e) |∂θV(t, θ)| converges to 0 exponentially as t → ∞, as well as |V(t, θ) − V(t)|, where V is a 
spherical average of V ;
(f) There exists a bounded solution Va,T of (Cp,∞) and σ � 0 such that V(t, θ) converges to 
V(t + σ) exponentially as t → ∞.

The steps above are verified by combining Theorem B, Proposition 3 and Proposition 4. 
Namely, we prove a result equivalent to Theorem 1 written in cylindrical coordinates.

Proposition 53. Let V be a strongly positive singular solution to (Cp,0). Then, there exists β∗
0 > 0

and an Emden–Fowler solution Va,T such that

V(t)= (1 +O(eβ
∗
0 t ))Va,T (t) as t → ∞. (52)

Proof. Initially, by Remark 11, the origin is a non-removable singularity. Thus, using Corol-
lary 51, we have that Psph(U) < 0. Let V = F(U) and {τk}k∈N be such that τk → ∞ as k → ∞. 
We define the sequence of translations Vk(t, θ) = V(t + τk, θ) defined in Cτk := (−τk, ∞) ×
Sn−1. Hence, applying Proposition 4, we get C1 � |Vk(t, θ)| � C2, which yields that {Vk}k∈N
is uniformly bounded in C4,ζ

loc (C0, Rp) for some ζ ∈ (0, 1). Hence, by standard elliptic regular-

ity, there exists a limit solution V∞ ∈ C
4,ζ
loc (R, R

p) such that, up to subsequence, Vk → V∞ as 
k → ∞, where V∞ satisfies (Cp,0). Thus, by Theorem B (ii), V∞ is an Emden–Fowler solution, 
that is, there exist a ∈ (0, a0) and T ∈ (0, Ta) such that V∞ = Va,T and does not depend on the 
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variable θ , where Va,T = �va,T with va,T a solution to (4) and � = (�1, . . . , �p) ∈ Sp−1
+,∗ , that 

is, �i > 0 for all i ∈ I .
We divide the rest of the proof into some claims.

Claim 1: The following elliptic estimates hold:
(i) Vk(t, θ) = Vk(t)(1 + o(1));

(ii) ∇Vk(t, θ) = −V(1)
k (t)(1 + o(1));

(iii) �Vk(t, θ) = V(2)
k (t)(1 + o(1));

(iv) ∇�Vk(t, θ) = −V(3)
k (t)(1 + o(1)).

Indeed, if (i) is not valid, there would exist ε̄ > 0 and τk → ∞, θk → ∞ such that |Vk(τk,θk)

Vk(τk)
−1| �

ε̄, which is a contradiction since Vk → V∞ and V∞ is radially symmetric. The same argument 
holds for (ii), (iii), and (iv). This estimate implies (b), that is, any angular derivative |∂θVk|
converges uniformly to zero.
Claim 2: The necksize of V∞ does not depend on k ∈N .
In fact, this is a consequence of the following identity

Pcyl(V∞) := Pcyl(0,V∞)= lim
k→∞Pcyl(0,Vk)= lim

k→∞Pcyl(τk,V)= Pcyl(V),

which says that for each {τk}k∈N , the correspondent sequence {Vk}k∈N converges to Va,T :=
�va,T as k → ∞, where T does not depend on k.

In the following claim, we prove (c), (d), (e), and (f).
Claim 3: There exist σ ∈R and β∗

0 , c2 > 0 such that |Vσ (t, θ) − Va,T (t)| � c2e
β∗

0 t on C0.
As a matter of fact, we divide this argument into three steps. First, let Ta ∈ R be the funda-
mental period of the Emden–Fowler solution va,T and define Aτ = supt�0 |∂θVτ |. Since |∂θVτ |
converges uniformly to zero as t → ∞, we have Aτ <∞.
Step 1: For every c > 0, there exists an integer N > 0 such that, for any τ > 0 either:
(i) Aτ � ce−2τ , or
(ii) Aτ is attained at some point in C0,IN := IN × Sn−1, where IN = [0, NTa].
Suppose that the claim is not true. Then, there exists c1 > 0 and τk, θk → ∞ such that 
|∂θVτ (sk, θk)| = Aτk and Aτk > c1e

