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Abstract. We consider the dynamics of smooth covering maps of the circle

with a single critical point of order greater than 1. By directly specifying the
combinatorics of the critical orbit, we show that for an uncountable number of

combinatorial equivalence classes of such maps, there is no periodic attractor

nor an ergodic absolutely continuous invariant probability measure.

1. Introduction. In the study of one-dimensional dynamical systems, the question
of the existence of an absolutely continuous invariant probability (acip) plays a
central role. The importance stems from the fact that an acip provides a complete
description of the asymptotic distribution of typical orbits of the system.

The existence of an acip has been much studied for unimodal maps of the interval.
Jakobson [8] showed that maps in the quadratic family have an acip for a set of
parameters of positive measure. For example, parameters for which the critical point
is strictly preperiodic, as studied by Misiurewicz [14]. Keller [10] proved that the
existence of an acip is equivalent to almost everywhere positivity of the Lyapunov
exponent. Collet and Eckmann [5] showed that exponential growth of the size of
the derivative along the critical orbit is a sufficient condition for the existence of an
acip. This growth condition was weakened to a summability condition by Nowicki
and van Strien [15], and weakened still further to a lower bound condition by Bruin,
Shen and van Strien [4]. This result was later extended to multimodal maps [3].

There are also results on non-existence. Arnold [1] showed that for a dense set of
irrational rotation numbers, the conjugacy from an analytic diffeomorphism of the
circle to a rotation with the same rotation number is not absolutely continuous. In
particular, such a diffeomorphism has no acip. Johnson [9] was the first to construct
quadratic interval maps without an acip and topologically conjugate to a tent map.
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This was further developed by Hofbauer and Keller [7] using the tools of kneading
theory.

Nevertheless, existence of an acip has been shown to be the more prevalent
situation for certain families of maps. Herman [6] proved that for almost every
irrational rotation number, the conjugacy to a rotation is smooth, and so an acip
exists. Lyubich [11] proved that for almost every map in the quadratic family, there
is either an acip or an attracting periodic cycle. This result was extended to real
analytic quadratic unimodal maps by Avila, Lyubich and de Melo [2].

In this article, we consider smooth critical covering maps of the circle without
an acip. As in the non-existence results for other classes of maps, we specify the
dynamics at the topological level. For clarity, we specify suitable combinatorics
for the critical orbit directly. The fact that the critical point of a covering map
is of inflection type rather than a turning point means that the techniques used
are significantly different to the unimodal case because of the lack of dynamical
symmetry. In the next section we state the main results after introducing the
required notation.

2. Notation and results.

2.1. Covering maps. Consider the circle S1 to be defined as the set of complex
numbers with modulus one equipped with the topology, orientation and differen-
tiable structure of the real numbers induced by the exponential map τ : R → S1

given by τ(t) = e2πit. A distance on S1 can be defined in the following way: given
x = τ(t1) and y = τ(t2), with t1, t2 ∈ [0, 1], the distance between x and y, denoted
by |x− y| is the minimum of |t1 − t2| and 1− |t1 − t2|. Many times in this article,
we choose a convenient value of t and represent the circle by the interval [t, t + 1],
where we use the identification t ∼ t+ 1.

A surjective locally homeomorphic map f : S1 → S1 is said to be a covering map
of the circle of (topological) degree d, |d| ≥ 1, if the pre-image of each point consists
of exactly |d| points and f is order-preserving or order-reversing for d > 0 or d < 0
respectively.

Given a covering map f : S1 → S1 of degree d, we can find a lift : a map
F : R→ R for which τ ◦F = f ◦τ . A lift F has the property that F (t+1) = F (t)+d
for all t ∈ R. Conversely, any homeomorphism of the real line with this property is a
lift of some covering map of the circle. For example, the linear function Ld : R→ R
given by Ld(t) = d t is a lift of the uniform covering map of degree d which we
denote by ld : S1 → S1.

We introduce an equivalence relation for covering maps. Given two covering
maps f and g of the circle and two marked points a, b ∈ S1, we say that the pairs
(f, a) and (g, b) are combinatorially equivalent if there exists a homeomorphism
h : S1 → S1 such that h(fn(a)) = gn(b) for all n ≥ 0.

2.2. Topological dynamics. We begin our study by recalling some of the basic
topological dynamics of covering maps. If d ∈ {−1, 1}, then f is a homeomorphism.
For d = −1, f is an order-reversing homeomorphism, which necessarily has a fixed
point and so the dynamics are well understood. For d = 1, f may have no periodic
points, and the dynamical behaviour is an area of current interest.

For d /∈ {−1,+1}, covering maps are not injective and possess periodic points
of all periods and also many compact invariant sets: that is, compact sets Λ ⊂ S1

such that f(Λ) ⊆ Λ. Given x ∈ S1, the set of all accumulation points of the forward
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orbit (fn(x))n≥0 is called the ω-limit set of x and is denoted by ω(x). The ω-limit
set of a point is a compact invariant set that is important for the analysis of the
dynamics. If x is periodic, then ω(x) is a finite set, but there are other possibilities
for ω-limit sets, such as Cantor sets or the whole circle S1.

For |d| ≥ 2, the uniform covering map ld is expanding and points in a residual
set have orbits that are dense on the whole circle S1. Covering maps that are not
expanding may have periodic attractors. Also there may exist intervals I ⊂ S1

whose orbit consists of pairwise disjoint intervals: that is, fn(I) ∩ fm(I) = ∅ for
0 ≤ n < m. Such an interval could be contained in the basin of a periodic attractor.
If this it not the case, then it is called a wandering interval. The existence of
wandering intervals is a factor that complicates the topological understanding of
the dynamics.

There exists a semi-conjugacy between a covering covering map f of degree d and
the uniform covering map ld: that is, a monotone surjective map h : S1 → S1 such
that h ◦ f = ld ◦ h. The map h is locally constant on wandering intervals and on
connected components of the basin of a periodic attractor, if either of these exist.
In the absence of wandering intervals, periodic attractors, and intervals consisting
entirely of periodic points, the semi-conjugacy is, in fact, a conjugacy: h is a home-
omorphism. In which case, we can conclude that for f , orbits of points in a residual
set are dense on the whole circle S1. Also, we can conclude that if Per(f) is the set

of all periodic points, then the closure Per(f) is the whole circle.

2.3. Measure-theoretic properties. The second step in understanding the dy-
namics of critical covering maps depends on the ergodic aspects. Let us assume
from now on that there are no wandering intervals, periodic attractors nor intervals
consisting entirely of periodic points.

The Lebesgue measure on the circle, which we denote by λ, is invariant by the
uniform covering map ld: that is, for any Borel set B ⊂ S1, λ(l−1

d (B)) = λ(B).
Using the homeomorphism h : S1 → S1 conjugating a critical covering map f to l,
we can define an invariant probability measure µ for f : for every Borel set B ⊂ S1,
µ(B) = λ(h(B)). This can also be formulated in terms of the regularity of the
conjugating homeomorphism.

Let ν be a Borel probability measure on the circle that is invariant for f . Assume
that ν is ergodic with respect to f : that is, for any Borel set B ⊂ S1, the ν-measure
of the symmetric difference f−1(B)4B is either 0 or 1. The basin of ν is the set

B(ν) =

{
x ∈ S1 : lim

n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) =

∫
S1

ϕ dν for all ϕ ∈ C0(S1,R)

}
,

where C0(S1,R) denotes the class of continuous functions from S1 to R. The support
of ν is a compact invariant set for f . The basin of ν is a totally invariant set : that
is, f(B(ν)) ⊆ B(ν) and f−1(B(ν)) ⊆ B(ν). By the Ergodic Theorem of Birkhoff, the
ν-measure of B(ν) is 1. However, the Lebesgue measure of B(ν) could be smaller,
even zero. If the invariant probability measure ν is absolutely continuous with
respect to Lebesgue measure λ (or an acip measure, for short), then the support of
ν has positive Lebesgue measure. Moreover, under our assumptions the map f is
ergodic with respect to λ (see [16]) and this implies that the basin of ν has Lebesgue
measure 1. This guarantees that the acip measures are of great relevance for the
description of the dynamics of f .
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2.4. Critical covering maps. A critical covering map of the circle is a covering
map f : S1 → S1 of class Cr, r ≥ 1, with a unique critical point of inflection type,
which we denote by cf or simply by c if no confusion will occur. The local inverse
of a critical covering map is also Cr, except at the critical value f(c). If f and g
are critical covering maps for which (f, cf ) is combinatorially equivalent to (g, cg),
where cf and cg are the critical points of f and g respectively, then we shall say
that f is combinatorially equivalent to g.

