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Abstract

We investigate a non-Markovian analogue of the Harris contact process in 74 an individual is attached
to each site x € Z4, and it can be infected or healthy; the infection propagates to healthy neighbours just as
in the usual contact process, according to independent exponential times with a fixed rate A; nevertheless,
the possible recovery times for an individual are given by the points of a renewal process with heavy tail; the
renewal processes are assumed to be independent for different sites. We show that the resulting processes
have a critical value equal to zero.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The classical contact process is a model for (among other phenomena) the spread of an
infectious disease. It was introduced by Harris [8] and has been intensively studied since (see
[10,5] for overviews). In this model sites x € Z? can be thought of as individuals, & € {0, I}Zd
is a configuration giving the state of health for the population: &(x) represents the state of health
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of individual x, with £(x) = 1 signifying that x is ill and £(x) = O that individual x is healthy.
In the basic model, sick individuals become healthy at rate 1 irrespective of the state of health
elsewhere while healthy individuals become sick at a rate equal to a parameter A times the number
of infected neighbours. The model has many variants. The rate of infection may not depend only
on nearest neighbours or an individual may infect others at a rate depending on the distance
between them and so forth. Equally, the lattice Z¢ can be replaced by other graphs such as trees
or more recently random finite graphs (see e.g. [6]). In fact our principal result, Theorem | holds
for the process defined on any infinite connected graph since such a graph contains a “copy” of
N. It is usually constructed via a “Harris system”, a collection of Poisson processes. For the
original model one puts Poisson processes of rate A on ordered pairs x, y of neighbours, which
give the times when the individual x “tries” to infect individual y and one puts a Poisson process
of rate 1 on each site x, so that if the individual at x is infected immediately before this time, it
gets cured. Motivated by questions regarding long range percolation, we investigate a variant of
the contact process in Z¢ in which the death times for the infection at the sites are determined by
independent renewal processes. For brevity we call it renewal contact process (RCP). Obviously,
in no longer using Poisson processes we lose Markovianess. We investigate the possibility of the
infection surviving forever when the process starts with a single infected individual, no matter
how small X is.

We now become more specific. Given a probability measure i on [0, co) with u{0} < 1 and
a strictly positive parameter A, the RCP admits the following “Harris graphical construction”:
(I) Let {T% i} ¢ z¢, jen beiid. random variables with law ft;

(I) Let N = {Nxy}iy v ye z¢ be a system of i.i.d. rate A Poisson processes, assumed to be
independent of o ({Ty,;},cz¢ ;en)- (Notation: x ~ y signifies | x — y||; = 1, where || - ||; stands
for the usual £;-norm in R¥.)

For each x € Z¢ and n > 1, we write S, ,, = Ty.; + -+ - + T, and let D, = {(x, Sy.,), n >
1}, and use R to denote any renewal process with interarrival distribution p. The segments
{x} X (Sx.n, Sx.n+1) Will be called renewal intervals or gaps.

Given these processes, the RCP is constructed according to the usual recipe: if s < ¢ and
x,y € Z¢, apath y from (x, s) to (y, ¢) is a cadlag function on [s, ] for which there exist times
fh=s§ <t <--- <t =tandsites xo = x, x1, ..., x,—; = y in Z% such that y(u) = x; for
u € t, li+1), and

. Dx,,ﬂ{xi}x[ti, tiqi]=0fori =0,...,k—1;
o |xi —xipqll=1fori=0,...,k—2;
o i €Ny yfori=1,..., k-1
For A C Z¢ the RCP (EtA )r>0 starting from initial configuration 14 is defined as
élA = {y : there exists a path from (x, 0) to (y, #) for some x € A}.

We can identify a configuration & € {0, I}Zd with the subset (of Z¢) {x : £(x) = 1}. With this
identification we have that (with all processes generated by the same Harris system)

EN = Upeat!.

This property is referred to as additivity. We can and will regard the Harris system of Poisson
processes and renewal processes as generating simultaneously the processes £4 We let P** to
be the probability distribution under which (I) and (II) above hold. P** then affixes probabilities
to events generated by the processes £ generated by these Poisson processes and renewal
processes.

Please cite this article in press as: L.R.G. Fontes, et al., Contact process under renewals I, Stochastic Processes and their Applications (2018),
https://doi.org/10.1016/j.spa.2018.08.007.




