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Abstract

We investigate a non-Markovian analogue of the Harris contact process in Zd : an individual is attached
to each site x ∈ Zd , and it can be infected or healthy; the infection propagates to healthy neighbours just as
in the usual contact process, according to independent exponential times with a fixed rate λ; nevertheless,
the possible recovery times for an individual are given by the points of a renewal process with heavy tail; the
renewal processes are assumed to be independent for different sites. We show that the resulting processes
have a critical value equal to zero.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The classical contact process is a model for (among other phenomena) the spread of an
infectious disease. It was introduced by Harris [8] and has been intensively studied since (see
[10,5] for overviews). In this model sites x ∈ Zd can be thought of as individuals, ξ ∈ {0, 1}

Zd

is a configuration giving the state of health for the population: ξ (x) represents the state of health
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of individual x , with ξ (x) = 1 signifying that x is ill and ξ (x) = 0 that individual x is healthy.
In the basic model, sick individuals become healthy at rate 1 irrespective of the state of health
elsewhere while healthy individuals become sick at a rate equal to a parameter λ times the number
of infected neighbours. The model has many variants. The rate of infection may not depend only
on nearest neighbours or an individual may infect others at a rate depending on the distance
between them and so forth. Equally, the lattice Zd can be replaced by other graphs such as trees
or more recently random finite graphs (see e.g. [6]). In fact our principal result, Theorem 1 holds
for the process defined on any infinite connected graph since such a graph contains a “copy” of
N. It is usually constructed via a “Harris system”, a collection of Poisson processes. For the
original model one puts Poisson processes of rate λ on ordered pairs x, y of neighbours, which
give the times when the individual x “tries” to infect individual y and one puts a Poisson process
of rate 1 on each site x , so that if the individual at x is infected immediately before this time, it
gets cured. Motivated by questions regarding long range percolation, we investigate a variant of
the contact process in Zd in which the death times for the infection at the sites are determined by
independent renewal processes. For brevity we call it renewal contact process (RCP). Obviously,
in no longer using Poisson processes we lose Markovianess. We investigate the possibility of the
infection surviving forever when the process starts with a single infected individual, no matter
how small λ is.

We now become more specific. Given a probability measure µ on [0, ∞) with µ{0} < 1 and
a strictly positive parameter λ, the RCP admits the following “Harris graphical construction”:
(I) Let {Tx,i }x∈ Zd , i∈N be i.i.d. random variables with law µ;
(II) Let N = {Nx,y}x∼y,x,y∈ Zd be a system of i.i.d. rate λ Poisson processes, assumed to be
independent of σ ({Tx,i }x∈Zd ,i∈N ). (Notation: x ∼ y signifies ∥x − y∥1 = 1, where ∥ · ∥1 stands
for the usual ℓ1-norm in Rd .)

For each x ∈ Zd and n ≥ 1, we write Sx,n = Tx,1 + · · · + Tx,n , and let Dx = {(x, Sx,n), n ≥

1}, and use R to denote any renewal process with interarrival distribution µ. The segments
{x} × (Sx,n, Sx,n+1) will be called renewal intervals or gaps.

Given these processes, the RCP is constructed according to the usual recipe: if s < t and
x, y ∈ Zd , a path γ from (x, s) to (y, t) is a càdlàg function on [s, t] for which there exist times
t0 = s < t1 < · · · < tk = t and sites x0 = x, x1, . . . , xk−1 = y in Zd such that γ (u) = xi for
u ∈ [ti , ti+1), and

• Dxi ∩ {xi } × [ti , ti+1] = ∅ for i = 0, . . . , k − 1;
• ∥xi − xi+1∥ = 1 for i = 0, . . . , k − 2;
• ti ∈ Nxi−1,xi for i = 1, . . . , k − 1.

For A ⊂ Zd the RCP (ξ A
t )t≥0 starting from initial configuration 1A is defined as

ξ A
t = {y : there exists a path from (x, 0) to (y, t) for some x ∈ A}.

We can identify a configuration ξ ∈ {0, 1}
Zd

with the subset (of Zd ) {x : ξ (x) = 1}. With this
identification we have that (with all processes generated by the same Harris system)

ξ A
t = ∪x∈Aξ

{x}

t .