−2τk as k → ∞. We define Ṽk(t, θ) = Vk(t + sk, θ) and 
�k = A−1

τk
∂θ Ṽk . In addition, we have that |�k| � 1 and Ṽk satisfy (Cp,0), which by differenti-

ation with respect to θ implies that La (�k) = 0. Now, using standard elliptic regularity, we can 
extract a subsequence {�k}k∈N which converges in compact subsets to a nontrivial bounded Ja-
cobi field satisfying La (�)= 0. Finally, since � has no zero eigencomponent relative to �θ and 
thus is unbounded, this contradiction proves Step 1.

Assuming that Vk(t, θ) converges to Va(t + T ) as k → ∞, we define Wk(t, θ) = Vk(t, θ) −
Va(t + T ), ηk = �maxIN |Wk|, and �k = η−1

k Vk , where � > 0 will be chosen later and satisfies 
|�k| � �−1 in IN . Then, by Theorem B (ii), it follows

�2
cylWk −

[
fi(Vk)−�v2∗∗−1

a,T

]
= 0, (53)

where

fi(Vk)−�v2∗∗−1
a,T = |Vk|2∗∗−2vki +�iva,T

|Vk|2∗∗−2 − v2∗∗−2
a,T

|Vk|2 − v2
a,T

p∑(
vkj +�iva,T

)
.

j=1
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Multiplying (53) by η−1
k and taking the limit as k → ∞ we get La (�∗) = 0, where �∗ =

limk→∞�k .
Step 2: The Jacobi filed �∗ is bounded for all t � 0.
Using Proposition 3 and the Fourier decomposition (21), we get �∗ = b1�

+
a,0 + b2�

−
a,0 + �̌, 

where �̌ is the projection on the subspace generated by the eigenfunctions associated to the 
nonzero eigenvalues of �θ . We will use Proposition 3 to show that �̌ is bounded. Indeed, 
we need to verify that ∂θ �̌ = ∂θ� is bounded for t � 0. In this fashion, we have that ∂θ� =
limk→∞ ηk∂θVk . Furthermore, the result follows if ∂θ� is zero. Then, we suppose that ∂θ� is 

nontrivial. In this case, if (i) of Step 1 happens, we get supt�0

(
η−1
k |∂θVk|

)
� cη−1

k e−2τk � c. 

On the other hand, if (ii) of Step 1 happens, since η−1
k |∂θVk| converges in the C4,ζ -topology, 

we have supt�0

(
η−1
k |∂θVk|

)
� supIN

(
η−1
k |∂θVk|

)
� c. The last two inequalities imply that �̌

is bounded.
To finish the proof of Step 2, we must show that b2 = 0. Indeed, since �k = η−1

k Wk → � as 
k → ∞, we obtain

Vk = Va,T + ηk�
∗ + o(ηk)= Va,T + ηk(b1�

+
a,0 + b2�

−
a,0 + �̌)+ o(ηk).

On the other hand,

Pcyl(0,Vk)= Pcyl(τk,V)= Pcyl(V)+O(e−2τk )= Pcyl(T ,Va)+O(e−2τk ).

Then, if b2 �= 0, we would have a contradiction, since η−1
k e−2τk = o(1) as k → ∞ and the two 

sides of the last equality would differ for sufficiently large k.
Let us define Wτ (t, θ) = V(t + τ, θ) − Va(t + T ) and η(τ) = �maxIN |Wτ |, where IN is 

defined in Step 1 and � > 0 will again be chosen later. For a fixed c2 > 0, we have the following:
Step 3: Assume that N, �, τ � 1 and 0 < η � 1. Then, there exists δ > 0 such that for |δ| �
c2η(τ), it holds

2η(τ +NTa + δ)� η(τ). (54)