L.R.G. Fontes et al. / Stochastic Processes and their Applications 1 (1111) 1IN 3

Given a process (gtA),ZO, we write
™ =inf{r : 4 = 0). )]

Given u let A, = inf{A : P**(t!”» = o0o0) > 0}. By translation invariance we have
immediately that A. = inf{A : P»*(t¥} = 00) > 0}. From additivity one sees that for e.g. , A <
L. and any finite subset of the integer lattice A, that P»*(z{4) = 00) = P**(max,cat™ =
) < Y aPMM(T™ = 00) = 0. We thus see that {0} may be replaced by any finite set A.
By the Hewitt—Savage 0—1 law it follows that whenever {0} = 0, for any A > A., the renewal
“environment” is a.s. such as to give a strictly positive chance of the A Poisson processes yielding
a contact process that never hits configuration 0.

Our main result is

Theorem 1. We make the following assumptions on the interarrival distribution (.
(A) There exist 1 < My < o0, €; > 0and ty € (0, o0) such that

Y >, 61/ s u(ds) < tu(t, Mqt).
[0,7]

(B) There exist 1 < M> < o0, €y > 0 and ry, < 00 so that
Vor=r, eulMs, Myl < ulM5T, My
(C) There exist M3 < 00, €3 > 0 so that for t > Mj
=179 < L, +o00) < 179,
Under these conditions, the critical value for the RCP associated with i, MY, vanishes.

In other words, under the above assumptions the random set

C ={(y,t) : there exists a path from (0, 0) to (y, t)}, 2)

is unbounded with positive probability, for all > > 0.

Remarks. (a) Given that whenever d; < d» € N we may couple RCPs in dimensions d; and
dy in a natural and trivial manner, it suffices to prove Theorem | for d = 1. We will restrict
ourselves accordingly.

(b) In a companion paper [7] we consider the situation when the tail of x decays as r~* with
a > 1 and, under some rather stringent regularity conditions, we show that the process on Z has
strictly positive critical value. Taken together, the two papers identify roughly speaking, tails of
order %’) as representing a change of phase where L(.) is a slowly varying function in the one
dimensional case.

(c) A more robust, fairly standard argument, applying to all dimensions, may be given to show
that A, > O if i has finite second moments. See Theorem 2 in [7].

(d) The critical value equal to 0 is unusual among contact processes (but see [3] and [6]). It arises
here as a tunnelling effect where the process traverses larger and larger renewal intervals (with
no deaths). It can also be seen as a type of branching process where the number of offsprings is
of infinite mean. But we have not found this mathematically useful, though branching process
comparisons are useful in the companion paper [7].

(e) The proof indeed shows that the same result holds when, besides taking d = 1, we force the
paths to move only in increasing space direction, i.e. only the Ny 11, x € Z, are considered.
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(f) For conditions (A) and (B) we can and will suppose that M| = M; and €; = €. To
see this first note that if (A) and (B) hold for given M;, then they will also hold for €; and €;
replaced by €; A €;. Also in condition (A) above, if it holds for a value M}, then it will hold for
every M > M, with the value €; unchanged. Thus given (A) and (B) holding for (M}, €¢;) and
(M>, €;) respectively where M, > M, then (A) and (B) both hold for (M, €; A€y). If My < My,
then fix integer k so that M5 > M;. We claim (B) holds for (M5, 5/ k) and we have reduced
our case to the previous one. For the claim simply note that if jp is a choice that maximizes
/L[Mé”ﬂ, M§r+"+]] among integers 0 < j < k — 1, then

M[M§r,M§(r+l)] < kM[M§r+jO,M§r+j0+l] < kez—k'u[Mg(r“‘lH‘jO’Mé((r+1)+j0+l]
S kEZ—kM[Mg(r-Fl)’ Mé((r-'rz)].

Accordingly, we can and will suppose that M| = M, and for simpler reasons that €; = e;.
(g) Probability laws p on [0, co) satisfying the conditions of Theorem 1 include all those in the
basin of attraction of an a-stable law, o € (0, 1). A simple example not in the basin of attraction
of a stable law is any one such that
0 < liminf¢*u(t, 4+00) < limsup t* u(t, +00) < 0o,
=00 t—>00

with a € (0, 1). There are also examples with oscillating decay powers. We may take for instance

/L[t,—i-oo):exp{—/ @ds},t>l, 3)
1

N

with ¢ : [1, 00) — [e, B], where 0 < o < B < 1. It is straightforward, if tedious, to check that
this satisfies (A)—(C) and it is not hard to see that € may be chosen in such a way that
liminf#” u(t, +00) = 0; limsupt” u(t, +00) = oo
i—o00 1—00
for every y € (o, B). Indeed, it suffices to define a sequence of numbers (a,),>0 in [1, 00)
increasing sufficiently fast, with ap = 1, and make ¢(s) = « if s € [a,, a+1), €(s) = B if
s € [(12,1+1 s a2n+2) for all n.