This property is referred to as additivity. We can and will regard the Harris system of Poisson
processes and renewal processes as generating simultaneously the processes ξ A

. We let Pλ,µ to
be the probability distribution under which (I) and (II) above hold. Pλ,µ then affixes probabilities
to events generated by the processes ξ A

. generated by these Poisson processes and renewal
processes.
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Given a process (ξ A
t )t≥0, we write

τ A
= inf{t : ξ A

t = ∅}. (1)

Given µ let λc = inf{λ : Pλ,µ(τ {0}
= ∞) > 0}. By translation invariance we have

immediately that λc = inf{λ : Pλ,µ(τ {x}
= ∞) > 0}. From additivity one sees that for e.g. , λ <

λc and any finite subset of the integer lattice A, that Pλ,µ(τ {A}
= ∞) = Pλ,µ(maxx∈Aτ {x}

=

∞) ≤
∑

x∈A Pλ,µ(τ {x}
= ∞) = 0. We thus see that {0} may be replaced by any finite set A.

By the Hewitt–Savage 0–1 law it follows that whenever µ{0} = 0, for any λ > λc, the renewal
“environment” is a.s. such as to give a strictly positive chance of the λ Poisson processes yielding
a contact process that never hits configuration 0⃗.

Our main result is

Theorem 1. We make the following assumptions on the interarrival distribution µ:
(A) There exist 1 < M1 < ∞, ϵ1 > 0 and t0 ∈ (0, ∞) such that

∀ t > t0, ϵ1

∫
[0,t]

s µ(ds) < tµ(t, M1t).

(B) There exist 1 < M2 < ∞, ϵ2 > 0 and r2 < ∞ so that

∀ r ≥ r2, ϵ2µ[Mr
2 , Mr+1

2 ] ≤ µ[Mr+1
2 , Mr+2

2 ].

(C) There exist M3 < ∞, ϵ3 > 0 so that for t ≥ M3

t−(1−ϵ3)
≤ µ(t, +∞) ≤ t−ϵ3 .

Under these conditions, the critical value for the RCP associated with µ, λ
µ
c , vanishes.

In other words, under the above assumptions the random set

C = {(y, t) : there exists a path from (0, 0) to (y, t)}, (2)

is unbounded with positive probability, for all λ > 0.

Remarks. (a) Given that whenever d1 < d2 ∈ N we may couple RCPs in dimensions d1 and
d2 in a natural and trivial manner, it suffices to prove Theorem 1 for d = 1. We will restrict
ourselves accordingly.
(b) In a companion paper [7] we consider the situation when the tail of µ decays as t−α with
α > 1 and, under some rather stringent regularity conditions, we show that the process on Z has
strictly positive critical value. Taken together, the two papers identify roughly speaking, tails of
order L(t)

t as representing a change of phase where L(.) is a slowly varying function in the one
dimensional case.
(c) A more robust, fairly standard argument, applying to all dimensions, may be given to show
that λc > 0 if µ has finite second moments. See Theorem 2 in [7].
(d) The critical value equal to 0 is unusual among contact processes (but see [3] and [6]). It arises
here as a tunnelling effect where the process traverses larger and larger renewal intervals (with
no deaths). It can also be seen as a type of branching process where the number of offsprings is
of infinite mean. But we have not found this mathematically useful, though branching process
comparisons are useful in the companion paper [7].
(e) The proof indeed shows that the same result holds when, besides taking d = 1, we force the
paths to move only in increasing space direction, i.e. only the Nx,x+1, x ∈ Z+ are considered.
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(f) For conditions (A) and (B) we can and will suppose that M1 = M2 and ϵ1 = ϵ2. To
see this first note that if (A) and (B) hold for given Mi , then they will also hold for ϵ1 and ϵ2
replaced by ϵ1 ∧ ϵ2. Also in condition (A) above, if it holds for a value M1, then it will hold for
every M > M1 with the value ϵ1 unchanged. Thus given (A) and (B) holding for (M1, ϵ1) and
(M2, ϵ2) respectively where M2 ≥ M1, then (A) and (B) both hold for (M2, ϵ1 ∧ϵ2). If M2 < M1,
then fix integer k so that Mk

2 ≥ M1. We claim (B) holds for (Mk
2 , ϵk

2/k) and we have reduced
our case to the previous one. For the claim simply note that if j0 is a choice that maximizes
µ[Mkr+ j

2 , Mkr+ j+1
2 ] among integers 0 ≤ j ≤ k − 1, then

µ[Mkr
2 , Mk(r+1)

2 ] ≤ kµ[Mkr+ j0
2 , Mkr+ j0+1

2 ] ≤ kϵ−k
2 µ[Mk(r+1)+ j0

2 , Mk(r+1)+ j0+1
2 ]

≤ kϵ−k
2 µ[Mk(r+1)

2 , Mk(r+2)
2 ].

