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ABSTRACT. We consider the dynamics of smooth covering maps of the circle
with a single critical point of order greater than 1. By directly specifying the
combinatorics of the critical orbit, we show that for an uncountable number of
combinatorial equivalence classes of such maps, there is no periodic attractor
nor an ergodic absolutely continuous invariant probability measure.

1. Introduction. In the study of one-dimensional dynamical systems, the question
of the existence of an absolutely continuous invariant probability (acip) plays a
central role. The importance stems from the fact that an acip provides a complete
description of the asymptotic distribution of typical orbits of the system.

The existence of an acip has been much studied for unimodal maps of the interval.
Jakobson [8] showed that maps in the quadratic family have an acip for a set of
parameters of positive measure. For example, parameters for which the critical point
is strictly preperiodic, as studied by Misiurewicz [14]. Keller [10] proved that the
existence of an acip is equivalent to almost everywhere positivity of the Lyapunov
exponent. Collet and Eckmann [5] showed that exponential growth of the size of
the derivative along the critical orbit is a sufficient condition for the existence of an
acip. This growth condition was weakened to a summability condition by Nowicki
and van Strien [15], and weakened still further to a lower bound condition by Bruin,
Shen and van Strien [4]. This result was later extended to multimodal maps [3].

There are also results on non-existence. Arnold [1] showed that for a dense set of
irrational rotation numbers, the conjugacy from an analytic diffeomorphism of the
circle to a rotation with the same rotation number is not absolutely continuous. In
particular, such a diffeomorphism has no acip. Johnson [9] was the first to construct
quadratic interval maps without an acip and topologically conjugate to a tent map.
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This was further developed by Hofbauer and Keller [7] using the tools of kneading
theory.

Nevertheless, existence of an acip has been shown to be the more prevalent
situation for certain families of maps. Herman [6] proved that for almost every
irrational rotation number, the conjugacy to a rotation is smooth, and so an acip
exists. Lyubich [11] proved that for almost every map in the quadratic family, there
is either an acip or an attracting periodic cycle. This result was extended to real
analytic quadratic unimodal maps by Avila, Lyubich and de Melo [2].

In this article, we consider smooth critical covering maps of the circle without
an acip. As in the non-existence results for other classes of maps, we specify the
dynamics at the topological level. For clarity, we specify suitable combinatorics
for the critical orbit directly. The fact that the critical point of a covering map
is of inflection type rather than a turning point means that the techniques used
are significantly different to the unimodal case because of the lack of dynamical
symmetry. In the next section we state the main results after introducing the
required notation.

2. Notation and results.

2.1. Covering maps. Consider the circle S to be defined as the set of complex
numbers with modulus one equipped with the topology, orientation and differen-
tiable structure of the real numbers induced by the exponential map 7 : R — S!
given by 7(t) = 2™, A distance on S! can be defined in the following way: given
x =7(t1) and y = 7(t2), with ¢1,¢3 € [0,1], the distance between z and y, denoted
by |z — y| is the minimum of [t; — 5] and 1 — |[t; — t3|. Many times in this article,
we choose a convenient value of ¢ and represent the circle by the interval [¢t,¢ + 1],
where we use the identification ¢ ~ t + 1.

A surjective locally homeomorphic map f : S' — S! is said to be a covering map
of the circle of (topological) degree d, |d| > 1, if the pre-image of each point consists
of exactly |d| points and f is order-preserving or order-reversing for d > 0 or d < 0
respectively.

Given a covering map f : S' — S' of degree d, we can find a lift: a map
F :R — R for which 7o F = for. Alift F has the property that F(t+1) = F(t)+d
for all t € R. Conversely, any homeomorphism of the real line with this property is a
lift of some covering map of the circle. For example, the linear function Ly : R — R
given by L4(t) = dt is a lift of the uniform covering map of degree d which we
denote by l4: ST — S

We introduce an equivalence relation for covering maps. Given two covering
maps f and g of the circle and two marked points a,b € S', we say that the pairs
(f,a) and (g,b) are combinatorially equivalent if there exists a homeomorphism
h: St — S such that h(f"(a)) = g"(b) for all n > 0.

2.2. Topological dynamics. We begin our study by recalling some of the basic
topological dynamics of covering maps. If d € {—1, 1}, then f is a homeomorphism.
For d = —1, f is an order-reversing homeomorphism, which necessarily has a fixed
point and so the dynamics are well understood. For d = 1, f may have no periodic
points, and the dynamical behaviour is an area of current interest.

For d ¢ {—1,+1}, covering maps are not injective and possess periodic points
of all periods and also many compact invariant sets: that is, compact sets A C S*
such that f(A) C A. Given z € S!, the set of all accumulation points of the forward
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orbit (f™(z))n>0 is called the w-limit set of x and is denoted by w(z). The w-limit
set of a point is a compact invariant set that is important for the analysis of the
dynamics. If z is periodic, then w(x) is a finite set, but there are other possibilities
for w-limit sets, such as Cantor sets or the whole circle S'.

For |d| > 2, the uniform covering map I, is expanding and points in a residual
set have orbits that are dense on the whole circle St. Covering maps that are not
expanding may have periodic attractors. Also there may exist intervals I C S!
whose orbit consists of pairwise disjoint intervals: that is, f™(I) N f™(I) = 0 for
0 < n < m. Such an interval could be contained in the basin of a periodic attractor.
If this it not the case, then it is called a wandering interval. The existence of
wandering intervals is a factor that complicates the topological understanding of
the dynamics.

There exists a semi-conjugacy between a covering covering map f of degree d and
the uniform covering map l4: that is, a monotone surjective map h : S' — S such
that ho f = [; 0 h. The map h is locally constant on wandering intervals and on
connected components of the basin of a periodic attractor, if either of these exist.
In the absence of wandering intervals, periodic attractors, and intervals consisting
entirely of periodic points, the semi-conjugacy is, in fact, a conjugacy: h is a home-
omorphism. In which case, we can conclude that for f, orbits of points in a residual
set are dense on the whole circle S. Also, we can conclude that if Per(f) is the set

of all periodic points, then the closure Per(f) is the whole circle.

2.3. Measure-theoretic properties. The second step in understanding the dy-
namics of critical covering maps depends on the ergodic aspects. Let us assume
from now on that there are no wandering intervals, periodic attractors nor intervals
consisting entirely of periodic points.

The Lebesgue measure on the circle, which we denote by A, is invariant by the
uniform covering map l4: that is, for any Borel set B C S*, A(i;'(B)) = A(B).
Using the homeomorphism h : S' — S conjugating a critical covering map f to I,
we can define an invariant probability measure u for f: for every Borel set B C S1,
w(B) = A(h(B)). This can also be formulated in terms of the regularity of the
conjugating homeomorphism.