The proof of Theorem 1 largely depends on Lemma 2 and Proposition 7 proven respectively

in Section 2 and in Section 3; in the last section we show that the above mentioned tunnelling
effect guarantees C to be unbounded with positive probability, for any A > 0.

2. Reasonable probability of big gaps

In this and the next section, (7;);>; will denote an i.i.d. sequence having the renewal
distribution L.

Lemma 2. Under hypotheses (A) and (B) above, for all K € (0, 00)
in¥P((t, Kt)yN R =0) > 0.
>

Proof. Under assumption (A), « has unbounded support. So it is only necessary to uniformly

bound P((t, Kt) N'R = ) away from zero for large ¢. In particular we may suppose that ¢ > 1.
Let ip = inf{i : T; > t} and consider the following events:

A= (T, = K1}

Ay {0 < 1)

Az = {ip < [m]}, where [s] = max{k € Z, k < s}.
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We note that on event A; N A, we have that Zi”;]lT, < t (definition of Ay) but Y"1\ 7; >
T;, > Kt (event A}) and so by positivity of the 7;, AjNA,NA3 C A|NA, C {(t, K)N'R = 0}.
So it suffices to bound P(A; N A, N Asz) from below. Note that event A; is independent of the
events A; and Aj.

Now we have that, as the variables 7; : j > 1 are ii.d., given that iy = r, we have
conditionally that the variables 7; : i < r are independent, the variables 7; : i < r
having distribution 77 conditioned on being less than or equal to ¢, the random variable 7, having
distribution 7] conditioned on having value strictly greater than ¢. In particular, the probability
of event A; is exactly equal to

w[Kt, +00)
wu(t, +00)
As previously noted, we may choose M| = M, without loss of generality and equally suppose
thatt = M {‘ for some k > r, (since we can always increase value K). We pick r > 1 an integer so

that M| > K and so u[Kt, +00) > u[Mit, +00) > i—gu(t, M;{t). This follows by the argument
given in the discussion of Remark (f) in the preceding section and the assumption that ¢ is an
integer power of M;. Thus

€ € -
P(AD)= =1+ —= =: 6. @)
r r
For P(A3) we have

61 €
P(A3) =1 = (1= p(t, +00) 70! > 1 — (1 = pt, +00)) 50! > ¢1/3
if fy was fixed sufficiently high, as one easily verifies. It remains to bound the conditional

probability P(AS|A3). Given that the random variables are all non-negative, this is bounded by

. EmEml
CEC Y W)
i=1

where the Y; are i.i.d. random variables equal in distribution to 77 conditioned on being less than
or equal to 7.
Using (A) we have (again provided #;, had been fixed large enough) that %elE(Yl) <
tu(t, M t), and so by Markov’s inequality
€]
—E(Y))/t <5/9.
2M(t,Mzt)] Y/t <5/

Now, recalling (4), for ¢ large, we have

P(A3lA3) < [

P(AiNAy; N Az) = P(A3)P(A3|A3)P(A(|A; N A3z)
6]4 4
= P(A3)P(A,|A3)P(A|) > — =6, = —€17. |
(3)(2|3)(1)_392 77 €192

3. Bounds on renewal sequence missing a far big gap

We wish to show that for ¢ large any interval in [, 0o) of length 7€ for some small € will be
in the complement of R outside of probability €. It should be noted that even though the €
obtained might be very small indeed, the result will be applied to an exponentially increasing
sequence of ¢s and so will yield exponentially decreasing upper bounds. The strategy is to first
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show that given such an interval I, there will be a larger interval J close by for which the result
is true. We then employ a simple coupling argument to transfer to / the bounds for J. This will
be the main result of this section, stated as Proposition 7.

Notation: Since no confusion arises we use |A| to denote the cardinal of A when A C R is finite,
and also the length for more general Borel sets.