Suppose that (54) does not hold. Then, there would exist τk → ∞ such that η(τk) → 0 and for 
s > 0 satisfying |s| � c2η(τk) we have η(τk + NTa + s) > 1/2η(τk). Similarly to the previous 
step, let us define �k = η(τk)

−1Wτk ; thus by Step 2, we can suppose that {�k}k∈N converges to 
a bounded Jacobi Field �∗, which provides

�∗ = b1�
+
a,0 + �̌, (55)

where �̌ has exponential decay. Since |�̌| < �−1 on IN , we get that b1 is uniformly bounded and 
independent of τk > 0. Moreover, we know that �+

a,0 = ∂aVa,T is bounded and �−
a,0 = ∂θVa,T

is linearly growing. Setting sk = −η(τk)b1, we can choose c2 � 1 sufficiently large such that 
|sk| < |c2η(τk)|. Hence, for t ∈ [0, 2NTa], we get

Wτk+sk (t, θ)= V(t + τk − η(τk)b1, θ)− Va,T (t)

= Vτk (t − η(τk)b1, θ)− Va,T (t − η(τk)b1)− η(τk)b1
Va,T (t − η(τk)b1)− Va,T (t)
−η(τk)b1
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= η(τk)�k(t − η(τk)b1, θ)− η(τk)b1�
+
a,0 + o(η(τk))

= Wτk (t, θ)− η(τk)b1�
+
a,0 + o(η(τk)).

Therefore, by (55), we obtain Wτk+sk = η(τk)�̌ + o(η(τk)) on [0, 2NTa], which implies 
maxIN |Wτk+sk+NTa | = max[NTa,2NTa ] |Wτk+sk | � η(τk) maxIN (|�̌|) +o(η(τk)). Then, since |�̌|
decreases exponentially in a fixed rate, one can choose N, � � 1 sufficiently large satisfying 
maxIN |Wτk+sk+NTa | � 2−1η(τk), which implies η(τ + NTa + s) � η(τ). This is a contradic-
tion, and this step is proved.

Now, we use Step 3 to construct a sequence that converges to the correct translation parameter.
Step 4: There exists σ > 0 such that |Wσ (t, θ)| converges exponentially to 0 as t → ∞.
First, choose τ0, N � 1 such that Step 3 is satisfied and c2η(τ0) � 2−1NTa . Set s0 = −η(τ0)b1
as above; thus |s0| � c2η(τ0) � 2−1NTa . Let us define inductively three sequences:

σk = τ0 +
k−1∑
i=0

si , τk = τk−1 + sk−1 +NTa = σk + kNTa, sk = −η(τk)b1.

Notice that by induction, it follows that η(τk) � 2−kη(τ0) and |sk| < 2k−1NTa . Then, there 
exists σ = limk→∞ σk � τ0 + NTa and so τk → ∞ as k → ∞. Now choosing k ∈ N such that 
t = kNTa + [t] with [t] ∈ IN , we can write

Wσ (t, θ)= V(t + σ, θ)−�va,T = V(t + σ, θ)− V(t + σk, θ)+ V(t + σk, θ)−�va,T (t).

Since ∂tV is uniformly bounded, we get V(t +σ, θ) −V(t +σk, θ) = ∂tV(t0) 
∑∞

i=k si = O(2−k), 
for some t0 > 0 and V(t + σk, θ) − Va,T (t) = V(τk + [t], θ) − Va,T ([t]) = W([t], θ), which 
provides Wσ (t, θ) = Wτk ([t], θ) + O(2−k). Therefore, using that bmaxIN |Wτk | = η(τk) �
2−kη(τ0), we obtain that |Wσ (t, θ)| = O(2−k) as k → ∞, or in terms of t = kNTa + [t], it fol-

lows |Wσ (t, θ)| � c2e
− ln 2

NTa
t , which, by taking β∗

0 = −ln 2/NTa , concludes the proof of Step 4.
Finally, we observe that Claim 3 directly implies (52), and so the theorem is proved. �
At last, the proof of our main result is followed by a direct consequence using the inverse of 

the cylindrical transformation.