Let v be a Borel probability measure on the circle that is invariant for f. Assume
that v is ergodic with respect to f: that is, for any Borel set B C S', the v-measure
of the symmetric difference f~1(B)AB is either 0 or 1. The basin of v is the set

n—1
B(v) = {x e S': lim 1 ng(fl(x)) :/ pdr forall p € CO(Sl,R)} ,
=0 St

n—oo N 4

where C°(S*, R) denotes the class of continuous functions from S* to R. The support
of v is a compact invariant set for f. The basin of v is a totally invariant set: that
is, f(B(v)) C B(v) and f~1(B(v)) C B(v). By the Ergodic Theorem of Birkhoff, the
v-measure of B(v) is 1. However, the Lebesgue measure of B(v) could be smaller,
even zero. If the invariant probability measure v is absolutely continuous with
respect to Lebesgue measure A (or an acip measure, for short), then the support of
v has positive Lebesgue measure. Moreover, under our assumptions the map f is
ergodic with respect to A (see [16]) and this implies that the basin of v has Lebesgue
measure 1. This guarantees that the acip measures are of great relevance for the
description of the dynamics of f.
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2.4. Critical covering maps. A critical covering map of the circle is a covering
map f: St — S of class C", r > 1, with a unique critical point of inflection type,
which we denote by ¢y or simply by c if no confusion will occur. The local inverse
of a critical covering map is also C", except at the critical value f(c). If f and g
are critical covering maps for which (f, cy) is combinatorially equivalent to (g, ¢,),
where ¢y and ¢, are the critical points of f and g respectively, then we shall say
that f is combinatorially equivalent to g.

As a source of examples of critical covering maps, we consider the Arnold family
of maps g, : ST — S, a € [0, 1], with lift G, : R — R given by

Golt) = a +2 (t + % sin(27rt)) .

As we show below the Arnold family is an example of a full family of critical
covering maps. Consider a family {gq }aeca of critical covering maps, where A is an
interval and « + g, (z) is continuous for each x € S1. Such a family is said to be
a full family if, any critical covering map f is combinatorially equivalent to g, for
some a € A.

Let us show some basic properties of each map g, in the Arnold family. A
straightforward computation shows that G, has negative Schwarzian derivative,
which implies that g, has at most one periodic attractor, see [13]. The point
¢ = 1/2 and its translations by integers are the critical points of G, and all of
them project to the unique critical point of g,, which is a fixed point for g_; /5.
For 8 = (—% + 2—\/5) it is easy to see that g_;/o_g and g_; /243 have an indifferent
fixed point which is attracting from one side and repelling from the other. For
a € (=1/2—p8,—1/2+ ) the map g, has an attracting hyperbolic fixed point whose
immediate basin of attraction, bounded by two repelling hyperbolic fixed points,
contains the critical point. For o € (—=1/2+ 8,1/2 — 8), the map g, has only one
fixed point which is a hyperbolic repeller, say p,. This fixed point and its pre-image
define a partition of the circle with two arcs, each of which are mapped onto the
circle by go. So we can conclude that g, is topologically conjugate to the shift on
{0,1}. Now we observe that the derivative with respect to a is 1 for the critical
value G, (1/2) and is negative for the repelling fixed point p,. Then we can conclude
that for any sequence in {0, 1}, there is some value of o € [~1/2+ 3,1/2 — 3] such
that the itinerary of the critical value of g, realises this sequence. Thus the Arnold
family {ga taca, with A = [-1/2 — 8,1/2 — f], is an example of a full family of
critical covering maps of the circle.

In order to ensure that a critical covering map has no wandering intervals, see
[13] and also [16], it is enough to assume that it is of class C? (outside the critical
point where it is C') and the critical point has finite order: that is, there exist a C!
map v defined near c satisfying Jl}_)mc ¥(x) = 0 and real constants ¢ > 0 and § > 1

such that
f(@) = f(e) + Vsgn(x — ¢)w — o (1 + ¢()), (1)

for every x in a neighbourhood of ¢. The constant 3, when it exists for some v as
above, is called the order of the critical point.

From now on, we shall concentrate on full families of C'! critical covering maps
{ga}aca with the following properties for all a € A:
(H1) the critical point ¢ has order 8 > 1;
(H2) g, has topological degree 2;
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(H3) Restricted to S1\{c}, the map g, is C® and has negative Schwarzian derivative.

Remark 1. Assumptions (H2) and (H3) are to simplify the exposition: the same
methods can be used for any degree d > 2, and the arguments could be adapted
so as not to use the negative Schwarzian assumption, but this would increase the
technicality of the proofs.

2.5. Statement of results. Our main result, Theorem 2.1 below, concerns the
absence of acip measures, which we will prove in the Section 5. According to this
theorem, the measure p defined above may not describe the statistical behaviour
of a significant set of orbits. This property depends on a strong recurrence of the
critical point and to understand it, we will describe in Section 3 an uncountable set
of combinatorics of the critical orbit associated to it.

Theorem 2.1. Within any full family of critical covering maps satisfying the above
hypotheses (H1)-(H3), there are uncountably many combinatorially non-equivalent
maps with no absolutely continuous invariant measure and no periodic attractor.

In the case of any full family, we have the following corollary.

Corollary 1. Within any full family of critical covering maps {gataca satisfying
the above hypotheses (H1)-(H3), there are uncountably many values of « € A for
which g, has no absolutely continuous invariant measure and no periodic attractor.

We specify the combinatorics used in Theorem 2.1 above in the following section.

3. Combinatorics.

3.1. Kneading sequences. For our results we need to find critical covering maps
with strongly recurrent critical points. Then, when iterating the map, the strong
contraction near to the critical point can overcome the expansion that occurs on the
rest of the circle. We specify the strongly recurrent behaviour at the combinatorial
level.

There are different choices of partition that can be made for defining the kneading
sequence of a critical covering map. For example, the partition defined by the unique
fixed point p and its pre-image ¢ # p is a Markov partition with two intervals.
However, the itineraries given by this partition are linked with the recurrence of the
critical point in a complicated way.

Given a critical covering map f consider instead the circle represented by the
interval [c,c + 1], where ¢ and ¢ + 1 are identified. Then choose the partition
c< 2 <27 +1<c+1, where 2; < ¢ < z{ are the two pre-images of c¢. This
partition has three intervals Iy = [c, 2] ], I = (2], 2y + 1) and Iy = [z] +1,c+1).
We shall use this partition to define a coding of the orbits of f. Let A denote the
alphabet consisting of the three symbols 0, 1 and 2.

We say that z € S! is coded by the symbol i € A if x € I;,. Similarly, given
x € St and n > 1, the piece of orbit (x, f(z),..., f"1(x)) is coded by the finite
word iy - - i, € A" if f771(x) € I;; for all 1 < j < n.

Extending to forward orbits, we have the coding map r : S* — AN, where x(z)
is the infinite word 44z - - - with jth term i;, where f/~1(z) € I, for j € N. If we
denote by S : AN — AN the left shift, then we have Sok = Ko f.