As a source of examples of critical covering maps, we consider the Arnold family
of maps gα : S1 → S1, α ∈ [0, 1], with lift Gα : R→ R given by

Gα(t) = α+ 2

(
t+

1

2π
sin(2πt)

)
.

As we show below the Arnold family is an example of a full family of critical
covering maps. Consider a family {gα}α∈∆ of critical covering maps, where ∆ is an
interval and α 7→ gα(x) is continuous for each x ∈ S1. Such a family is said to be
a full family if, any critical covering map f is combinatorially equivalent to gα, for
some α ∈ ∆.

Let us show some basic properties of each map gα in the Arnold family. A
straightforward computation shows that Gα has negative Schwarzian derivative,
which implies that gα has at most one periodic attractor, see [13]. The point
c = 1/2 and its translations by integers are the critical points of Gα and all of
them project to the unique critical point of gα, which is a fixed point for g−1/2.

For β =
(
− 1

6 +
√

3
2π

)
it is easy to see that g−1/2−β and g−1/2+β have an indifferent

fixed point which is attracting from one side and repelling from the other. For
α ∈ (−1/2−β,−1/2+β) the map gα has an attracting hyperbolic fixed point whose
immediate basin of attraction, bounded by two repelling hyperbolic fixed points,
contains the critical point. For α ∈ (−1/2 + β, 1/2 − β), the map gα has only one
fixed point which is a hyperbolic repeller, say pα. This fixed point and its pre-image
define a partition of the circle with two arcs, each of which are mapped onto the
circle by gα. So we can conclude that gα is topologically conjugate to the shift on
{0, 1}N. Now we observe that the derivative with respect to α is 1 for the critical
value Gα(1/2) and is negative for the repelling fixed point pα. Then we can conclude
that for any sequence in {0, 1}N, there is some value of α ∈ [−1/2 +β, 1/2−β] such
that the itinerary of the critical value of gα realises this sequence. Thus the Arnold
family {gα}α∈∆, with ∆ = [−1/2 − β, 1/2 − β], is an example of a full family of
critical covering maps of the circle.

In order to ensure that a critical covering map has no wandering intervals, see
[13] and also [16], it is enough to assume that it is of class C2 (outside the critical
point where it is C1) and the critical point has finite order: that is, there exist a C1

map ψ defined near c satisfying lim
x→c

ψ(x) = 0 and real constants ϑ > 0 and β > 1

such that

f(x) = f(c) + ϑsgn(x− c)|x− c|β(1 + ψ(x)), (1)

for every x in a neighbourhood of c. The constant β, when it exists for some ψ as
above, is called the order of the critical point.

From now on, we shall concentrate on full families of C1 critical covering maps
{gα}α∈∆ with the following properties for all α ∈ ∆:

(H1) the critical point c has order β > 1;
(H2) gα has topological degree 2;
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(H3) Restricted to S1\{c}, the map gα is C3 and has negative Schwarzian derivative.

Remark 1. Assumptions (H2) and (H3) are to simplify the exposition: the same
methods can be used for any degree d ≥ 2, and the arguments could be adapted
so as not to use the negative Schwarzian assumption, but this would increase the
technicality of the proofs.

2.5. Statement of results. Our main result, Theorem 2.1 below, concerns the
absence of acip measures, which we will prove in the Section 5. According to this
theorem, the measure µ defined above may not describe the statistical behaviour
of a significant set of orbits. This property depends on a strong recurrence of the
critical point and to understand it, we will describe in Section 3 an uncountable set
of combinatorics of the critical orbit associated to it.

Theorem 2.1. Within any full family of critical covering maps satisfying the above
hypotheses (H1)–(H3), there are uncountably many combinatorially non-equivalent
maps with no absolutely continuous invariant measure and no periodic attractor.

In the case of any full family, we have the following corollary.

Corollary 1. Within any full family of critical covering maps {gα}α∈∆ satisfying
the above hypotheses (H1)–(H3), there are uncountably many values of α ∈ ∆ for
which gα has no absolutely continuous invariant measure and no periodic attractor.

We specify the combinatorics used in Theorem 2.1 above in the following section.

3. Combinatorics.

3.1. Kneading sequences. For our results we need to find critical covering maps
with strongly recurrent critical points. Then, when iterating the map, the strong
contraction near to the critical point can overcome the expansion that occurs on the
rest of the circle. We specify the strongly recurrent behaviour at the combinatorial
level.

There are different choices of partition that can be made for defining the kneading
sequence of a critical covering map. For example, the partition defined by the unique
fixed point p and its pre-image q 6= p is a Markov partition with two intervals.
However, the itineraries given by this partition are linked with the recurrence of the
critical point in a complicated way.

Given a critical covering map f consider instead the circle represented by the
interval [c, c + 1], where c and c + 1 are identified. Then choose the partition
c < z+

1 < z−1 + 1 < c + 1, where z−1 < c < z+
1 are the two pre-images of c. This

partition has three intervals I0 = [c, z+
1 ], I1 = (z+

1 , z
−
1 + 1) and I2 = [z−1 + 1, c+ 1).

We shall use this partition to define a coding of the orbits of f . Let A denote the
alphabet consisting of the three symbols 0, 1 and 2.

We say that x ∈ S1 is coded by the symbol i ∈ A if x ∈ Ii. Similarly, given
x ∈ S1 and n ≥ 1, the piece of orbit (x, f(x), . . . , fn−1(x)) is coded by the finite
word i1 · · · in ∈ An if f j−1(x) ∈ Iij for all 1 ≤ j ≤ n.

Extending to forward orbits, we have the coding map κ : S1 → AN, where κ(x)
is the infinite word i1i2 · · · with jth term ij , where f j−1(x) ∈ Iij for j ∈ N. If we

denote by S : AN → AN the left shift, then we have S ◦ κ = κ ◦ f .
Of special importance is the coding κ(f(c)) of the forward orbit of the critical

value f(c), which is called the kneading sequence of f and denoted by κf . Clearly,
combinatorially equivalent critical covering maps have the same kneading sequence
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and vice-versa. However, as the partition I0, I1, I2 is not Markov, not every element
of AN is the kneading sequence of some critical covering map. We say a sequence
ω ∈ AN is admissible if there exists some critical covering map f with κf = ω.

We now define the kneading sequences required for Theorem 2.1. Given any two
sequences (`n)∞n=1 and (mn)∞n=1 of natural numbers with (`n)∞n=1 strictly increasing
and mn ≥ 2, we inductively define a sequence ω ∈ AN. We first define the words
ω1 = 0 and ν1 = 1`10. Then, assuming that the words ωn and νn are already
defined, we define the words ωn+1 and νn+1 by setting

ωn+1 = ωmn
n νn and νn+1 = ωmn

n · · ·ωm1
1 1`n+10, (2)

where, for a finite word u and integer k ≥ 1, uk denotes the word obtained by
concatenating k copies of the word u. Similarly, we will write u∞ for the infinite
word obtained by concatenating countably many copies of a finite word u.

Notice that the symbol 2 is forbidden from occurring in the kneading sequences.
As a result, the critical orbit avoids the interval I2 and so the ω-limit set ω(c) is a
Cantor set (see Theorem 4.1).