Proof of Theorem 1. It follows by undoing the cylindrical transformation in (52) and rescaling 
back to the original ball. �
Data availability

No data was used for the research described in the article.

Acknowledgments

The paper was completed while the first-named author was visiting the Department of Mathe-
matics at Princeton University, whose hospitality he gratefully acknowledges. He would also like 
to express his gratitude to Professor F. C. Marques. After finishing this manuscript, we learned 
that J. Ratzkin [31] had independently obtained a scalar version of Theorem 1.
235



J.H. Andrade and J.M. do Ó Journal of Differential Equations 413 (2024) 190–239
Appendix A. Deformed Emden–Fowler solutions

In this appendix, we follow [21] to introduce the family of deformed Emden–Fowler solutions.
Here, recall that γ = (n − 4)/2 the Fowler rescaling exponent. We construct a 2n-parameter 

family of solutions using the pullback of a composition of three conformal transformations de-
scribed below. First, take p = 1 and consider an Emden–Fowler solution with T = 0, given 
by ua,0(x) = |x|−γ va(− ln |x|); thus, using an inversion about the unit sphere, we obtain 
ũa,0(x) = |x|−γ va(ln |x|). Second, we employ an Euclidean translation about x0 ∈ Rn \ {0} to 
get ũa,0,x0(x) = |x|x|−2 − x0|−γ va(ln |x|x|−2 − x0|). Finally, applying another inversion, we 
find ua,0,x0(x) = |x|−γ |θ − x0|x||−γ va(− ln |x| + ln |θ − x0x|), where θ = x|x|−1. Moreover, in 
cylindrical coordinates, we have

va,0,x0(t, θ)= |θ − x0e
−t |−γ va(t + ln |θ − x0e

−t |). (56)

Finally, taking a time translation T ∈ (0, Ta), we construct the families ua,T ,x0 and va,T ,x0 . Sec-
ond, in the case p > 1, we can proceed similarly to define the family of vectorial deformed 
Emden–Fowler solutions Ua,T ,x0 and Va,T ,x0 . The parameters x0 ∈ Rn and T ∈ (0, Ta) corre-
spond to conformal motions. In contrast, the so-called Fowler parameter a ∈ (0, a0) does not 
have a geometrical interpretation.

Remark 54. In the light of Theorem B (ii), for p > 1, it follows that Ua,T ,x0 = �ua,T ,x0 and 
Va,T ,x0 =�va,T ,x0 , where � ∈ Sp−1

+,∗ and ua,T ,x0 and va,T ,x0 are scalar Emden–Fowler solutions.

Lemma 55. For any a ∈ (0, a0) and x0 ∈ Rn, we have Ua,0,x0(x) = (1 + O(|x|))Ua,0(|x|) as 
|x| → 0.

Proof. Initially, we take p = 1 and calculate the Taylor series of ua,0,x0 nearby |x| = 0,

|x|x|−1 − x0|x||γ = 1 + γ (x0 · x)+O(|x|2). (57)

Similarly, ln |x|x|−1 − x0|x|| = −(x0 · x) +O(|x|2), which implies

va(− ln |x| − (x0 · x)+O(|x|2))= va(− ln |x|)− v(1)a (− ln |x|)(x0 · x)+O(|x|2). (58)

Combining, (57) and (58), we obtain

ua,0,x0(x)= |x|−γ [va(− ln |x|)+ (x0 · x)(v(1)a (− ln |x|)+ γ va(− ln |x|))+O(|x|2)]
= ua,0(x)+ |x|−γ (x0 · x)(−v(1)a + γ va)+O(|x|−γ−2),

which together with Theorem B (ii) yields

Ua,0,x0(x)= Ua,0(x)+ |x|−γ (x0 · x)(−V(1)
a + γVa)+O(|x|−γ−2); (59)

this concludes the proof of the Proposition. �
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Remark 56. Since the Jacobi fields and the indicial roots of the linearized operator La are not 
counted with multiplicity, we have �+

a,1 = · · · =�+
a,n and (59) can be reformulated as

Ua,0,x0(x)= |x|γ
⎡⎣Va

⎛⎝− ln |x| + |x|
⎛⎝ n∑

j=1

xjχj (θ)�a,j

⎞⎠+O(|x|2)
⎞⎠⎤⎦ (60)

= |x|γ [Va(− ln |x| + (x0 · x)�+
a,1(− ln |x|)+O(|x|2))] as |x| → 0.