Of special importance is the coding x(f(c)) of the forward orbit of the critical
value f(c), which is called the kneading sequence of f and denoted by . Clearly,
combinatorially equivalent critical covering maps have the same kneading sequence
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and vice-versa. However, as the partition Iy, I, I> is not Markov, not every element
of AV is the kneading sequence of some critical covering map. We say a sequence
w € AN is admissible if there exists some critical covering map f with r; = w.

We now define the kneading sequences required for Theorem 2.1. Given any two
sequences (€,,)22 ; and (m,,)22; of natural numbers with (£,,)52; strictly increasing
and m,, > 2, we inductively define a sequence w € AN. We first define the words
w; = 0 and vy = 140. Then, assuming that the words w, and v, are already
defined, we define the words w1 and v, 41 by setting

Wnt1 =Wy, and  vppq = W™ - w150, (2)

where, for a finite word v and integer k& > 1, u* denotes the word obtained by
concatenating k copies of the word u. Similarly, we will write u*> for the infinite
word obtained by concatenating countably many copies of a finite word u.

Notice that the symbol 2 is forbidden from occurring in the kneading sequences.
As a result, the critical orbit avoids the interval I and so the w-limit set w(c) is a
Cantor set (see Theorem 4.1).

Denoting the number of symbols in a word by | - |, we have that

|Wna1| = mp|wn| + |vn] and  |vpi1] = mplwn| + -+ ma|wr] + Cper + 1.

We also define 7, = |w,|. We denote by [w,] C AN the cylinder of all infinite
words beginning with the word w,. By construction, for each n the word w41
begins with the word w,,, and so we have a nested sequence [w1] D [wa] D ---. As
|wn,| — o0, the intersection (.-, [w,] consists of a unique infinite word, which we
denote by w € AN,

As there are uncountably many distinct choices for the sequences (£,)%2 ; and
(m,,)22;, and each pair of sequences gives rise to a different sequence in AN, we
obtain an uncountable collection of infinite words w that we denote by K.

We denote by H(w,) = Hgp,g.4(wy) the set of all critical covering maps which
satisfy hypotheses (H1)-(H3) with 8 > 1, ¥ > 0, ¢ fixed (see Equation 1) and
having kneading sequence in the cylinder [w,].

Remark 2. We will show below that the sets H(w,,) are non-empty and that they
nest down to the non-empty set H(w) = () _; H(wy). Every critical covering map
in this set has the same kneading sequence w in K. We also can see that H(w,)
contains H(w) and, as a consequence, any critical covering map in H(w) can be
approached by critical covering maps in H(wS°). The critical point of each map in
H(w) is asymptotic to a periodic attractor of period r,, = |wy|.

3.2. Admissibility of combinatorics. We will now show that H(w) is non-empty.
We start by showing that H(w,,) is non-empty: indeed, we will construct by induc-
tion, a sequence of critical covering maps f, € H(wy, ), each with critical point ¢ = 0.
The way we construct f,, the sequence will converge to a map in H(w), showing
that this set is also non-empty. Alternatively, each f, is topologically conjugate to
a critical covering map g, in a given full family {ga }aca, then g,, converges to a
map in H(w).

Before this, note that, for a critical covering map f, the open interval I; =
(27,27 +1) contains a unique fixed point p of f and

o0

)= JIn and (pz +1]=J R,
n=1

(@

n=1
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F1GURE 1. The graph of the critical covering map fi.

where L,,, R,, n > 1, are the left and right fundamental domains of p: that is, they
are the maximal open intervals satisfying

f(Ln-H) =Ly, f(Rn-H) = Ry, f(Ll) = (Ca ZT) and f(Rl) = (zl_ +1lc+ 1)'

Remember that we identify the intervals (21 + 1,¢+ 1) and (2, ¢).

Let V4 = [27,277] denote the closed neighbourhood of ¢ with endpoints z; and
zf . For any small neighbourhood U of ¢, we shall denote the left side U N [z, ]
by U~ and the right side UN[e,2] by Ut. So U~ and U™ are intervals such that
U=U"uUU"and U NUT = {c}.

Now we start the construction by induction of the sequence of critical covering
maps (fn)52 in H(wy). The easy first step of induction below is just the construc-
tion by hand shown in Figure 3.2.

3.3. Induction argument. We use an induction argument to show that all se-
quences in K are admissible.

First step of induction. There exists a critical covering map f; for which the
following properties hold:

(i) There exists a closed neighbourhood V; of ¢, Vo C Vi = [2], 2;] such that,
for r1 = |w1| = 1, the iterate f{* maps V5 homeomorphically onto V1+. The
restriction of f]* to V, is a branch of the first entry map to V;© which we
denote by ¢1;

(ii) The branch ¢; maps Vs onto V;© and, for z € Vi, the piece of orbit
(fi(x),..., fi*(x)) is coded by the word wy;

(iii) For k > £ := 0, there exists a branch oy j : Ef — V;T of first entry map that
maps EF C V1+\V2Jr diffeomorphically onto V1+. For y € E¥, the piece of orbit
(f1(y),...,01,(y)) is coded by the word 1¥0. In particular the entry time of
fl(y) to V1+ is tl,k = k;

(iv) For 1 < j < my, ¢l(c) € V35, ¢7 (¢) € Ei* and there is a closed neighbour-
hood D; C Vj such that ¢7"*(D;) = V;" \ V5" (that is, D; is a fundamental
domain of ¢1) and Ef C ¢7"" (DY) for all k > ¢;.

Induction hypothesis. For n > 1, there exist critical covering maps f1,..., fn
such that, for 1 < i < n, the following properties hold:



2400 SIMON LLOYD AND EDSON VARGAS

FIGURE 2. The first entry map to the interval V; _,, showing the
critical branch ¢,, and some of the branches oy ¢, , with & > n.

(i) There exist nested closed neighbourhoods Va,, C Va1 C --- C Vo C Vj of ¢
such that, for 7; = |w;|, the iterate f]* maps Va; homeomorphically onto V,! .
The restriction of f/* to Va; is a branch of the first entry map to Vﬂ;l which
we denote by ¢;;

(ii) The branch ¢; maps Va; onto V,f | and, for x € Vi, the piece of orbit
(fi(z),..., f"(x)) is coded by the word w;;

(iii) For each k > ¢;_1, there exists a branch o; ) : E¥ — V5t | of first entry map
that maps EF C Vo | \V,& diffeomorphically onto Vi ;. For y € EF, the
piece of orbit (fi(y),...,0ik(y)) is coded by the word w. " -+ w"*1%0. In
particular the entry time of y to V;{_l is ti i = mi_1|wi—1 |+ - Fmafwi| + Kk

(iv) For1 < j < my, ¢l(c) € Vat, ¢ (c) € E' and there is a closed neighbourhood
interval D; C V5; such that ¢ (D;) = V;g_l \sz (that is, D; is a fundamental
domain of ¢;) and E¥ C ¢"(D;") for all k > ¢;;

(V) For 1 <i<n, fi+1 = fz on Sl\Di.