Accordingly, we can and will suppose that M1 = M2 and for simpler reasons that ϵ1 = ϵ2.
(g) Probability laws µ on [0, ∞) satisfying the conditions of Theorem 1 include all those in the
basin of attraction of an α-stable law, α ∈ (0, 1). A simple example not in the basin of attraction
of a stable law is any one such that

0 < lim inf
t→∞

tαµ(t, +∞) < lim sup
t→∞

tαµ(t, +∞) < ∞,

with α ∈ (0, 1). There are also examples with oscillating decay powers. We may take for instance

µ[t, +∞) = exp
{
−

∫ t

1

ε(s)
s

ds
}

, t > 1, (3)

with ε : [1, ∞) → [α, β], where 0 < α < β < 1. It is straightforward, if tedious, to check that
this satisfies (A)–(C) and it is not hard to see that ε may be chosen in such a way that

lim inf
t→∞

tγ µ(t, +∞) = 0; lim sup
t→∞

tγ µ(t, +∞) = ∞

for every γ ∈ (α, β). Indeed, it suffices to define a sequence of numbers (an)n≥0 in [1, ∞)
increasing sufficiently fast, with a0 = 1, and make ε(s) = α if s ∈ [a2n, a2n+1), ε(s) = β if
s ∈ [a2n+1, a2n+2) for all n.

The proof of Theorem 1 largely depends on Lemma 2 and Proposition 7 proven respectively
in Section 2 and in Section 3; in the last section we show that the above mentioned tunnelling
effect guarantees C to be unbounded with positive probability, for any λ > 0.

2. Reasonable probability of big gaps

In this and the next section, (Ti )i≥1 will denote an i.i.d. sequence having the renewal
distribution µ.

Lemma 2. Under hypotheses (A) and (B) above, for all K ∈ (0, ∞)

inf
t≥1

P((t, K t) ∩ R = ∅) > 0.

Proof. Under assumption (A), µ has unbounded support. So it is only necessary to uniformly
bound P((t, K t) ∩R = ∅) away from zero for large t . In particular we may suppose that t > t0.

Let i0 = inf{i : Ti > t} and consider the following events:
A1 := {Ti0 ≥ K t}
A2 : {

∑i0−1
i=1 Ti < t}

A3 := {i0 ≤ [ ϵ1
2µ(t,M2t) ]}, where [s] = max{k ∈ Z, k ≤ s}.
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We note that on event A1 ∩ A2 we have that
∑i0−1

i=1 Ti < t (definition of A2) but
∑i0

i=1Ti ≥

Ti0 ≥ K t (event A1) and so by positivity of the Ti , A1∩ A2∩ A3 ⊂ A1∩ A2 ⊂ {(t, K t)∩R = ∅}.
So it suffices to bound P(A1 ∩ A2 ∩ A3) from below. Note that event A1 is independent of the
events A2 and A3.

Now we have that, as the variables T j : j ≥ 1 are i.i.d., given that i0 = r , we have
conditionally that the variables Ti : i ≤ r are independent, the variables Ti : i < r
having distribution T1 conditioned on being less than or equal to t , the random variable Tr having
distribution T1 conditioned on having value strictly greater than t . In particular, the probability
of event A1 is exactly equal to

µ[K t, +∞)
µ(t, +∞)

.

As previously noted, we may choose M1 = M2 without loss of generality and equally suppose
that t = Mk

1 for some k ≥ r2 (since we can always increase value K ). We pick r ≥ 1 an integer so
that Mr

1 > K and so µ[K t, +∞) ≥ µ[Mr
1 t, +∞) ≥

ϵr
2
r µ(t, Mr

1 t). This follows by the argument
given in the discussion of Remark (f) in the preceding section and the assumption that t is an
integer power of M1. Thus

P(A1) ≥
ϵr

2

r

(
1 +

ϵr
2

r

)−1

=: δ2. (4)

For P(A3) we have

P(A3) = 1 − (1 − µ(t, +∞))[ ϵ1
2µ(t,M2t) ]

> 1 − (1 − µ(t, +∞))[ ϵ1
2µ(t,∞) ]

> ϵ1/3

if t0 was fixed sufficiently high, as one easily verifies. It remains to bound the conditional
probability P(Ac

2|A3). Given that the random variables are all non-negative, this is bounded by

1
t

E(

[ ϵ1
2µ(t,M2t) ]∑

i=1

Yi )

where the Yi are i.i.d. random variables equal in distribution to T1 conditioned on being less than
or equal to t .