Denoting the number of symbols in a word by | · |, we have that

|ωn+1| = mn|ωn|+ |νn| and |νn+1| = mn|ωn|+ · · ·+m1|ω1|+ `n+1 + 1.

We also define rn = |ωn|. We denote by [ωn] ⊂ AN the cylinder of all infinite
words beginning with the word ωn. By construction, for each n the word ωn+1

begins with the word ωn, and so we have a nested sequence [ω1] ⊃ [ω2] ⊃ · · · . As
|ωn| → ∞, the intersection

⋂∞
n=1[ωn] consists of a unique infinite word, which we

denote by ω ∈ AN.
As there are uncountably many distinct choices for the sequences (`n)∞n=1 and

(mn)∞n=1, and each pair of sequences gives rise to a different sequence in AN, we
obtain an uncountable collection of infinite words ω that we denote by K.

We denote by H(ωn) = Hβ,ϑ,ψ(ωn) the set of all critical covering maps which
satisfy hypotheses (H1)–(H3) with β > 1, ϑ > 0, ψ fixed (see Equation 1) and
having kneading sequence in the cylinder [ωn].

Remark 2. We will show below that the sets H(ωn) are non-empty and that they
nest down to the non-empty set H(ω) =

⋂∞
n=1H(ωn). Every critical covering map

in this set has the same kneading sequence ω in K. We also can see that H(ωn)
contains H(ω∞n ) and, as a consequence, any critical covering map in H(ω) can be
approached by critical covering maps in H(ω∞n ). The critical point of each map in
H(ω∞n ) is asymptotic to a periodic attractor of period rn = |ωn|.

3.2. Admissibility of combinatorics. We will now show thatH(ω) is non-empty.
We start by showing that H(ωn) is non-empty: indeed, we will construct by induc-
tion, a sequence of critical covering maps fn ∈ H(ωn), each with critical point c = 0.
The way we construct fn, the sequence will converge to a map in H(ω), showing
that this set is also non-empty. Alternatively, each fn is topologically conjugate to
a critical covering map gαn

in a given full family {gα}α∈∆, then gαn
converges to a

map in H(ω).
Before this, note that, for a critical covering map f , the open interval I1 =

(z+
1 , z

−
1 + 1) contains a unique fixed point p of f and

[z+
1 , p) =

∞⋃
n=1

Ln and (p, z−1 + 1] =

∞⋃
n=1

Rn,
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Figure 1. The graph of the critical covering map f1.

where Ln, Rn, n ≥ 1, are the left and right fundamental domains of p: that is, they
are the maximal open intervals satisfying

f(Ln+1) = Ln, f(Rn+1) = Rn, f(L1) = (c, z+
1 ) and f(R1) = (z−1 + 1, c+ 1).

Remember that we identify the intervals (z−1 + 1, c+ 1) and (z−1 , c).
Let V1 = [z−1 , z

+
1 ] denote the closed neighbourhood of c with endpoints z−1 and

z+
1 . For any small neighbourhood U of c, we shall denote the left side U ∩ [z−1 , c]

by U− and the right side U ∩ [c, z+
1 ] by U+. So U− and U+ are intervals such that

U = U− ∪ U+ and U− ∩ U+ = {c}.
Now we start the construction by induction of the sequence of critical covering

maps (fn)∞n=1 in H(ωn). The easy first step of induction below is just the construc-
tion by hand shown in Figure 3.2.

3.3. Induction argument. We use an induction argument to show that all se-
quences in K are admissible.
First step of induction. There exists a critical covering map f1 for which the
following properties hold:

(i) There exists a closed neighbourhood V2 of c, V2 ⊂ V1 = [z+
1 , z

−
1 ] such that,

for r1 = |ω1| = 1, the iterate fr11 maps V2 homeomorphically onto V +
1 . The

restriction of fr11 to V2 is a branch of the first entry map to V +
1 which we

denote by φ1;
(ii) The branch φ1 maps V2 onto V +

1 and, for x ∈ V2, the piece of orbit
(f1(x), . . . , fr11 (x)) is coded by the word ω1;

(iii) For k > `0 := 0, there exists a branch σ1,k : Ek1 → V +
1 of first entry map that

maps Ek1 ⊂ V +
1 \V

+
2 diffeomorphically onto V +

1 . For y ∈ Ek1 , the piece of orbit
(f1(y), . . . , σ1,k(y)) is coded by the word 1k0. In particular the entry time of
f1(y) to V +

1 is t1,k = k;

(iv) For 1 ≤ j < m1, φj1(c) ∈ V +
2 , φm1

1 (c) ∈ E`11 and there is a closed neighbour-
hood D1 ⊂ V2 such that φm1

1 (D1) = V +
1 \ V

+
2 (that is, D1 is a fundamental

domain of φ1) and Ek1 ⊂ φ
m1
1 (D+

1 ) for all k > `1.

Induction hypothesis. For n ≥ 1, there exist critical covering maps f1, . . . , fn
such that, for 1 ≤ i ≤ n, the following properties hold:
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Figure 2. The first entry map to the interval V +
2n−1, showing the

critical branch φn and some of the branches σk,`k , with k ≥ n.

(i) There exist nested closed neighbourhoods V2n ⊂ V2n−1 ⊂ · · · ⊂ V2 ⊂ V1 of c
such that, for ri = |ωi|, the iterate frii maps V2i homeomorphically onto V +

2i−1.

The restriction of frii to V2i is a branch of the first entry map to V +
2i−1 which

we denote by φi;
(ii) The branch φi maps V2i onto V +

2i−1 and, for x ∈ V2i, the piece of orbit
(fi(x), . . . , frii (x)) is coded by the word ωi;

(iii) For each k > `i−1, there exists a branch σi,k : Eki → V +
2i−1 of first entry map

that maps Eki ⊂ V +
2i−1\V

+
2i diffeomorphically onto V +

2i−1. For y ∈ Eki , the

piece of orbit (fi(y), . . . , σi,k(y)) is coded by the word ω
mi−1

i−1 · · ·ω
m1
1 1k0. In

particular the entry time of y to V +
2i−1 is ti,k := mi−1|ωi−1|+ · · ·+m1|ω1|+k;

(iv) For 1 ≤ j < mi, φ
j
i (c) ∈ V

+
2i , φmi

i (c) ∈ E`ii and there is a closed neighbourhood
interval Di ⊂ V2i such that φmi

i (Di) = V +
2i−1\V

+
2i (that is, Di is a fundamental

domain of φi) and Eki ⊂ φ
mi
i (D+

i ) for all k > `i;
(v) For 1 ≤ i < n, fi+1 = fi on S1 \Di.

In Figure 3.3 we show the intervals E`nn , E
`n+1
n , V +

2n inside V +
2n−1 and the branches

σn,`n , σn,`n+1 and φn of first entry map to V +
2s−1 defined on them.

Induction step. We assume that the induction hypothesis holds true for n ≥ 1
and prove it for n + 1. Since c ∈ Dn ⊂ V2n and φmn

n (Dn) = V +
2n−1 \ V

+
2n, we

define V2n+1 ⊂ V2n to be the closed neighbourhood Dn. For k > `n−1, there is a
closed interval Ikn ⊂ Ekn which is mapped diffeomorphically onto V +

2n+1 by σn,k. If
necessary, we modify fn on the interior of Dn = V2n+1 to obtain a critical covering
map fn+1 for which φmn

n (c) ∈ I`nn . Then we define the interval V2n+2 ⊂ V2n+1

around the critical point such that φmn
n (V2n+2) = I`nn . The first entry map φn+1

from V2n+2 onto V +
2n+1 is defined by φn+1 = σn,`n ◦ φmn

n and properties (i)–(ii) are

satisfied for 1 ≤ i ≤ n+ 1. For k > `n, Ikn ⊂ Ekn ⊂ φmn
n (V +

2n+1) and we can define

the interval Ekn+1 ⊂ V +
2n+1 \ V

+
2n−2 such that φmn

n (Ekn+1) = Ikn. The first entry map

σn+1,k from Ekn+1 onto V +
2n+1 is defined by σn+1,k = σn,k ◦φmn

n . In this way we have
property (iii) satisfied for 1 ≤ i ≤ n+1. To ensure that property (iv) is satisfied, we
can adjust fn+1 further on the interior of V2n+1 a little more. Since V2n+1 = Dn,
the map fn+1 we have constructed also satisfies property (v).