In Figure 3.3 we show the intervals B, B, Vot inside V! | and the branches
Ontys Onyt,yy and ¢y of first entry map to Vi _; defined on them.
Induction step. We assume that the induction hypothesis holds true for n > 1
and prove it for n + 1. Since ¢ € D,, C Va, and ¢"(D,,) = Vot | \ Vo we
define Va,41 C Vi, to be the closed neighbourhood D,,. For k > ¢,_1, there is a
closed interval I* ¢ EF which is mapped diffeomorphically onto V;;L 11 by o If
necessary, we modify f, on the interior of D,, = V5,11 to obtain a critical covering
map f,41 for which ¢ (c) € I‘». Then we define the interval Va,io C Vani1
around the critical point such that ¢~ (Va,12) = I‘*. The first entry map ¢,
from Va,42 onto V;{LH is defined by ¢p4+1 = 0y, © ¢ and properties (i)—(ii) are
satisfied for 1 <i <n+1. For k> £,, I¥ C EF C ¢7» (V5! ) and we can define
the interval E§+1 C V;H_l \ V5 _, such that ¢/ (Eﬁ+1) = I¥. The first entry map
On+1,k from E,’§+1 onto V;{LH is defined by 0y 41,5 = op g0 @. In this way we have
property (iii) satisfied for 1 < i < n+1. To ensure that property (iv) is satisfied, we
can adjust f,41 further on the interior of V5,11 a little more. Since Vo,,41 = Dy,
the map f,4+1 we have constructed also satisfies property (v).

The induction above is the main step in proving Proposition 1 that guarantees
that H(w) is non-empty and all sequences in K are admissible.
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Proposition 1. Given a sequence w € K, in any full family of critical covering
maps there exists a map f with kneading sequence w.

Proof. Each critical covering map f,, in the induction argument above has kneading
sequence Ky, contained in the cylinder [w,] of all words starting with the word
Wn, n > 1. We have that f,y1 = fn, on S'\D,. Since we have the freedom to
choose the sizes of the closed neighbourhoods D,, of ¢ so that (2, D,, = {c}, this
guarantees that the sequence (f,,)$2; converges to a continuous covering f such
that the kneading sequence of the marked point ¢ is w. In any full family there is a
critical covering f with a marked critical point which is combinatorially equivalent
to f with the point ¢ marked. This implies that the kneading sequence of f is w
and we can conclude that w is admissible.

Alternatively, each f,, is topologically conjugate to a critical covering map g,,,
in a full family {g taea. Then g,, converges to a map in H(w), also showing that
w is admissible. O

3.4. Combinatorics in full families. The sets H(w;,) and H(w) = (oe; H(wy)
are non-empty. In any full family {g,}aeca of critical covering maps with g, sat-
isfying hypotheses (H1)—(H3), there is a non-degenerate interval of parameters a
such that g, € H(w,). These intervals accumulate on a parameter «,, such that
9o, € H(w). One way to reach this interval of parameters is starting with maps
Jo,, In H(wS®), that is, parameters such that the critical point is asymptotic to a
periodic attractor associated to the word w;.

The lemma below guarantees that H(w;S ;) and H(w;'"v5°) are also non-empty.
Therefore, the infinite words wy? | and w;'"v5° are admissible.

Below, for a given f,, € H(w,), as in the induction above, let us use the notation
E,, instead of E,, ¢, and o, instead of oy, , .

Lemma 3.1. Given f,, € H(wy), the following properties hold true:

1. There are xn,y, € E, such that o,(x,) = ¢ and 0, (yn) = Yn. Fory = x, or
Y = Yn, the piece of orbit (f,(y),...,0n(y)) is coded by the word vy ;

2. fn can be modified on D,, to obtain either a critical covering map G,, or G;7, both
in H(wy), for which ¢ (c) is either x,, or y,, respectively. The corresponding
kneading sequences of G, and Gt are w2 and w, "'V |, respectively.

Proof. As E,, C V,'_| and themap o, : E,, — V,'_, is a surjective diffeomorphism,

there are x,,y, € F, such that o,(x,) = ¢ and 0,,(yn) = yn. By part (iii) of the

induction hypothesis, for y € E,,, the piece of orbit (f,,(y),...,on(y)) is coded by
the word w, "y " -+ w{"' 10 = v,,. This finishes the proof of the first part of the

lemma. To prove the second part of the lemma we observe that changes of f,, in D,,

do not affect the branches o; : E; — VQ‘Ll and the points z;,y; € F;, for 1 <7 < n.

There exists a closed neighbourhood H,, of ¢ that is properly contained in D,

with the property that ¢7'» maps H,, diffeomorphically onto [z, y,]. Moreover,

the closed intervals H,, ¢,(H,),...,¢"""1(H,) are pairwise disjoint and all are
properly contained in V5,. So by subtracting from f, a smooth bump function
supported on D,, we can reduce each of the points ¢, (c), 2 (c),..., o " (c) so as
to get a map G, for which ¢""(¢) = x,. We then have that ¢ is a periodic

point since ¢n11(c) = o, 0 ¢ (¢) = ¢, and so the kneading sequence for G,

is (w)'mvn)>® = wpS,. Alternatively, by adding to f, a smooth bump function

supported on D,, we can increase each of the points ¢, (c), #2(c),...,¢™ (c) in
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order to get a map G, for which ¢ (c) = y,. We then have that ¢ (c) is the
periodic point ¥, and so the kneading sequence of G;&" in this case is w0, O

We have the following immediate corollary.

Corollary 2. Given f, € H(wy,), there exists G, € H(w) with the property that
Gpn = fn on S'\ D, with critical point asymptotic to a parabolic periodic attractor.

Proof. This is an immediate consequence of Lemma 3.1. Indeed, any continuous
one parameter family in H(w,), starting in G,, and ending in G/, has a critical
covering map as stated. 0

Now, looking in a full family, we have the following lemma.

Lemma 3.2. Let {go}aca be a full family of critical covering maps that satisfies

hypotheses (H1)-(H3). Then, for each n > 1, there are parameters a(n) and b(n)

which satisfy the following:

1. The critical point is a periodic superattractor for ga(n), with period ry = |wy|;

2. The critical point is asymptotic to the orbit of a parabolic periodic attractor for
Gb(n), With period y,;

3. For « in the interval defined by a(n) and b(n), the map g, has a periodic attractor
of period ry, and its kneading sequence is wiC.

Proof. According to Lemma 3.1 there is a critical covering GG, _; whose kneading se-
quence is we®. This can be realized in any full family and then we get the parameter
a(n) of the statement. Instead of this, we can get a parameter B(n) corresponding
to the kneading sequence w;*»v>°. Then, by an intermediate value argument, there
is a parameter b(n) in between a,, and b, as stated. O

3.5. Extension of first entry branches. The lemma below assures that the
branches of first entry maps o, and ¢, associated to a critical covering map f,
in ‘H(wy,) have big diffeomorphic extensions. Their ranges cover at least the interval
(pn — 1, fu(c) + 1), where p,, is the unique fixed point of f,, in (¢,c+ 1). These ex-
tensions depend only on the combinatorial properties given by the word w,,. In fact
they depend only on the form of the word and in particular they do not depend on
the sequences (¢,,)°2; and (m,,)>2,. As we will see in Lemma 5.1, as a consequence
of Koebe Principles, these extensions imply a uniform control of distortion for these
branches.