Using (A) we have (again provided t0 had been fixed large enough) that 9
10ϵ1 E(Y1) <

tµ(t, M1t), and so by Markov’s inequality

P(Ac
2|A3) ≤ [

ϵ1

2µ(t, M2t)
]E(Y1)/t ≤ 5/9.

Now, recalling (4), for t large, we have

P(A1 ∩ A2 ∩ A3) = P(A3)P(A2|A3)P(A1|A2 ∩ A3)

= P(A3)P(A2|A3)P(A1) ≥
ϵ1

3
4
9
δ2 =

4
27

ϵ1δ2. □

3. Bounds on renewal sequence missing a far big gap

We wish to show that for t large any interval in [t, ∞) of length tϵ for some small ϵ will be
in the complement of R outside of probability t−ϵ . It should be noted that even though the ϵ

obtained might be very small indeed, the result will be applied to an exponentially increasing
sequence of ts and so will yield exponentially decreasing upper bounds. The strategy is to first
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show that given such an interval I , there will be a larger interval J close by for which the result
is true. We then employ a simple coupling argument to transfer to I the bounds for J . This will
be the main result of this section, stated as Proposition 7.

Notation: Since no confusion arises we use |A| to denote the cardinal of A when A ⊂ R is finite,
and also the length for more general Borel sets.

Lemma 3. Under hypothesis (C), there exists M3 < ∞ so that if I ⊂ R+ is an interval of length
t ≥ M3, then the probability that |R ∩ I | > t1−ϵ3 log2t is less than 1

t .

Proof. By the strong Markov property applied when the renewal process first hits I , it is enough
to treat the case I = [0, t].

Let N0 = inf{n : Tn > t}. If N0 < m then |R ∩ I | ≤ m and so (increasing t if necessary),

P(|R ∩ I | > [t1−ϵ3 log2t]) ≤ P(N0 ≥ [t1−ϵ3 log2t])

≤ (1 − t−(1−ϵ3))t1−ϵ3 log2t−1

≤
1

1 − t−(1−ϵ3) e−log2t
≤

1
t
,

for t large. □

Remark. For our purposes the bound 1
t is somewhat arbitrary and the “extra” factor log2(t) is

simply an annoyance.

The next result translates the above bound into the existence of an interval of reasonable size
which will, with high probability, be missed by the renewal process.

Corollary 4. There exists a finite constant t1 such that for all t ≥ t1, for all interval I of length
t in R+ there exists an interval J ⊂ I of length t

ϵ3
2 so that

P(R ∩ J ̸= ∅) ≤ t−
ϵ3
3 .

Proof. For u ∈ R and nonempty A ⊂ R, we write d(u, A) = inf{|u − y| : y ∈ A}. Let
g(u) = P[d(u,R) > 1

2 t
ϵ3
2 ], u ∈ I.

If g(u) > 1− t−
ϵ3
3 for some u ∈ I , then our result follows by taking J = [u −

1
2 t

ϵ3
2 , u +

1
2 t

ϵ3
2 ].

Thus, let us suppose no such u exists. Then,

E(|(R + [−
1
2

t
ϵ3
2 ,

1
2

t
ϵ3
2 ]) ∩ I |) ≥ t1−

ϵ3
3 .

But by the preceding Lemma, taking t1 large we have

E(|(R + [−
1
2

t
ϵ3
2 ,

1
2

t
ϵ3
2 ]) ∩ I |] ≤ 1 + (t1−ϵ3 log2t)t

ϵ3
2 < t1−

ϵ3
3 for t ≥ t1. □

Having established that for an interval far away from 0, there will be a large interval which
is “missed” by the renewal sequence with high probability, we wish to use a simple coupling
argument to show that this property must hold for all intervals “reasonably close” to this interval.
The coupling between renewal processes that we use is really a coupling between random walks
as explained in e.g. [11] or [9].