Lemma 3. Under hypothesis (C), there exists M3 < oo so thatif I C R, is an interval of length
t > M, then the probability that |R N I| > t'~logt is less than %

Proof. By the strong Markov property applied when the renewal process first hits 7, it is enough
to treat the case I = [0, ¢].
Let Ng =inf{n : T,, > t}. If Nyo < m then |R N I| < m and so (increasing ¢ if necessary),
P(RNI| > [t'"Slog’t]) < P(Np > [t'"Slog?t])
(1— t—(l—q))zl*slog%—l

1 1
e—logzt < -,
1 —¢=(=e) Tt

A

IA

for r large. O

Remark. For our purposes the bound % is somewhat arbitrary and the “extra” factor log>(z) is
simply an annoyance.

The next result translates the above bound into the existence of an interval of reasonable size
which will, with high probability, be missed by the renewal process.

Corollary 4. There exists a finite constant t; such that for all t > t,, for all interval I of length
t in Ry there exists an interval J C I of length t 3 5o that

P(RNJ £0) <173.

Proof. For u € R and nonempty A C R, wewritedu,A) = inf{lu —y|:y € A}. Let
gw) = Pld(u, R) > —t 2] uel.

Ifg(u) > 1—1t" 3 for some u € I, then our result follows by taking J = [u — %t% u—}—%t%}].
Thus, let us suppose no such u exists. Then,

l € l € €
E(R+[-—5t%. Sripni =7,
But by the preceding Lemma, taking #; large we have
l € 1 € € €
E(KRH_?%’E’%D””] < 14" Slog?)t? <=7 for t>1. O

Having established that for an interval far away from 0, there will be a large interval which
is “missed” by the renewal sequence with high probability, we wish to use a simple coupling
argument to show that this property must hold for all intervals “reasonably close” to this interval.
The coupling between renewal processes that we use is really a coupling between random walks
as explained in e.g. [11] or [9].

Given the law of the {7;};>; there exists a bounded interval / such that P(7} € I) > 0 and
P( =TT, T el) < 1.
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Given Vy > 0, the (Vp)—coupling between two identically distributed renewal sequences
(sharing the above renewal time distribution), {7;};>; and {Ti }i>1 (here the T, fj are “interarrival
times” and so identically distributed) is as follows:

Let Ny, = inf{k : Y, (T; — T;) > Vo).

Fori > Ny, T; = T,-, independent of preceding realizations

For i < Ny, we choose (T;, T,-) to be independent of preceding realizations and with the
property that _

@Tiel—=Tel

®OTiel°=>T=T;_ ~ ~

(c) given {T; € I} = {T; € I} = {T;, T; € I} the variables T; and T; are i.i.d. with common
distribution equal to that of 7| conditioned on {7} € I}.

It is immediate that (Zl (T — f )n>o0 18 equal in law to a random walk with distribution
(T, — Tl) stopped at the hitting time for (Vy, +00).

Given that the law of 77 — T1 is symmetric and non trivial, so that E(T} — T]) 0 and
E((Ty — T)?) < oo

Lemma 5. There is a constant K, depending on I and the distribution of Ty conditional on
being in 1, so that for allt > 0 and Vo > 1

P(Ny, > 1) < KVo
Vo 7

Proof. We fix M < cosothat C [0, M],as.Vi T; — T; C [-M, M].

We analyse the random walk (Z:‘zl(Ti — T:))n>0 by the standard Brownian embedding for
symmetric random variables. Given standard Brownian motion (B;);>0, independent of the
T;, T; i > 1 random variables,we define stopping times (for the natural filtration of B, augmented
bythe 7;, T; i = 1)

So = 0; S84 = inf{t > §; : |By — Bs,| = |Tip1 — Tiqal).

Then (Bs,)i>1 is equal in law to our random walk and the variables S; — S;_; : i > 1 are i.i.d.
random variables having all moments finite.
We define the stopping time
o = inf{s : By > Vy + 3M}.
We now note that if &k = max{j : S; < o}, then Sy > V. Then (without loss of generality)
taking 7 to be an integer, P(Ny, > ?) is less than or equal to

P(S; > 2tE(S))) + P( sup By, < Vy+3M).
S<2UE(S))

Given the existence of all moments of Sy, the first term decays to zero faster than any power of ¢
so the result follows from Brownian hitting probabilities. [

Proposition 6. There exists K < oo so that for all n and all Vy < 2" there is a coupling between

T Nvy Nvp Kn ;
renewal sequences {T;}, {T;} such that )", T; and )_,_] T; are both less than 2"*" outside a set
of probability C2™" for C universal and n large.