Lemma 3.3. Given f,, € H(wy), the following properties hold true:

1. There exist intervals Va,, C V,, C V,, which are mapped homeomorphically onto
Vot 1 C VT C (pn — 1, fule) + 1) by fin. Moreover, the interval V,, contains
only one critical point of f), the point c;

2. If k > {,,_1, there exist intervals EF C E‘,’CL C &K which are mapped diffeomorphi-
cally onto Vit | CViT C (pn — 1, fulc) + 1) by fir*;

3. if k > l,_1, then the intervals E¥ E¥1 EFY2  re pairwise disjoint, EF C
¢ (Vayr1) and EF is contained in the convex hull of ¢ ~1(c) and Vyh, _ \ Vo ;

4o Af k> L, then EF C o (Vap41);

5. The collections of intervals {EE, ..., ok (EF)Y and {V,,, ..., fm(V,)} have mul-
tiplicity of intersection at most two.

Proof. We proceed by induction on n and to start let us assume that n = 1. For
Part 1 of the lemma we choose V; = V5 and to define V; we remember that 1 = 1,
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f has only one critical point in (¢ — 1,¢+ 1) and the image of this interval by f,
contains (p, — 1, fn(c) +1). Then we can choose V; as wanted.

For the proof of Part 2 of the lemma we define EF = E¥ and to define £F we
remember that E¥ ¢ VT \ V;" and f,,(EF) € Fr. € fu(V]\ V+) (21, c+1). We
consider three cases:

(i) if & = 1 we define £ to be the convex hull of ¢7"*~*(¢) and V;" \ V," and get
that f,(E1) = (fu(d7 (), c+ 1) = (7" (¢),c + 1). In this case t;; = 2
and the diffeomorphlc image of £} by f2 is (fu(¢7" (c)) — 1, ful(c) + 1);

(i) if k = ¢, + 1 we define £ ¢ V¥ \ V" such that fn(EE7Y) is the minimal
interval which contains f, (47" (c)) and Ry, . In this case ¢, = ¢1 +2 and the
diffeomorphic image of Sfl‘“ by fi+2 s (f£1+2(¢>m1( ) — 1, fu(c) +1);

(iii) if & > 2 and k # ¢, + 1 we define Ef C V;© \ V" such that f,(EF) =
Fi—1. In this case 1, = k + 1 and the diffeomorphic image of Ef by fk*!is
(fu(c) = 1, fu(c) + 1).

The interval (p,, — 1, ¢) has no points from the forward orbit of the critical point
and, for k > ¢y, 1, = k+ 1. In any one of the three cases above, we can shrink EF
so that fET1(&EF) = (p, — 1, fu(c) + 1) as required.

To prove Part 3 of the lemma we remember that the interval E{“ is a con-
nected component of the first entry map to V;" and, for y € Ef, the piece of
orbit {fn(y),...,01k(EF)} corresponds to the word 1%0. This implies that the
intervals EI,E]H'l Ek+2 ... are pairwise disjoint. By definition, Ef = E¥ and

(V) = VT \ V5T, it follows that, for k > £y = 0, EF C ¢ (V3). The fact that
51 is contained in the convex hull of ¢~ *(c) and V1+ \ V' also follows from the
definition in one of the cases (i)—(iii) above.

To prove Part 4 of the lemma we observe that, for k > £, £ is defined by the
case (ii) or case (iii) above and we get that EF C ¢7"* (V") as required.

To prove Part 5 of the lemma we remember that E{“ = E¥ is the domain
of a branch of the first entry map to V;". Then the collection of intervals
{E’{“, cee fl““(EA’{“)} has multiplicity of intersection equal to two. The collection
of intervals {Vi, ..., L (V1)} also has multiplicity of intersection at most two be-
cause 1 = 1. This finishes the first step of induction.

Now we assume that the lemma is true for n > 1 and prove it for n + 1. To
define the pair Vn—i—l C Vi1 required to prove Part 1 we remember that ¢ (c) =
fmr(c) € B, gmnl(e) € Vi, Blr C 67 (Vanp) = Vihy \ Vh and €5 is
contained in the convex hull of ¢"»~1(c) and V, _,\V,". All these properties imply
that we can take the pair Vn—i—l C Vp41 as the intervals around the critical point such
that f7"n (Vpy1) = Bl and fmnm(V,,) = . With this choice we have that
fomtt = flmtn Ofm“" maps the triple Voo C Vipr C V,iq homeomorphically onto
the triple V5, C Vit C (pn—1, fn(c)+1). We also have that fi™ (V,11) C Vol 4,
for 1 < j < m,, therefore f"»" has only one critical point in V, 11, the point c.
Since fy™" is a diffeomorphism from & = fmamn(V, 1) onto (pp — 1, fn(c) + 1),
we are done.

For Part 2 of the lemma we assume that k > £, in which case E¥ C E¥ ¢ £F are
all contained in ¢ (V5 ) and there is a closed interval I¥ C E¥ that is mapped

diffeomorphically onto V5!, ,; by oy ,. Then we can take E¥, , C EF koL CEFL
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to be the intervals mapped diffeomorphically onto I¥ C EAﬁ C &EF by ¢, Since
flmr (y) = onp 0 ¢ (y), for y € EX |, Part 2 of the lemma follows.
For Part 3 we remember that, for k > ¢,, we can conclude that the intervals

Ek+1> Efﬂ, Efﬁ, ... are pairwise disjoint becaus€ theiy are fnapped by ¢p'~ diffeo-
morphically onto the pairwise disjoint intervals EF, EF+1 Ek+2  The interval

E¥ is on the right of F» and this implies that EX, | € Vol \Vah o = ¢ (Vanys)
as required. We still need to prove that £F 41 is contained in the convex hull of
(152’:3171( ) and Va1 \ Vappo. By definition, ¢i»(Er,1) = € and £,y C Vayyy.
We have that ¢Zlﬁf171(c) € Vyh,, and we claim that this point is not in &%, ;.
Indeed, the image of £, by f, fnok g (pn — 1, fn(c) +1). Then, if the claim were
not true, the interval (p,, — 1, ¢) would contain points from the forward orbit of the
critical point which is not true.

To prove Part 4 of the lemma we consider k£ > ¢,,11 and by the same reasoning
as above, the point ¢, 71" (c) is in Ean, but not in £F, ;. Otherwise the interval
(pn — 1,¢) would contain points from the forward orbit of the critical point, which
is not true.