The induction above is the main step in proving Proposition 1 that guarantees
that H(ω) is non-empty and all sequences in K are admissible.
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Proposition 1. Given a sequence ω ∈ K, in any full family of critical covering
maps there exists a map f with kneading sequence ω.

Proof. Each critical covering map fn in the induction argument above has kneading
sequence κfn contained in the cylinder [ωn] of all words starting with the word
ωn, n ≥ 1. We have that fn+1 = fn, on S1\Dn. Since we have the freedom to
choose the sizes of the closed neighbourhoods Dn of c so that

⋂∞
n=1Dn = {c}, this

guarantees that the sequence (fn)∞n=1 converges to a continuous covering f̃ such
that the kneading sequence of the marked point c is ω. In any full family there is a
critical covering f with a marked critical point which is combinatorially equivalent
to f̃ with the point c marked. This implies that the kneading sequence of f is ω
and we can conclude that ω is admissible.

Alternatively, each fn is topologically conjugate to a critical covering map gαn

in a full family {gα}α∈∆. Then gαn converges to a map in H(ω), also showing that
ω is admissible.

3.4. Combinatorics in full families. The sets H(ωn) and H(ω) =
⋂∞
n=1H(ωn)

are non-empty. In any full family {gα}α∈∆ of critical covering maps with gα sat-
isfying hypotheses (H1)–(H3), there is a non-degenerate interval of parameters α
such that gα ∈ H(ωn). These intervals accumulate on a parameter αω such that
gαω ∈ H(ω). One way to reach this interval of parameters is starting with maps
gαn in H(ω∞n ), that is, parameters such that the critical point is asymptotic to a
periodic attractor associated to the word ωi.

The lemma below guarantees that H(ω∞n+1) and H(ωmn
n ν∞n ) are also non-empty.

Therefore, the infinite words ω∞n+1 and ωmn
n ν∞n are admissible.

Below, for a given fn ∈ H(ωn), as in the induction above, let us use the notation
En instead of En,`n and σn instead of σn,`n .

Lemma 3.1. Given fn ∈ H(ωn), the following properties hold true:

1. There are xn, yn ∈ En such that σn(xn) = c and σn(yn) = yn. For y = xn or
y = yn, the piece of orbit (fn(y), . . . , σn(y)) is coded by the word νn;

2. fn can be modified on Dn to obtain either a critical covering map G−n or G+
n , both

in H(ωn), for which φmn
n (c) is either xn or yn, respectively. The corresponding

kneading sequences of G−n and G+
n are ω∞n and ω

mn−1

n−1 ν∞n−1, respectively.

Proof. As En ⊂ V +
2n−1 and the map σn : En → V +

2n−1 is a surjective diffeomorphism,
there are xn, yn ∈ En such that σn(xn) = c and σn(yn) = yn. By part (iii) of the
induction hypothesis, for y ∈ En, the piece of orbit (fn(y), . . . , σn(y)) is coded by
the word ω

mn−1

n−1 · · ·ω
m1
1 1`n0 = νn. This finishes the proof of the first part of the

lemma. To prove the second part of the lemma we observe that changes of fn in Dn

do not affect the branches σi : Ei → V +
2i−1 and the points xi, yi ∈ Ei, for 1 ≤ i ≤ n.

There exists a closed neighbourhood Hn of c that is properly contained in Dn

with the property that φmn
n maps Hn diffeomorphically onto [xn, yn]. Moreover,

the closed intervals Hn, φn(Hn), . . . , φmn−1
n (Hn) are pairwise disjoint and all are

properly contained in V2n. So by subtracting from fn a smooth bump function
supported on Dn we can reduce each of the points φn(c), φ2

n(c), . . . , φmn
n (c) so as

to get a map G−n for which φmn
n (c) = xn. We then have that c is a periodic

point since φn+1(c) = σn ◦ φmn
n (c) = c, and so the kneading sequence for G−n

is (ωmn
n νn)∞ = ω∞n+1. Alternatively, by adding to fn a smooth bump function

supported on Dn we can increase each of the points φn(c), φ2
n(c), . . . , φmn

n (c) in
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order to get a map G+
n for which φmn

n (c) = yn. We then have that φmn
n (c) is the

periodic point yn and so the kneading sequence of G+
n in this case is ωmn

n v∞n .

We have the following immediate corollary.

Corollary 2. Given fn ∈ H(ωn), there exists Gn ∈ H(ω∞n ) with the property that
Gn = fn on S1 \Dn with critical point asymptotic to a parabolic periodic attractor.

Proof. This is an immediate consequence of Lemma 3.1. Indeed, any continuous
one parameter family in H(ωn), starting in G−n and ending in G+

n , has a critical
covering map as stated.

Now, looking in a full family, we have the following lemma.

Lemma 3.2. Let {gα}α∈∆ be a full family of critical covering maps that satisfies
hypotheses (H1)–(H3). Then, for each n ≥ 1, there are parameters a(n) and b(n)
which satisfy the following:

1. The critical point is a periodic superattractor for ga(n), with period rn = |ωn|;
2. The critical point is asymptotic to the orbit of a parabolic periodic attractor for

gb(n), with period rn;
3. For α in the interval defined by a(n) and b(n), the map gα has a periodic attractor

of period rn and its kneading sequence is ω∞n .

Proof. According to Lemma 3.1 there is a critical covering G−n−1 whose kneading se-
quence is ω∞n . This can be realized in any full family and then we get the parameter

a(n) of the statement. Instead of this, we can get a parameter b̃(n) corresponding
to the kneading sequence ωmn

n ν∞n . Then, by an intermediate value argument, there

is a parameter b(n) in between an and b̃n as stated.

3.5. Extension of first entry branches. The lemma below assures that the
branches of first entry maps σn and φn associated to a critical covering map fn
in H(ωn) have big diffeomorphic extensions. Their ranges cover at least the interval
(pn − 1, fn(c) + 1), where pn is the unique fixed point of fn in (c, c+ 1). These ex-
tensions depend only on the combinatorial properties given by the word ωn. In fact
they depend only on the form of the word and in particular they do not depend on
the sequences (`n)∞n=1 and (mn)∞n=1. As we will see in Lemma 5.1, as a consequence
of Koebe Principles, these extensions imply a uniform control of distortion for these
branches.

Lemma 3.3. Given fn ∈ H(ωn), the following properties hold true:

1. There exist intervals V2n ⊆ V̂n ⊂ Vn which are mapped homeomorphically onto
V +

2n−1 ⊆ V +
1 ⊂ (pn − 1, fn(c) + 1) by frnn . Moreover, the interval Vn contains

only one critical point of frnn , the point c;

2. If k > `n−1, there exist intervals Ekn ⊆ Êkn ⊂ Ekn which are mapped diffeomorphi-

cally onto V +
2n−1 ⊆ V

+
1 ⊂ (pn − 1, fn(c) + 1) by f

tn,k
n ;

3. if k > `n−1, then the intervals Êkn, Ê
k+1
n , Êk+2

n , . . . are pairwise disjoint, Êkn ⊂
φmn
n (V2n+1) and Ekn is contained in the convex hull of φmn−1

n (c) and V +
2n−1 \V

+
2n;

4. If k > `n, then Ekn ⊂ φmn
n (V +

2n+1);

5. The collections of intervals {Êkn, . . . , f
tn,k
n (Êkn)} and {V̂n, . . . , frnn (V̂n)} have mul-

tiplicity of intersection at most two.