In cylindrical coordinates, we can rewrite

Va,0,x0(t, θ)= Va(t)+ e−t 〈θ, a〉(−V(1)
a + γVa)+O(e−2t ) as t → ∞. (61)

Nevertheless, for the translation V̄a,x0(t, θ) = Va(t − t0, θ) with t0 = − ln |x0|, we have

V̄a,x0(t, θ)= et (−V(1)
a + γVa)+O(1) as t → ∞.

Also, notice that when 〈a, θ〉 > 0, then |Va,0,x0(t, θ)| > |Va(t)| and |V̄a,0,x0(t, θ)| > |V̄a(t)|. 
Moreover, the opposite inequality holds when 〈a, θ〉 < 0.

We discuss the statement in Remark 2 to complete our analysis. Based on the surjectiveness of 
the linearized operator stated in Proposition 30, we provide a higher order expansion for solutions 
to (Cp,∞), which can be stated as

Proposition 57. Let U be a strongly positive superharmonic singular solution to (Sp,R). Then, 
for any x0 ∈ Rn there exists an Emden–Fowler solution Va,T such that

U(x)= |x|−γ
[
Va(− ln |x| + T )+ (x0 · x)�+

a,1(− ln |x| + T )+O(|x|β∗
1 )
]

as |x| → 0,

(62)
where β∗

1 := min{2, βa,2} > 1.

Proof. We start with p = 1. Using the asymptotics proved in Theorem 1, we deduce

u(x)= |x|−γ va(− ln |x|)= |x|−γ [va(− ln |x| + Ta)+w(− ln |x|)] ,

where φ ∈ C
4,δ
−β(C) for some β > 0. Moreover, since va satisfies (4), we get La(φ) = ψ(φ), 

where

ψ(φ)= (va + φ)2∗∗−1 − v2∗∗−1
a − c̃(n)v2∗∗−2

a φ.

It is straightforward to see that if φ ∈ C
m,δ
−β (C), then ψ(φ) ∈ C

m,δ
−2β(C) for any m ∈ N . Now, 

we can run an iterative method. First, assume that β ∈ (0, 1/2), then using Claim 1, we obtain 
ψ(φ) ∈ C

0,δ
−2β(C). In addition, by (i) of Corollary 35, we have φ ∈ C

4,δ
−2β(C) and ψ(φ) ∈ C

4,δ
−4β(C), 

which implies w ∈ C
4,δ
−4β(C). After some steps, we conclude that w ∈ C

4,δ
β ′ (C) for some β ′ ∈

(1/2, 1). Therefore, ψ(φ) ∈ C
4,δ

′(C) and by (ii) of Corollary 35, we find that φ ∈ C
4,δ

′(C) ⊕
−2β −2β

237



J.H. Andrade and J.M. do Ó Journal of Differential Equations 413 (2024) 190–239
Da,1(C), which provides φ ∈ C
4,δ
β (C) for β ′ = min{2β ′, βa,2}. In addition, we observe that β ′ >

β is optimal.
Finally, (62) follows as consequence of Theorem B (ii). �
In conclusion, we have the following refined asymptotics.

Corollary 58. Let V be a solution to (Cp,0) and Va,T an Emden–Fowler solution to (Cp,∞). Then, 
there exists β∗

1 > 1 such that

|V(t, θ)− Va,T (t)− π0 [V] (t, θ)− π1 [V] (t, θ)| � Ce−β∗
1 t for t > 0,

where β∗
a,1 = min{2, βa,2} > 1.
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