To prove Part 5 we remember that the points T € EA’Q 11 have entry time to
V2n+1 equal to tpi1, = Mpry + typ and fr fnt1, F(x) = opg o @ (z). We also
have that o, x(y) = o140 T 0 --- 0 ¢ (y), for all y € EF. By definition,
for 1 < ¢ < n, the interval EA'fH C V,§ is inside a fundamental domain D; of
¢+ Vo, — V21 , and qﬁm’(El_H) = Ef The fundamental domain D; of ¢; is, by
definition, the maximal interval D; C Vb; such that D;,..., ¢ (D;) are pairwise
disjoint and ¢ (D;) = V57, \ V,. In fact, by the property (iv) of the induction
hypotheses in the construction of f,,, we have the equality D; = V5;41. Therefore,
the piece of orbit from EF = to ¢ (Ef_H) = E¥ has pairwise disjoint intervals, all

of them contained in (V! 2041 \ Vobig) U-- U frimi(Vot )\ Vol o). Then, since the
intervals V;" \ Va,..., V5! 11 \ Vanio are pairwise disjoint, if we put together all the

intervals from the above pieces of orbits we get that the piece of orbit from E’f,f 41 to

o o@mm (Eﬁ+1) = E¥ has pairwise disjoint intervals. On the other hand the
intervals of the piece of orbit from fn(El) to o1 x(E¥) = V;* are pairwise disjoint.
Then the collection {EF, 1, ..., fx bk ok +1)} has multiplicity of intersection equal
to two.

If we replace EF 11 by Vyi1 and use the same reasoning above we conclude that
the collection {Vii1,..., fa"**(Vii1)} have multiplicity of intersection equal to
two. Indeed, by definition, r,11 = mpry + tne,, Vn+1 C Vapyr and fr"t'(z) =
One, © ¢pm(x), for all * € Vo411 C Vay,. The interval Vo,41 is the fundamental
domain of ¢, : Va, — V& | such that ¢/ (Vapy1) = Vi \ Vyh. This implies

that the collection {Vy41,..., f7"™ (Vyy1) = B} has pairwise disjoint intervals,
all of them contained in Vo, 41 U---U f" " (Va,41). The intervals of the collection
{fulElr), ... ¢ 0 -0 ¢l (El) = Ef} are also pairwise disjoint and they

have empty intersectlon with the intervals from the previous collection. If we put
all these intervals together we get that the intervals of the piece of orbit from Vn+1 to

0™ (Viy1) = Ef are pairwise disjoint. Now, adding the pairwise disjoint
mtervals fu(BS, en (E) we get the collection {Vn+17 e T (Vig1) Y and
conclude it has multiplicity of intersection equal to two as required. O
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4. The limit set of the critical point. In this section we study the w-limit set
w(c) of the critical point of a critical covering map f € H(w). The fact that the
sequence (£,)5 is strictly increasing means that w(c) contains the repelling fixed
point p. So w(c¢) is not a minimal set, since it has a proper non-trivial invariant
subset {p}. We now prove that w(c) is a Cantor set of zero Lebesgue measure.

Theorem 4.1. If f is a critical covering map which satisfies hypotheses (H1)—(H3)
and has kneading sequence in K, then the w-limit set of its critical point is a Cantor
set of zero Lebesgue measure.

For a better understanding of the set w(c) and the proof of Theorem 4.1, observe
that the symbol 2 does not occur anywhere in sequences in K. This means that
the positive orbit of ¢ does not visit the arc of the circle corresponding to [p, ¢+ 1].
Therefore, it will follow that w(c) is a Cantor set. A more refined study of the
relative sizes of the pre-images of this arc will permit us to prove that the Lebesgue
measure of this Cantor set is zero and conclude the proof. In this stage we will need
to use some Koebe Principles, that may be found, for example, in [13]. They are
our main tool for controlling the distortion of iterates of a function, and we state
them in the following lemma.

Lemma 4.2 (Koebe Principles). Let J C T C S' be a pair of intervals such that
T\ J has two non-empty connected components L and R. If h is a C® map defined
on T with no critical point, negative Schwarzian and min{|h(L)|, |h(R)|} > a|h(J)|,
then the following properties hold:

1. for all x,y € J we have that

Dh(z) < 1+a 2.
Dh(y) — a ’
2. min{|L|, |R|} > «a|J|.

Proof. For a proof see [13]. O

Remark 3. With the notation of Lemma 4.2 we define the distortion of h in J,
that is:

Dist(h, J) = sup { gzg; DX,y € J} )

We remark that, if @ in Lemma 4.2 grows to infinity, then the distortion of h in J
decreases to 1.

4.1. Measure of the limit set of the critical point. To prove that the w-limit
set of the critical point has Lebesgue measure zero, part of Theorem 4.1, we use a
well-known procedure of inducing to get rid of the critical point. We consider the
function T : (J5—, Wi, — W, where W = VT = [¢, 2] and Wy = V,', such that
the coding of the forward orbit of f(x), for x € Wy, start with the symbol 0. For
n > 1and y € W,, C W, the coding of the forward orbit of f(y) begins with the
word 1"0. We define T at z € W,, by putting T'(z) = f"*!(x). The restriction of
T to W, is a branch of the first entry map to W. In particular, the restriction of T'
to Wy coincides with ¢, which coincides with f restricted to W.

Lemma 4.3. Consider the function T : ;o W, — W associated to a critical
covering map f € H(w) that satisfies hypotheses (H1)-(H3) for some kneading
sequence w € K. Consider also the set Q consisting of the points x € W for which
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T™(x) is well-defined, for all m > 1. Then Q is a Cantor set of zero Lebesgue
measure.

Proof. We denote by T,, the branch of T that corresponds to its restriction to the
interval W,, and we begin by listing some properties of these branches:
(i) by definition, for n > 0, we have W, 11 C [W,,, W,40] C W;

(ii) the left endpoint of Wy is the critical point ¢, Tj is the restriction to Wy of f
and coincides with the branch ¢; of the first entry map from V2Jr to W = V1+.
By Lemma 3.3, there is an interval Wy = V; around Wy which is mapped f
homeomorphically (with only one critical point, the point ¢) onto the interval
(p - 17f(C) + 1)?

(iii) for n > 1, T, is the restriction to W,, of f**! and coincides with the branch
01, of the first entry map from Ef to W = V;". By Lemma 3.3, there is an
interval W,, = £ € W which is mapped by f"*! diffeomorphically onto the
interval (p— 1, f(c) + 1);

(iv) for z € [pt, z]], the coding of the forward orbit of f(z) includes the symbol
2, and so the forward orbit of the critical point doesn’t visit this interval and
the map T isn’t defined in it.