Proof. We proceed by induction on n and to start let us assume that n = 1. For
Part 1 of the lemma we choose V̂1 = V2 and to define V1 we remember that r1 = 1,
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f has only one critical point in (c − 1, c + 1) and the image of this interval by fn
contains (pn − 1, fn(c) + 1). Then we can choose V1 as wanted.

For the proof of Part 2 of the lemma we define Êk1 = Ek1 and to define Ek1 we
remember that Ek1 ⊂ V +

1 \ V
+
2 and fn(Ek1 ) ⊂ Fk ⊂ fn(V +

1 \ V
+
2 ) = (z+

1 , c+ 1). We
consider three cases:

(i) if k = 1 we define E1
1 to be the convex hull of φm1−1

1 (c) and V +
1 \ V

+
2 and get

that fn(E1
1 ) = (fn(φm1−1

1 (c)), c + 1) = (φm1
1 (c), c + 1). In this case t1,1 = 2

and the diffeomorphic image of E1
1 by f2

n is (fn(φm1
1 (c))− 1, fn(c) + 1);

(ii) if k = `1 + 1 we define E`1+1
1 ⊂ V +

1 \ V
+
2 such that fn(E`1+1

1 ) is the minimal
interval which contains fn(φm1

1 (c)) and R`1 . In this case t1,k = `1 + 2 and the

diffeomorphic image of E`1+1
1 by f `1+2

n is (f `1+2
n (φm1

1 (c))− 1, fn(c) + 1);
(iii) if k ≥ 2 and k 6= `1 + 1 we define Ek1 ⊂ V +

1 \ V
+
2 such that fn(Ek1 ) =

Fk−1. In this case t1,k = k + 1 and the diffeomorphic image of Ek1 by fk+1
n is

(fn(c)− 1, fn(c) + 1).

The interval (pn− 1, c) has no points from the forward orbit of the critical point
and, for k > `0, t1,k = k+ 1. In any one of the three cases above, we can shrink Ek1
so that fk+1

n (Ek1 ) = (pn − 1, fn(c) + 1) as required.

To prove Part 3 of the lemma we remember that the interval Êk1 is a con-

nected component of the first entry map to V +
1 and, for y ∈ Êk1 , the piece of

orbit {fn(y), . . . , σ1,k(Êk1 )} corresponds to the word 1k0. This implies that the

intervals Êk1 , Ê
k+1
1 , Êk+2

1 , . . . are pairwise disjoint. By definition, Êk1 = Ek1 and

φm1
1 (V3) = V +

1 \ V
+
2 , it follows that, for k > `0 = 0, Êk1 ⊂ φm1

1 (V3). The fact that

Ek1 is contained in the convex hull of φm1−1
1 (c) and V +

1 \ V
+
2 also follows from the

definition in one of the cases (i)–(iii) above.
To prove Part 4 of the lemma we observe that, for k > `1, Ek1 is defined by the

case (ii) or case (iii) above and we get that Ek1 ⊂ φ
m1
1 (V +

3 ) as required.

To prove Part 5 of the lemma we remember that Êk1 = Ek1 is the domain
of a branch of the first entry map to V +

1 . Then the collection of intervals

{Êk1 , . . . , f
t1,k
n (Êk1 )} has multiplicity of intersection equal to two. The collection

of intervals {V̂1, . . . , f
tr1
n (V̂1)} also has multiplicity of intersection at most two be-

cause r1 = 1. This finishes the first step of induction.
Now we assume that the lemma is true for n ≥ 1 and prove it for n + 1. To

define the pair V̂n+1 ⊂ Vn+1 required to prove Part 1 we remember that φmn
n (c) =

fmnrn
n (c) ∈ E`nn , φmn−1

n (c) ∈ V +
2n, Ê`nn ⊂ φmn

n (V2n+1) = V +
2n−1 \ V

+
2n and E`nn is

contained in the convex hull of φmn−1
n (c) and V +

2n−1\V
+
2n. All these properties imply

that we can take the pair V̂n+1 ⊂ Vn+1 as the intervals around the critical point such

that fmnrn
n (V̂n+1) = Ê`nn and fmnrn

n (Vn+1) = E`nn . With this choice we have that

f
rn+1
n = f

tn,`n
n ◦fmnrn

n maps the triple V2n+2 ⊂ V̂n+1 ⊂ Vn+1 homeomorphically onto
the triple V +

2n+1 ⊂ V
+
1 ⊂ (pn−1, fn(c)+1). We also have that f jrnn (Vn+1) ⊆ V +

2n−1,
for 1 ≤ j ≤ mn, therefore fmnrn

n has only one critical point in Vn+1, the point c.

Since f
tn,`n
n is a diffeomorphism from E`nn = fmnrn

n (Vn+1) onto (pn − 1, fn(c) + 1),
we are done.

For Part 2 of the lemma we assume that k > `n, in which case Ekn ⊆ Êkn ⊂ Ekn are
all contained in φmn

n (V +
2n+1) and there is a closed interval Ikn ⊂ Ekn that is mapped

diffeomorphically onto V +
2n+1 by σn,k. Then we can take Ekn+1 ⊂ Êkn+1 ⊂ Ekn+1
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to be the intervals mapped diffeomorphically onto Ikn ⊂ Êkn ⊂ Ekn by φmn
n . Since

f
tn+1,k
n (y) = σn,k ◦ φmn

n (y), for y ∈ Ekn+1, Part 2 of the lemma follows.
For Part 3 we remember that, for k > `n, we can conclude that the intervals

Êkn+1, Ê
k+1
n+1, Ê

k+2
n+1, . . . are pairwise disjoint because they are mapped by φmn

n diffeo-

morphically onto the pairwise disjoint intervals Êkn, Ê
k+1
n , Êk+2

n , . . .. The interval

Êkn is on the right of Ê`nn and this implies that Êkn+1 ⊂ V +
2n+1 \V

+
2n+2 = φmn

n (V2n+3)

as required. We still need to prove that Ekn+1 is contained in the convex hull of

φ
nn+1−1
n+1 (c) and V +

2n+1 \ V
+
2n+2. By definition, φmn

n (Ekn+1) = Ekn and Ekn+1 ⊂ V +
2n+1.

We have that φ
mn+1−1
n+1 (c) ∈ V +

2n+2 and we claim that this point is not in Ekn+1.

Indeed, the image of Ekn+1 by f
tn+1,k
n is (pn − 1, fn(c) + 1). Then, if the claim were

not true, the interval (pn − 1, c) would contain points from the forward orbit of the
critical point which is not true.

To prove Part 4 of the lemma we consider k > `n+1 and by the same reasoning

as above, the point φ
mn+1

n+1 (c) is in E
`n+1

n+1 , but not in Ekn+1. Otherwise the interval
(pn − 1, c) would contain points from the forward orbit of the critical point, which
is not true.

To prove Part 5 we remember that the points x ∈ Êkn+1 have entry time to

V +
2n+1 equal to tn+1,k = mnrn + tn,k and f

tn+1,k
n (x) = σn,k ◦ φmn

n (x). We also

have that σn,k(y) = σ1,k ◦ φm1
1 ◦ · · · ◦ φmn−1

n−1 (y), for all y ∈ Êkn. By definition,

for 1 ≤ i ≤ n, the interval Êki+1 ⊂ V +
2i is inside a fundamental domain Di of

φi : V2i → V +
2i−1 and φmi

i (Êki+1) = Êki . The fundamental domain Di of φi is, by
definition, the maximal interval Di ⊂ V2i such that Di, . . . , φ

mi
i (Di) are pairwise

disjoint and φmi
i (Di) = V +

2i−1 \ V
+
2i . In fact, by the property (iv) of the induction

hypotheses in the construction of fn, we have the equality Di = V2i+1. Therefore,

the piece of orbit from Êki+1 to φmi
i (Êki+1) = Êki has pairwise disjoint intervals, all

of them contained in (V +
2i+1 \ V

+
2i+2) ∪ · · · ∪ fmiri

s (V +
2i+1 \ V

+
2i+2). Then, since the

intervals V +
1 \ V2, . . . , V

+
2n+1 \ V2n+2 are pairwise disjoint, if we put together all the

intervals from the above pieces of orbits we get that the piece of orbit from Êkn+1 to

φm1
1 ◦ · · · ◦ φmn

n (Êkn+1) = Êk1 has pairwise disjoint intervals. On the other hand the

intervals of the piece of orbit from fn(Êk1 ) to σ1,k(Êk1 ) = V +
1 are pairwise disjoint.