Given the law of the {Ti }i≥1 there exists a bounded interval I such that P(T1 ∈ I ) > 0 and
P(T1 = T2|T1, T2 ∈ I ) < 1.
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Given V0 > 0, the (V0)−coupling between two identically distributed renewal sequences
(sharing the above renewal time distribution), {Ti }i≥1 and {T̃i }i≥1 (here the Ti , T̃ j are “interarrival
times” and so identically distributed) is as follows:

Let NV0 = inf{k :
∑k

i=1(Ti − T̃i ) > V0}.

For i > NV0 Ti = T̃i , independent of preceding realizations
For i ≤ NV0 we choose (Ti , T̃i ) to be independent of preceding realizations and with the

property that
(a) Ti ∈ I ⇐⇒ T̃i ∈ I ;
(b) Ti ∈ I c

⇒ T̃i = Ti ;
(c) given {Ti ∈ I } = {T̃i ∈ I } = {Ti , T̃i ∈ I } the variables Ti and T̃i are i.i.d. with common

distribution equal to that of T1 conditioned on {T1 ∈ I }.
It is immediate that (

∑n
i=1(Ti − T̃i ))n≥0 is equal in law to a random walk with distribution

(T1 − T̃1) stopped at the hitting time for (V0, +∞).
Given that the law of T1 − T̃1 is symmetric and non trivial, so that E(T1 − T̃1) = 0 and

E((T1 − T̃1)2) < ∞:

Lemma 5. There is a constant K , depending on I and the distribution of T1 conditional on
being in I , so that for all t > 0 and V0 ≥ 1

P(NV0 > t) ≤
K V0
√

t
.

Proof. We fix M < ∞ so that I ⊂ [0, M], a.s. ∀i Ti − T̃i ⊂ [−M, M].
We analyse the random walk (

∑n
i=1(Ti − T̃i ))n≥0 by the standard Brownian embedding for

symmetric random variables. Given standard Brownian motion (Bs)s≥0, independent of the
Ti , T̃i i ≥ 1 random variables,we define stopping times (for the natural filtration of B. augmented
by the Ti , T̃i i ≥ 1)

S0 = 0; Si+1 = inf{t > Si : |Bt − BSi | = |Ti+1 − T̃i+1|}.

Then (BSi )i≥1 is equal in law to our random walk and the variables Si − Si−1 : i ≥ 1 are i.i.d.
random variables having all moments finite.

We define the stopping time

σ = inf{s : Bs > V0 + 3M}.

We now note that if k = max{ j : Sk ≤ σ }, then Sk > V0. Then (without loss of generality)
taking t to be an integer, P(NV0 > t) is less than or equal to

P(St > 2t E(S1)) + P( sup
s≤2t E(S1)

Bs < V0 + 3M).

Given the existence of all moments of S1, the first term decays to zero faster than any power of t
so the result follows from Brownian hitting probabilities. □

Proposition 6. There exists K < ∞ so that for all n and all V0 ≤ 2n there is a coupling between
renewal sequences {Ti }, {T̃i } such that

∑NV0
i=1 Ti and

∑NV0
i=1 T̃i are both less than 2K n outside a set

of probability C2−n for C universal and n large.

Proof. Since, by Lemma 5, P(NV0 ≥ 24n) ≤ K 2−n , it remains to show that P(
∑24n

i=1Ti ≥ 2K n) ≤

2−n for n large. But this follows easily from hypothesis (C): P(
∑24n

i=1Ti ≥ 2K n) ≤ 24n P(T1 ≥

2(K−4)n) ≤ 24n2−(K−4)nϵ3 which is less than 2−n for all n large if K was fixed large enough. □
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We are now ready to prove the main result of this section. More refined estimates (see e.g. [1]
and more recently [4] or [2]) are available but they require greater regularity on the tails of the
distribution of T1.

Proposition 7. There exists ϵ4 > 0 so that for n large and for all intervals [s, t] with
2n

≤ s ≤ t ≤ s + 2nϵ4 , one has

P(R ∩ [s, t] ̸= ∅) ≤ 2−nϵ4 . (5)

Proof. We take ϵ4 <
ϵ2

3
27K 2 , where ϵ3 is a constant as in hypothesis (C), and K is as in

Proposition 6 (absorbing the constant C therein as well). For s ≥ 2n , consider the interval

[s, s + 2
4nϵ4
ϵ3 ], to which we apply Corollary 4, guaranteeing the existence of a subinterval J

of length 22nϵ4 so that

P(R ∩ J ̸= ∅) ≤ 2−
4
3 nϵ4 . (6)

We now choose V0 so that [s + V0, t + V0] is within J and at distance at least 2nϵ4
3 from J c;

note that 2nϵ4
3 ≤ V0 ≤ 24n ϵ4

ϵ3 .