Proof. Since, by Lemma 5, P(Ny, > 241y < K27 it remains to show that P(Zizin1 T, > 2Kn) <

27" for n large. But this follows easily from hypothesis (C): P(Zizill T; > 2Kn) < 2% p(Ty >
2=y < 4np—(K=Hnes wwhich is less than 27" for all n large if K was fixed large enough. [
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We are now ready to prove the main result of this section. More refined estimates (see e.g. [1]
and more recently [4] or [2]) are available but they require greater regularity on the tails of the
distribution of 7.

Proposition 7. There exists €4 > 0 so that for n large and for all intervals [s,t] with
2" <5 <t <s+2"4, one has

P(RN[s, 1] £ @) < 27", 5)

2
Proof. We take ¢4 < % where €3 is a constant as in hypothesis (C), and K is as in

Propositi2246 (absorbing the constant C therein as well). For s > 2", consider the interval
[s,s + 2 < ], to which we apply Corollary 4, guaranteeing the existence of a subinterval J
of length 22" 50 that
P(RNJ #0) <273, (6)
We now choose Vj so that [s + Vy, t + V,] is within J and at distance at least @ from J¢;
note that 2"% <W=< 24"%.

. _opa
We couple together renewal sequences {7;}, {7;} so that outside a set of probability K2 e
one has:

12n 4
NVO =< 2 3

and
Ny, Ny, .
max(3 7, Y Ty < 2VK S <o,
i=1 =1
Thus we have (where the superscript to R indicates the corresponding interarrival sequence):

PRI A ls.1] #0) < P(RT N J #0) + K25

- _ n€74
By (6), we have then that P(RT N [s, t] # @) < 2’%”54 + K2 'S For all n large we must
have that this latter bound is below 27", which was precisely the desired bound (5). O

4. Proof of the theorem

In proving that the critical value is equal to 0, we have to show that for any A > 0 there is
a strictly positive chance that the contact process on Z starting from a single “infected” site
survives for all time. In fact we really only consider the contact process on N. In turn our
argument becomes that, loosely speaking, having infected a “large” interval (depending on A)
survival becomes probable.

We can assume that for #; to be chosen later, the renewal process for site O has Ty | > 4#,. We
also fix y = €4 > 0 given by Proposition 7.

We define recursively levels Lo, L, Ly, ...: Lo =0and fori > 1,

L; =inflk > Li_; : Dy N {k} x [162, 152'1%] = 0). (7)

Remark 8. Note that given F, := o(L;, Dy : k < L;) the renewal processes at sites (L; + j)>1
are independent and identically distributed.
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For i > 1, we now define “bad” events B; to be the union of the following events:

() {L; > Li_s + i log(ty)}.

(I {3k € {L;—y + 1, ..., L;} so that D; N {k} x [o2" — (1o2")", t52] # 0}.

dm {3k € {L;,_y,...,L; — 1} so that there are no marks of Nj ;4 in the time interval

(102" — (162') + Tt (162') , 162" — (102" + =L (102)7)).

Lemma 9. We can fix ty large enough so that P(B;) < K exp(—ci) V i, for some c >0, K <
oo. Furthermore, if ty is taken large enough, we will have Y ;o P(B;) < 1/2.

Proof. By Lemma 2 and Remark 8, the events
Vi =D, sj O {Li + j} x [102, 12721 =0

are independent and independent of F;, , having probability ¢; > 0, provided 7 has been fixed
sufficiently large. Hence

P(L; > Li_j +ilogty) < (1 — ¢)''oet)

By Proposition 7 the probability of (II) occurring and L; < L, + ilogty is bounded
by i log(#y)(#92')~" (again supposing fy is large). Similarly the intersection of (III) and L; <
L;_1 +ilogty has a probability bounded by

i log(tg)e 102 /ileeto) [

Proof of Theorem 1. Let A > 0 be any strictly positive value. We choose #; so large that
Lemma 9 holds and in particular that ) .-, P(B;) < 1/2. Then we simply observe that on the
intersection of {Tp ;1 > 419} and M;> B}, the RCP starting with a single infected site at 0 survives
forever. Thus the survival probability is strictly positive. Given that A can be as small as desired
the result is proven. [
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