Then the collection {Êkn+1, . . . , f
tn+1,k
n (Êkn+1)} has multiplicity of intersection equal

to two.
If we replace Êkn+1 by V̂n+1 and use the same reasoning above we conclude that

the collection {V̂n+1, . . . , f
rn+1
n (V̂n+1)} have multiplicity of intersection equal to

two. Indeed, by definition, rn+1 = mnrn + tn,`n , V̂n+1 ⊂ V2n+1 and f
rn+1
n (x) =

σn,`n ◦ φmn
n (x), for all x ∈ V2n+1 ⊂ V2n. The interval V2n+1 is the fundamental

domain of φn : V2n → V +
2n−1 such that φmn

n (V2n+1) = V +
2n−1 \ V

+
2n. This implies

that the collection {V̂n+1, . . . , f
mnrn
n (V̂n+1) = Ê`nn } has pairwise disjoint intervals,

all of them contained in V2n+1 ∪ · · · ∪ fmnrn
n (V2n+1). The intervals of the collection

{fn(Ê`nn ), . . . , φm1
1 ◦ · · · ◦ φmn−1

n−1 (Ê`nn ) = Ê`n1 } are also pairwise disjoint and they
have empty intersection with the intervals from the previous collection. If we put
all these intervals together we get that the intervals of the piece of orbit from V̂n+1 to

φm1
1 ◦· · ·◦φmn

n (V̂n+1) = Ê`n1 are pairwise disjoint. Now, adding the pairwise disjoint

intervals fn(Ê`n1 ), . . . , f
t1,`n
n (Ê`n1 ) we get the collection {V̂n+1, . . . , f

rn+1
n (V̂n+1)} and

conclude it has multiplicity of intersection equal to two as required.
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4. The limit set of the critical point. In this section we study the ω-limit set
ω(c) of the critical point of a critical covering map f ∈ H(ω). The fact that the
sequence (`n)∞n=1 is strictly increasing means that ω(c) contains the repelling fixed
point p. So ω(c) is not a minimal set, since it has a proper non-trivial invariant
subset {p}. We now prove that ω(c) is a Cantor set of zero Lebesgue measure.

Theorem 4.1. If f is a critical covering map which satisfies hypotheses (H1)–(H3)
and has kneading sequence in K, then the ω-limit set of its critical point is a Cantor
set of zero Lebesgue measure.

For a better understanding of the set ω(c) and the proof of Theorem 4.1, observe
that the symbol 2 does not occur anywhere in sequences in K. This means that
the positive orbit of c does not visit the arc of the circle corresponding to [p, c+ 1].
Therefore, it will follow that ω(c) is a Cantor set. A more refined study of the
relative sizes of the pre-images of this arc will permit us to prove that the Lebesgue
measure of this Cantor set is zero and conclude the proof. In this stage we will need
to use some Koebe Principles, that may be found, for example, in [13]. They are
our main tool for controlling the distortion of iterates of a function, and we state
them in the following lemma.

Lemma 4.2 (Koebe Principles). Let J ⊂ T ⊂ S1 be a pair of intervals such that
T \ J has two non-empty connected components L and R. If h is a C3 map defined
on T with no critical point, negative Schwarzian and min{|h(L)|, |h(R)|} ≥ α|h(J)|,
then the following properties hold:

1. for all x, y ∈ J we have that

Dh(x)

Dh(y)
≤
(

1 + α

α

)2

;

2. min{|L|, |R|} ≥ α|J |.

Proof. For a proof see [13].

Remark 3. With the notation of Lemma 4.2 we define the distortion of h in J ,
that is:

Dist(h, J) = sup

{
Dh(x)

Dh(y)
: x, y ∈ J

}
.

We remark that, if α in Lemma 4.2 grows to infinity, then the distortion of h in J
decreases to 1.

4.1. Measure of the limit set of the critical point. To prove that the ω-limit
set of the critical point has Lebesgue measure zero, part of Theorem 4.1, we use a
well-known procedure of inducing to get rid of the critical point. We consider the
function T :

⋃∞
n=0Wn → W , where W = V +

1 = [c, z+
1 ] and W0 = V +

2 , such that
the coding of the forward orbit of f(x), for x ∈ W0, start with the symbol 0. For
n ≥ 1 and y ∈ Wn ⊂ W , the coding of the forward orbit of f(y) begins with the
word 1n0. We define T at x ∈ Wn by putting T (x) = fn+1(x). The restriction of
T to Wn is a branch of the first entry map to W . In particular, the restriction of T
to W0 coincides with φ1, which coincides with f restricted to W0.

Lemma 4.3. Consider the function T :
⋃∞
n=0Wn → W associated to a critical

covering map f ∈ H(ω) that satisfies hypotheses (H1)–(H3) for some kneading
sequence ω ∈ K. Consider also the set Ω consisting of the points x ∈ W for which
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Tn(x) is well-defined, for all n ≥ 1. Then Ω is a Cantor set of zero Lebesgue
measure.

Proof. We denote by Tn the branch of T that corresponds to its restriction to the
interval Wn and we begin by listing some properties of these branches:

(i) by definition, for n ≥ 0, we have Wn+1 ⊂ [Wn,Wn+2] ⊂W ;
(ii) the left endpoint of W0 is the critical point c, T0 is the restriction to W0 of f

and coincides with the branch φ1 of the first entry map from V +
2 to W = V +

1 .
By Lemma 3.3, there is an interval W0 = V1 around W0 which is mapped f
homeomorphically (with only one critical point, the point c) onto the interval
(p− 1, f(c) + 1);

(iii) for n ≥ 1, Tn is the restriction to Wn of fn+1 and coincides with the branch
σ1,n of the first entry map from Ek1 to W = V +

1 . By Lemma 3.3, there is an
interval Wn = Ek1 ⊂ W which is mapped by fn+1 diffeomorphically onto the
interval (p− 1, f(c) + 1);

(iv) for z ∈ [p+, z+
1 ], the coding of the forward orbit of f(z) includes the symbol

2, and so the forward orbit of the critical point doesn’t visit this interval and
the map T isn’t defined in it.

We are going to substitute the function T , which has a critical point at c, for
another function T that has no critical points. This function is induced and obtained
through an inductive process that generates a sequence (Tn)∞n=1 of functions Tn that
possess a critical branch (with critical point c) defined on intervals that nest down
to c as n ≥ 1 increases. The sequence (Tn)∞n=1 has a limit T that has an infinite
number of branches that map their respective domains diffeomorphically onto W .
In the initial step of this induction we put T1 = T . This function T1 has infinitely
many branches that are diffeomorphisms of their respective domains onto W and a
single branch with a critical point at c and defined on Ŵ1 = W0. Then we compose
this critical branch with the diffeomorphic branches. In this way we obtain new
branches that are diffeomorphisms onto W and a new critical branch that is defined
on an interval Ŵ2 ⊂ Ŵ1. Continuing in this way we obtain a sequence (Tn)∞n=1 and

a sequence of nested closed intervals (Ŵn)∞n=1 with the following properties:

(i)
⋂∞
n=1 Ŵn = {c};

(ii) Tn has diffeomorphic branches mapping onto W , except for a single critical

branch with critical point c and defined on the interval Ŵn;
(iii) the branches of Tn have extensions mapping diffeomorphically onto (p −

1, f(c) + 1), except for the critical branch, which has an extension mapping
homeomorphically onto (p− 1, f(c) + 1) with critical point c;

(iv) outside of the interval Ŵn we have that Tn+1 = Tn;
(v) the sequence (Tn)∞n=1 has a unique limit, which has no critical points and is

the function T described above.