We are going to substitute the function 7', which has a critical point at ¢, for
another function 7 that has no critical points. This function is induced and obtained
through an inductive process that generates a sequence (7,,)52 ; of functions 7, that
possess a critical branch (with critical point ¢) defined on intervals that nest down
to ¢ as n > 1 increases. The sequence (7,)%2; has a limit 7 that has an infinite
number of branches that map their respective domains diffeomorphically onto W.
In the initial step of this induction we put 77 = 7. This function 7; has infinitely
many branches that are diffeomorphisms of their respective domains onto W and a
single branch with a critical point at ¢ and defined on Wl = Wy. Then we compose
this critical branch with the diffeomorphic branches. In this way we obtain new
branches that are diffeomorphisms onto W and a new critical branch that is defined
on an interval W, C Wy. Continuing in this way we obtain a sequence (T7)52, and

a sequence of nested closed intervals (W,,)5 ; with the following properties:
() N2, W = {o);

(ii) 7, has diffeomorphic branches mapping onto W, except for a single critical
branch with critical point ¢ and defined on the interval Wn;

(iii) the branches of 7, have extensions mapping diffeomorphically onto (p —
1, f(¢) + 1), except for the critical branch, which has an extension mapping
homeomorphically onto (p — 1, f(c) + 1) with critical point ¢;

(iv) outside of the interval W,, we have that Tn+1 = Tn;

(v) the sequence (7,)22; has a unique limit, which has no critical points and is
the function 7 described above.

Figure 4.1 shows the graphs of 7; and 7T3. Figure 4.1 shows the graph of 7.

Each branch of T is a diffecomorphism that coincides with some iterate f* that
maps a neighbourhood of the domain of a branch of 7 diffeomorphically onto (p —
1, f(¢) + 1). Then, by the Koebe Principle in Lemma 4.2, the branches of T and
their iterates are diffeomorphisms onto W and have uniformly bounded distortion.
Because of this, together with the fact that the complement of the domain of 7 in
W contains the interval [pT, zf’ |, we can conclude that the set Q of points x € W
such that 7"(x) is defined for all n > 1, is a Cantor set and has zero Lebesgue
measure and the lemma is complete. O
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FIGURE 3. Comparing graphs of the functions 77 (left) and T3 (right).

Proof of Theorem 4.1. It is clear that w(c) is a set that is closed and totally
disconnected. As c is recurrent, we also have that w(c) is perfect. Thus w(c) is
a Cantor set. To conclude that the Lebesgue measure of w(c) is zero, we observe
that the forward orbit of the critical point has empty intersection with the interval
[pT, 2]. Here pt € [c, 2{7] is the point for which f(p*) = f(p) = p. Then f(c) € Q
and W Nw(c) C @ and, by Lemma 4.3, the Lebesgue measure of W Nw(c) is zero.
So we conclude that the Lebesgue measure of w(c) is zero, proving the theorem. [

5. Absence of acip measures. As we have already observed, a critical covering
map f has many invariant measures and this is the topic of this section. We know
that under our hypotheses (H1)-(H3), with the absence of periodic attractors and
non-degenerate intervals consisting of periodic points, f is topologically conjugate
to the uniform covering map I = I, by a homeomorphism h : S' — S': that is,
ho f=1of. Asl preserves Lebesgue measure on the circle, denoted by A, we can
define the measure h*\ by setting h*A\(B) = A(h(B)) for any Borel subset B C S*.
This measure h*\ is always invariant for f and we could expect that it would be

FIGURE 4. The graph of T
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an acip measure. Depending on the speed that m,, grows with n, this might not be
the case as we will show.

Let us study a little more the critical covering maps f which have kneading
sequence in K. Recall that on the combinatorial level K = (),_; [wy], where [w,] C
AN is the cylinder of all infinite words beginning with the word w,,, see Equation 2.
The sequence of words (wy,)22; is defined in terms of two sequences (£,)%2; and
(my,)$2; of natural numbers, with (£,)52 ; strictly increasing.

On the dynamical level the critical covering map f is obtained as a limit of a
sequence (f,)52; of critical covering maps f,, € H(wy), where H(wy,) is the set of
all critical covering maps which satisfy hypotheses (H1)-(H3) with 8 > 1, ¢ > 0, ¢
fixed (see Equation 1) and having kneading sequence in [wy,].

Associated to f,, € H(wy), there are branches of first entry maps to V,_; (see
the induction hypothesis in Subsection 3.2),

Gn:Von = Vot | and o, EF 5 Voh 0 forall k>4, .

The special branches ¢, : Va,, — V5, and 0,4, : Ef» — VI | are associated to
the words w,, and v, respectively (see Equation 2). Figure 3.3 is an illustration of
the graphs of these special branches.

Using Lemmas 3.3 and 4.2, we prove that: for 8 > 1, ¢ > 0 and ¥ fixed in Equa-
tion 1, the shape of the branches ¢,, and o, are controlled by the combinatorics
given by the finite word w,,. In fact this shape is uniform in the set of all words in
[wn] and, in particular, this shape does not depend on ¢; and m;, for ¢ > n. This is
the content of the next lemma.

Lemma 5.1. There exist 6, > 0 and K, < oo such that, for every n > 1, every
finite word wy, as before and every f, € H(wy), the following properties are satisfied:

1. For all x € Vy,,
K;1 5 en ISU *0‘571 g |D¢n(x)| S Kn ﬂ 077, |5L' - C|B717

2. The distortion of o : EX — Vi | is bounded by K,;

3. Ifopp = 1% in B then the distortion of fu* : E¥ — Vi is bounded by K ;

4. The constants K, and 6, depend only on w,, 8 > 1 and 9 > 0. Moreover,
K, =1 and 0, — o0, as n — oo.

Proof. If we write ¢,, = f'»~! o f,, Lemma 3.3 implies that f7»~! maps the pair
fn(Van) C fn(Vy) diffeomorphically onto the pair Vi | C (pn —1, fu(c)+1), where
pp, is the unique fixed point of f,. Let 7, be the size of the smaller connected
component of (p, — 1, fn(c) + 1) \ Vo _,. For f, € H(w,), hypotheses (H1)-(H3)
are satisfied with 8 > 1, ¥ > 0 and ¢ from Equation 1 fixed. The Koebe Principles
in Lemma 4.2 imply that the distortion of f"»~! restricted to f,,(Va,) is bounded by
K, = (1+ay)?/a?, where a,, = 7,,/|V5 _,|. Since 7, is bounded away from zero,
it follows that o, — 0o as n — co. We set 0, = Vo _[/|fn(Van)l|, use the mean
value theorem and the hypothesis that the critical point has order 8 to conclude the
first part the lemma. For the second and third parts of the lemma we recall that
Onk = fr"* in EF and Lemma 3.3 implies that f,"* maps the triple E¥ ¢ EF c £
diffeomorphically onto the triple V;© | € V;* C (p, — 1, fu(c) + 1). For the same
K, as above, the Koebe Principles in Lemma 4.2 imply that the distortion of f,t;”’"
restricted to E¥ is bounded by K, and restricted to E’fb is bounded by K;. This
completes the proof of the lemma. O
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An important step in our proof of the non-existence of an acip measure is
the following lemma which, in particular, implies that the Lebesgue measure of
i [1(Vay,) tends to zero as n — oo, where 7, = |w|.