We couple together renewal sequences {Ti }, {T̃i } so that outside a set of probability K 2−2n ϵ4
ϵ3

one has:

NV0 ≤ 212n ϵ4
ϵ3

and

max{

NV0∑
i=1

Ti ,

NV0∑
i=1

T̃i } ≤ 24nK ϵ4
ϵ3 < 2n.

Thus we have (where the superscript to R indicates the corresponding interarrival sequence):

P(RT̃
∩ [s, t] ̸= ∅) ≤ P(RT

∩ J ̸= ∅) + K 2−2n ϵ4
ϵ3 .

By (6), we have then that P(RT̃
∩ [s, t] ̸= ∅) ≤ 2−

4
3 nϵ4 + K 2−2n ϵ4

ϵ3 . For all n large we must
have that this latter bound is below 2−nϵ4 , which was precisely the desired bound (5). □

4. Proof of the theorem

In proving that the critical value is equal to 0, we have to show that for any λ > 0 there is
a strictly positive chance that the contact process on Z starting from a single “infected” site
survives for all time. In fact we really only consider the contact process on N. In turn our
argument becomes that, loosely speaking, having infected a “large” interval (depending on λ)
survival becomes probable.

We can assume that for t0 to be chosen later, the renewal process for site 0 has T0,1 > 4t0. We
also fix γ = ϵ4 > 0 given by Proposition 7.

We define recursively levels L0, L1, L2, . . . : L0 = 0 and for i ≥ 1,

L i = inf{k > L i−1 : Dk ∩ {k} × [t02i , t02i+2] = ∅}. (7)

Remark 8. Note that given FL i := σ (L i , Dk : k ≤ L i ) the renewal processes at sites (L i + j) j≥1
are independent and identically distributed.



Please cite this article in press as: L.R.G. Fontes, et al., Contact process under renewals I, Stochastic Processes and their Applications (2018),
https://doi.org/10.1016/j.spa.2018.08.007.

L.R.G. Fontes et al. / Stochastic Processes and their Applications ( ) – 9

For i ≥ 1, we now define “bad” events Bi to be the union of the following events:
(I) {L i > L i−1 + i log(t0)}.
(II) {∃k ∈ {L i−1 + 1, . . . , L i } so that Dk ∩ {k} × [t02i

− (t02i )γ , t02i ] ̸= ∅}.

(III) {∃k ∈ {L i−1, . . . , L i − 1} so that there are no marks of Nk,k+1 in the time interval
(t02i

− (t02i )γ +
k−L i−1
i log t0

(t02i )γ , t02i
− (t02i )γ +

k+1−L i−1
i log t0

(t02i )γ )}.

Lemma 9. We can fix t0 large enough so that P(Bi ) ≤ K exp(−ci) ∀ i , for some c > 0, K <

∞. Furthermore, if t0 is taken large enough, we will have
∑

∞

i=1 P(Bi ) < 1/2.

Proof. By Lemma 2 and Remark 8, the events

V j = DL i−1+ j ∩ {L i−1 + j} × [t02i , t02i+2] = ∅

are independent and independent of FL i−1 having probability c1 > 0, provided t0 has been fixed
sufficiently large. Hence

P(L i > L i−1 + i log t0) ≤ (1 − c1)i log(t0)

By Proposition 7 the probability of (II) occurring and L i ≤ L i−1 + i log t0 is bounded
by i log(t0)(t02i )−γ (again supposing t0 is large). Similarly the intersection of (III) and L i ≤

L i−1 + i log t0 has a probability bounded by

i log(t0)e−λ(t02i )γ / i log(t0) □

Proof of Theorem 1. Let λ > 0 be any strictly positive value. We choose t0 so large that
Lemma 9 holds and in particular that

∑
∞

i=1 P(Bi ) < 1/2. Then we simply observe that on the
intersection of {T0,1 > 4t0} and ∩i≥1 Bc

i , the RCP starting with a single infected site at 0 survives
forever. Thus the survival probability is strictly positive. Given that λ can be as small as desired
the result is proven. □
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