Figure 4.1 shows the graphs of T1 and T2. Figure 4.1 shows the graph of T .
Each branch of T is a diffeomorphism that coincides with some iterate f t that

maps a neighbourhood of the domain of a branch of T diffeomorphically onto (p−
1, f(c) + 1). Then, by the Koebe Principle in Lemma 4.2, the branches of T and
their iterates are diffeomorphisms onto W and have uniformly bounded distortion.
Because of this, together with the fact that the complement of the domain of T in
W contains the interval [p+, z+

1 ], we can conclude that the set Ω of points x ∈ W
such that T n(x) is defined for all n ≥ 1, is a Cantor set and has zero Lebesgue
measure and the lemma is complete.
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Figure 3. Comparing graphs of the functions T1 (left) and T2 (right).

Proof of Theorem 4.1. It is clear that ω(c) is a set that is closed and totally
disconnected. As c is recurrent, we also have that ω(c) is perfect. Thus ω(c) is
a Cantor set. To conclude that the Lebesgue measure of ω(c) is zero, we observe
that the forward orbit of the critical point has empty intersection with the interval
[p+, z+

1 ]. Here p+ ∈ [c, z+
1 ] is the point for which f(p+) = f(p) = p. Then f(c) ∈ Ω

and W ∩ ω(c) ⊂ Ω and, by Lemma 4.3, the Lebesgue measure of W ∩ ω(c) is zero.
So we conclude that the Lebesgue measure of ω(c) is zero, proving the theorem.

5. Absence of acip measures. As we have already observed, a critical covering
map f has many invariant measures and this is the topic of this section. We know
that under our hypotheses (H1)–(H3), with the absence of periodic attractors and
non-degenerate intervals consisting of periodic points, f is topologically conjugate
to the uniform covering map l = l2 by a homeomorphism h : S1 → S1: that is,
h ◦ f = l ◦ f . As l preserves Lebesgue measure on the circle, denoted by λ, we can
define the measure h∗λ by setting h∗λ(B) = λ(h(B)) for any Borel subset B ⊂ S1.
This measure h∗λ is always invariant for f and we could expect that it would be

Figure 4. The graph of T
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an acip measure. Depending on the speed that mn grows with n, this might not be
the case as we will show.

Let us study a little more the critical covering maps f which have kneading
sequence in K. Recall that on the combinatorial level K =

⋂∞
n=1[ωn], where [ωn] ⊂

AN is the cylinder of all infinite words beginning with the word ωn, see Equation 2.
The sequence of words (ωn)∞n=1 is defined in terms of two sequences (`n)∞n=1 and
(mn)∞n=1 of natural numbers, with (`n)∞n=1 strictly increasing.

On the dynamical level the critical covering map f is obtained as a limit of a
sequence (fn)∞n=1 of critical covering maps fn ∈ H(ωn), where H(ωn) is the set of
all critical covering maps which satisfy hypotheses (H1)–(H3) with β > 1, ϑ > 0, ψ
fixed (see Equation 1) and having kneading sequence in [ωn].

Associated to fn ∈ H(ωn), there are branches of first entry maps to V +
2n−1 (see

the induction hypothesis in Subsection 3.2),

φn : V2n → V +
2n−1 and σn,k : Ekn → V +

2n−1, for all k > `n−1.

The special branches φn : V2n → V +
2n−1 and σn,`n : E`nn → V +

2n−1 are associated to
the words ωn and νn, respectively (see Equation 2). Figure 3.3 is an illustration of
the graphs of these special branches.

Using Lemmas 3.3 and 4.2, we prove that: for β > 1, ϑ > 0 and ψ fixed in Equa-
tion 1, the shape of the branches φn and σn,k are controlled by the combinatorics
given by the finite word ωn. In fact this shape is uniform in the set of all words in
[ωn] and, in particular, this shape does not depend on `i and mi, for i ≥ n. This is
the content of the next lemma.

Lemma 5.1. There exist θn > 0 and Kn < ∞ such that, for every n ≥ 1, every
finite word ωn as before and every fn ∈ H(ωn), the following properties are satisfied:

1. For all x ∈ V2n,

K−1
n β θn |x− c|β−1 ≤ |Dφn(x)| ≤ Kn β θn |x− c|β−1,

2. The distortion of σn,k : Ekn → V +
2n−1 is bounded by Kn;

3. If σn,k = f
tn,k
n in Ekn, then the distortion of f

tn,k
n : Êkn → V +

1 is bounded by K1;
4. The constants Kn and θn depend only on ωn, β > 1 and ϑ > 0. Moreover,

Kn → 1 and θn →∞, as n→∞.

Proof. If we write φn = frn−1
n ◦ fn, Lemma 3.3 implies that frn−1

n maps the pair
fn(V2n) ⊂ fn(Vn) diffeomorphically onto the pair V +

2n−1 ⊂ (pn−1, fn(c)+1), where
pn is the unique fixed point of fn. Let τn be the size of the smaller connected
component of (pn − 1, fn(c) + 1) \ V +

2n−1. For fn ∈ H(ωn), hypotheses (H1)–(H3)
are satisfied with β > 1, ϑ > 0 and ψ from Equation 1 fixed. The Koebe Principles
in Lemma 4.2 imply that the distortion of frn−1

n restricted to fn(V2n) is bounded by
Kn = (1 + αn)2/α2

n, where αn = τn/|V +
2n−1|. Since τn is bounded away from zero,

it follows that αn → ∞ as n → ∞. We set θn = |V +
2n−1|/|fn(V2n)|, use the mean

value theorem and the hypothesis that the critical point has order β to conclude the
first part the lemma. For the second and third parts of the lemma we recall that

σn,k = f
tn,k
n in Ekn and Lemma 3.3 implies that f

tn,k
n maps the triple Ekn ⊂ Êkn ⊂ Ekn

diffeomorphically onto the triple V +
2n−1 ⊂ V +

1 ⊂ (pn − 1, fn(c) + 1). For the same

Kn as above, the Koebe Principles in Lemma 4.2 imply that the distortion of f
tn,k
n

restricted to Ekn is bounded by Kn and restricted to Êkn is bounded by K1. This
completes the proof of the lemma.
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An important step in our proof of the non-existence of an acip measure is
the following lemma which, in particular, implies that the Lebesgue measure of⋃rn
i=1 f

i(V2n) tends to zero as n→∞, where rn = |ωn|.

Lemma 5.2. Given K1 < ∞ as in Lemma 5.1, if n ≥ 1, ωn is a finite word as
before and fn ∈ H(ωn), then∣∣∣∣∣

rn⋃
i=0

f in(V2n)

∣∣∣∣∣ ≤ 2K1

∣∣V +
2n−1

∣∣∣∣V +
1

∣∣ .
In particular the Lebesgue measure of

⋃rn
i=0 f

i
n(V2n) tends to zero when n grows to

infinity.

Proof. One reason for this lemma to be true is the fact that, for 1 ≤ i ≤ rn, we can
pull back the space V +

1 \V
+
2n−1 on the side of V +

2n−1 to a space on the side of f in(V2n)
maintaining the proportion up to a uniform distortion constant. To be more precise
observe that Lemma 3.3 implies that there are intervals V2n ⊂ V̂n ⊂ Vn such that,
for 1 ≤ i ≤ rn, the map frn−in is a diffeomorphism from f in(V̂2n) ⊂ f in(V̂n) ⊂ f in(Vn)
onto V +

2n−1 ⊂ V +
1 ⊂ (pn − 1, fn(c) + 1), where pn is unique fixed point of fn. By

Lemma 4.2 the distortion of frn−in on f in(V̂n) is uniformly bounded by K1 and∣∣f in(V2n)
∣∣ ≤ K1

∣∣V +
2n−1

∣∣∣∣V +
1

∣∣ ∣∣∣f in(V̂n)
∣∣∣ .