=
Lemma 5.2. Given K1 < 0o as in Lemma 5.1, if n > 1, w, is a finite word as

before and f, € H(wy), then

g [Van|

In particular the Lebesgue measure of U:;o fi(Vay,) tends to zero when n grows to
nfinity.

Proof. One reason for this lemma to be true is the fact that, for 1 < ¢ < r,, we can
pull back the space V;\ V5 _; on the side of V! _; to a space on the side of f}(Va,,)
maintaining the proportion up to a uniform distortion constant. To be more precise
observe that Lemma 3.3 implies that there are intervals V5, C Vn C V,, such that,
for 1 <i <7, the map f7»~ is a diffeomorphism from fZ (Va,) C f2(Vy,) C fi(Vn)
onto Vo | € Vi' C (pn — 1, fule) + 1), where p,, is unique fixed point of f,. By
Lemma 4.2 the distortion of f7»~¢ on fi(V},) is uniformly bounded by K; and

; Va1

Taking the sum with 1 <7 < r,, we get that

(Vo)

T'n

S +
SO (Ve | < Ky Ll $5
I

i=1

Fa(Va)]| -

By Lemma 3.3, the multiplicity of intersection of the collection {Vn, sy fom (Vn)}
is at most two. Therefore

S™ |4 [Van-1|

and the lemma follows. O

To follow the same ideas as Johnson in [9], we observe that as set out in Lemma
5.2, the Lebesgue measure of the union (J;", fi(Va,) tends to zero as n tends to
infinity. On the other hand, since the interval V5,, contains the critical point, using
the theorem of Mané (see [12] and [13]) it is easy to conclude that, for every n
fixed, the Lebesgue measure of UZV:O £ 1(Vay,) tends to 1, when N tends to infinity.
Therefore an arbitrarily small set is visited by an arbitrarily large set. Moreover, we
would like to have the property that the set of points of UlN:O f74(Vay,) that leave
Uiz, 4 (Vay) in fewer than N iterates could be made arbitrarily small by increasing
m.,. For this to hold, we will substitute the interval V5,, by the interval U, C V5,.
First we consider the point 7, € Va, such that the derivative D¢, (v,,) is equal to
1. Then we define U,, to be the connected component of Vs, \ {7, } which contains
c. For the map G, from the Corollary 2 or for the map gy,) from Lemma 3.2,
there is a parabolic periodic attractor and m,, = co. In this case the point =, is the
parabolic periodic attractor.

The next lemma guarantees that the size of the interval U,, has a positive lower
bound that is uniform for every f, € H(w,) with w, fixed. In particular, U,
does not degenerate to a point when we keep ¢1,...,¢,_1,m1,...,my_1 fixed and
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increase m,, to infinity. Observe, however, that V5, and U, degenerate if one of the
numbers £1,...,{,_1 tends to infinity.

Lemma 5.3. Given a finite word w, as before, there exists (, > 0 such that, for
every fn € H(wn), the corresponding interval U,, defined above satisfies |U,| > (.

Proof. This lemma is an immediate consequence of the first part of Lemma 5.1
applied to the branch ¢, : Vo, — V;kl. Indeed, given the word w,, the numbers
l1,... . lp_1,m1,...,my_1 are fixed and if we increase m,, > 1 to infinity, then
[Yn — &n(1n)| goes down to zero. O

Since the interval U, contains the critical point, it absorbs almost every point.
On the other hand, if we keep ¢1,...,¢,_1,m1,...,my_1 fixed and increase m,,
to infinity, |y, — &n(7n)| goes down to zero. This implies that less and less points
escape from U,,. All of this implies that forward orbits concentrate near the orbit of
the critical point more and more. This is the main reason for the non-existence of
an acip measure for the limit map of the sequence {f,}°2 ;. See the lemma below
for a precise statement.

Lemma 5.4. Given € > 0, there exists ng = ng(e) such that, for every n > ng
and every finite word wy, as before, there exists N,, = N(¢,n,wy,) such that, for any
fn € H(wn), the following properties are satisfied:

1\ fiUn)| < &
i=0
N

2. U 74U | > 1 —¢, for every N > N,, and every m, > 1;
i=0

3. For every N > N,,, there exists M, = M(e,n,w,, N) such that

N T
|{~T € U fo ' (Un) - f?glv(x) ¢ U fTiL(Un)}
i=0 i=0

for every my, > M,,.

<€,

Proof. The first part of the lemma is a direct consequence of Lemma 5.2 simply
because U,, C Va,. Since U, is a neighbourhood of the critical point we get the
second part using the theorem of Mané, see [12] and [13]. The uniform estimate on
my > 1 follows from Lemmas 5.1 and 5.3.

For the third part of the lemma we assume that we are given € > 0, n > ng, w,
and N > Ny satisfying the first and second parts of the lemma for every m, > 1.
Then we observe that, if we keep ¢1,...,0,_1,m1,...,my,_1 fixed and m, = oo,
we get the map G, from Corollary 2 and the point ~, is a parabolic periodic
attractor for G,,. In this case |J;", G%(U,) is forward invariant. This implies that,

for 41,...,0n_1,m1,...,my_1 fixed, if m, — oo, then |y, — ¢n(yn)] — 0. Then
we can take My = M (e, n,w,, N) sufficiently large to satisfy the third part of the
lemma. O

5.1. Proof of Theorem 2.1. Let us suppose that the sequences (m;)5e; and
(£,)$2., are given and then we take the sequence (wy,)52; of finite words as defined
by Equation 2. We also take a sequence (f,)52; such that f, € H(w,) converges
to f € H(w). Then, for ¢, = 1/2¥+2 we consider ny = ng(ex) and the sequence of
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constants (N, )p%,,, and (M, )52, given by Lemma 5.4. For simplicity of notation
we set
Tn
An = £i(U),
i=0
Ny

Qu={ae iU £ (@) ¢ A,
=0

Ny,
P = U fn_l(Un) \ Q.
i=0
By assumption the sequence (¢,,)52 ; is strictly increasing and we take (m,)52
increasing fast enough in order to have m, > M,. Then, for the subsequence
(ng)52 1, we have that

1

1

1
ST and ’Pflk UAnk| < o

. Ny, . .
Since fy,® maps P,, into A,,, it follows that

o (P \ Ay ) C PEL U A,

So, if p4 is an invariant probability measure for f,, , then u(Py, UA,, ) > 1/2.

To finish the proof of Theorem 2.1 we take f € H(w) to be the limit map of
the subsequence (fn, )72 ,. Since the sequence of sets H(wn, ) nests down to the
set H(w), we have that f € H(wy,,) for every k > 1. So we may consider the
constant subsequence f,, = f and apply the above reasoning to conclude that
(P, UAp,) > 1/2, for every k > 1. It follows that, for

Ar=TUPL AL,
i=1k=i
1(Ag) > 1/2 and, by the Borel-Cantelli Lemma, the Lebesgue measure of Ay is
zero. Therefore p cannot be an acip measure for f. O
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