Taking the sum with 1 ≤ i ≤ rn we get that
rn∑
i=1

∣∣f in(V2n)
∣∣ ≤ K1

∣∣V +
2n−1

∣∣∣∣V +
1

∣∣ rn∑
i=1

∣∣∣f in(V̂n)
∣∣∣ .

By Lemma 3.3, the multiplicity of intersection of the collection {V̂n, . . . , frnn (V̂n)}
is at most two. Therefore

rn∑
i=1

∣∣f in(V2n)
∣∣ ≤ 2 K1

∣∣V +
2n−1

∣∣∣∣V +
1

∣∣
and the lemma follows.

To follow the same ideas as Johnson in [9], we observe that as set out in Lemma
5.2, the Lebesgue measure of the union

⋃rn
i=1 f

i
n(V2n) tends to zero as n tends to

infinity. On the other hand, since the interval V2n contains the critical point, using
the theorem of Mañé (see [12] and [13]) it is easy to conclude that, for every n

fixed, the Lebesgue measure of
⋃N
i=0 f

−i
n (V2n) tends to 1, when N tends to infinity.

Therefore an arbitrarily small set is visited by an arbitrarily large set. Moreover, we

would like to have the property that the set of points of
⋃N
i=0 f

−i
n (V2n) that leave⋃rn

i=0 f
i
n(V2n) in fewer than N iterates could be made arbitrarily small by increasing

mn. For this to hold, we will substitute the interval V2n by the interval Un ⊂ V2n.
First we consider the point γn ∈ V2n such that the derivative Dφn(γn) is equal to
1. Then we define Un to be the connected component of V2n \ {γn} which contains
c. For the map Gn from the Corollary 2 or for the map gb(n) from Lemma 3.2,
there is a parabolic periodic attractor and mn =∞. In this case the point γn is the
parabolic periodic attractor.

The next lemma guarantees that the size of the interval Un has a positive lower
bound that is uniform for every fn ∈ H(ωn) with ωn fixed. In particular, Un
does not degenerate to a point when we keep `1, . . . , `n−1,m1, . . . ,mn−1 fixed and
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increase mn to infinity. Observe, however, that V2n and Un degenerate if one of the
numbers `1, . . . , `n−1 tends to infinity.

Lemma 5.3. Given a finite word ωn as before, there exists ζn > 0 such that, for
every fn ∈ H(ωn), the corresponding interval Un defined above satisfies |Un| ≥ ζn.

Proof. This lemma is an immediate consequence of the first part of Lemma 5.1
applied to the branch φn : V2n → V +

2n−1. Indeed, given the word ωn the numbers
`1, . . . , `n−1,m1, . . . ,mn−1 are fixed and if we increase mn ≥ 1 to infinity, then
|γn − φn(γn)| goes down to zero.

Since the interval Un contains the critical point, it absorbs almost every point.
On the other hand, if we keep `1, . . . , `n−1,m1, . . . ,mn−1 fixed and increase mn

to infinity, |γn − φn(γn)| goes down to zero. This implies that less and less points
escape from Un. All of this implies that forward orbits concentrate near the orbit of
the critical point more and more. This is the main reason for the non-existence of
an acip measure for the limit map of the sequence {fn}∞n=1. See the lemma below
for a precise statement.

Lemma 5.4. Given ε > 0, there exists n0 = n0(ε) such that, for every n ≥ n0

and every finite word ωn as before, there exists Nn = N(ε, n, ωn) such that, for any
fn ∈ H(ωn), the following properties are satisfied:

1.

∣∣∣∣∣
rn⋃
i=0

f in(Un)

∣∣∣∣∣ < ε;

2.

∣∣∣∣∣
N⋃
i=0

f−in (Un)

∣∣∣∣∣ ≥ 1− ε, for every N ≥ Nn and every mn ≥ 1;

3. For every N ≥ Nn, there exists Mn = M(ε, n, ωn, N) such that∣∣∣∣∣
{
x ∈

N⋃
i=0

f−in (Un) : fNn (x) /∈
rn⋃
i=0

f in(Un)

}∣∣∣∣∣ < ε,

for every mn ≥Mn.

Proof. The first part of the lemma is a direct consequence of Lemma 5.2 simply
because Un ⊂ V2n. Since Un is a neighbourhood of the critical point we get the
second part using the theorem of Mañé, see [12] and [13]. The uniform estimate on
mn ≥ 1 follows from Lemmas 5.1 and 5.3.

For the third part of the lemma we assume that we are given ε > 0, n ≥ n0, ωn
and N ≥ N0 satisfying the first and second parts of the lemma for every mn ≥ 1.
Then we observe that, if we keep `1, . . . , `n−1,m1, . . . ,mn−1 fixed and mn = ∞,
we get the map Gn from Corollary 2 and the point γn is a parabolic periodic
attractor for Gn. In this case

⋃rn
i=0G

i
n(Un) is forward invariant. This implies that,

for `1, . . . , `n−1,m1, . . . ,mn−1 fixed, if mn → ∞, then |γn − φn(γn)| → 0. Then
we can take M0 = M(ε, n, ωn, N) sufficiently large to satisfy the third part of the
lemma.

5.1. Proof of Theorem 2.1. Let us suppose that the sequences (mn)∞n=1 and
(`n)∞n=1 are given and then we take the sequence (ωn)∞n=1 of finite words as defined
by Equation 2. We also take a sequence (fn)∞n=1 such that fn ∈ H(ωn) converges
to f ∈ H(ω). Then, for εk = 1/2k+2, we consider nk = n0(εk) and the sequence of
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constants (Nn)∞n=nk
and (Mn)∞n=nk

given by Lemma 5.4. For simplicity of notation
we set

An =

rn⋃
i=0

f in(Un),

Qn =

{
x ∈

Nn⋃
i=0

f−in (Un) : fNn
n (x) /∈ An

}

Pn =

Nn⋃
i=0

f−in (Un) \ Qn.

By assumption the sequence (`n)∞n=1 is strictly increasing and we take (mn)∞n=1

increasing fast enough in order to have mn ≥ Mn. Then, for the subsequence
(nk)∞k=1, we have that

|Ank
| < 1

2k+1
, |Qnk

| < 1

2k+1
, |Pnk

| ≥ 1− 1

2k+1
and

∣∣Pcnk
∪ Ank

∣∣ ≤ 1

2k
.

Since f
Nnk
nk maps Pnk

into Ank
, it follows that

f
Nnk
nk (Pnk

\ Ank
) ⊂ Pcnk

∪ Ank
.

So, if µ is an invariant probability measure for fnk
, then µ(Pcnk

∪ Ank
) ≥ 1/2.

To finish the proof of Theorem 2.1 we take f ∈ H(ω) to be the limit map of
the subsequence (fnk

)∞k=1. Since the sequence of sets H(ωnk
) nests down to the

set H(ω), we have that f ∈ H(ωnk
) for every k ≥ 1. So we may consider the

constant subsequence fnk
= f and apply the above reasoning to conclude that

µ(Pcnk
∪ Ank

) ≥ 1/2, for every k ≥ 1. It follows that, for

Λf =

∞⋂
i=1

∞⋃
k=i

(Pcnk
∪ Ank

),

µ(Λf ) ≥ 1/2 and, by the Borel–Cantelli Lemma, the Lebesgue measure of Λf is
zero. Therefore µ cannot be an acip measure for f . �
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[12] R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys.,
100 (1985), 495–524.

[13] W. de Melo and S. van Strien, One-dimensional Dynamics. Ergebnisse Der Mathematik und

Ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1993.
[14] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes
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