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1. Introduction

W-algebras were first introduced in the work of Zamolodchikov in the 80’s in the study of two-dimensional
conformal field theories. They play an important role in string theory, integrable systems and field theories
[3]. General definition of W-algebras was given in the work of Feigin and Frenkel [6] via quantized Drinfeld-
Sokolov reduction. This was later generalized by Kac, Roan and Wakimoto [16], Kac and Wakimoto [15]
and De Sole and Kac [26].

W-algebras can be viewed as affinizations of finite W-algebras, certain finitely generated structures
underlying W-algebras. Their concept goes back to the papers of Kostant [17], Lynch [19] and Premet [24].
Classical finite W-algebras are constructed as Poisson reductions of Kirillov-Poisson structures on simple Lie
algebras. They have a very rich theory related to the Yangians [25], [4]. In type A, Brundan and Kleshchev
[4], [5] showed that finite W-algebras are isomorphic to certain quotients of the shifted Yangians.

If 7 = 7(p1,...,pn) is a pyramid with N = p; +- - -+ p,, boxes distributed in n rows with p; boxes in i-th
row (counting from the bottom), then the finite W-algebra W () is associated with gl and the nilpotent
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matrix in gl of Jordan type (p1,...,pn). In particular, W () is the universal enveloping algebra of gl,, if
the pyramid 7 has one column with n boxes.

Since finite W-algebras can be embedded into the universal enveloping algebra of some (semi)simple Lie
algebra via the Miura transform, representations have many features of representations of finite dimensional
Lie algebras. For example, Fock space realizations of finite W-algebras were obtained in [3]. For basic
representation theory of W-algebras we refer to [1] and [2].

Theory of Gelfand-Tsetlin representations for finite W-algebras of type A was developed in [9]. In such
representations the Gelfand-Tsetlin subalgebra of W (m) has a common generalized eigenspace decomposi-
tion. For an irreducible representation this is equivalent to require the existence of a common eigenvector
for the Gelfand-Tsetlin subalgebra I'. Such an eigenvector is annihilated by some maximal ideal of I'. The
main problem is to construct explicitly (with the action of algebra generators) simple Gelfand-Tsetlin mod-
ules for W(7) generated by a vector annihilated by a fixed maximal ideal of T". Recent results of [7] allow
to construct a certain cyclic Gelfand-Tsetlin module for W () for a fixed maximal ideal of I'. When this
module is simple (sufficient condition is given in [7]) the problem of explicit construction is solved. On the
other hand, even for gl, not all simple subquotients of the universal module have a tableaux basis. Hence,
the difficult problem of explicit construction of simple Gelfand-Tsetlin modules remains open.

A new technique of constructing certain simple Gelfand-Tsetlin modules was developed in [12] in the case
of the universal enveloping algebra of gl,, generalizing the work of Gelfand and Graev [13,14] and the work
of Lemire and Patera [18]. The main objective of this paper is to adapt and apply the technique of [12] in
the case of finite W-algebras of type A. We obtain:

- Effective removal of relations method (the RR-method) for constructing admissible sets of relations
(Theorem 3.6);

- Characterization of admissible sets of relations (Theorem 3.16);

- Explicit construction of Gelfand-Tsetlin W (r)-modules for a given admissible set of relations (Defini-
tion 3.3).

Our main result is the following:

Theorem 1.1. For a given admissible set of relations C and any tableau [l] satisfying C, the space Ve ([l]) (see
Definition 3.2) is a Gelfand-Tsetlin W (7)-module with diagonal action of the Gelfand-Tsetlin subalgebra.

As a consequence we construct a large new family of Gelfand-Tsetlin W (7)-modules with explicit basis and
action of the generators of the algebra. If C is an admissible set of relations and [I] is any tableau satisfying
C, then we have a Gelfand-Tsetlin W (7)-module V¢([I]) which we call the relation module associated with
C and [I]. We have the following criteria for simplicity of relation modules (Theorem 4.4):

Theorem 1.2. The Gelfand-Tsetlin module V¢ ([1]) s simple if and only if C is the maximal admissible set of
relations satisfied by [1].

Next we consider highest weight relation modules (in particular, for Yangians). Proposition 4.6 provides
a family of simple infinite dimensional highest weight relation modules.

Finally, we consider a tensor product of relation modules. If Vi,...,V; are gl,,-modules then V1 ®...®V;
is a module for the Yangian Y(gl,,). For finite dimensional gl,-modules the criterion of simplicity of such
tensor product was established in [21]. We consider tensor product of infinite dimensional highest weight
relation modules for Y(gl,,) and establish simplicity of tensor product of any number of highest weight
relation modules with generic highest weights (Theorem 6.2), and also give sufficient conditions for the
simplicity of tensor product of two highest weight relation modules (Theorem 6.3). These results extend the
results of Molev [21] and Brundan and Kleshchev [5] to infinite dimensional highest weight modules for the
Yangians. We observe that we do not fully cover the above mentioned results since not all finite dimensional
Y(gl,,)-modules are relation modules.

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
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2. Finite W-algebras

The ground field will be the field of complex numbers C.

Fix a tuple (p1,...,pn) such that 1 < p; < -+ < p,. Associate with this tuple the pyramid = =
w(p1,...,Pn), where p; is the number of unit squares in the ith row of the pyramid counting from the
bottom. We will assume that the rows of 7 are left-justified. From now on we set N :=py + -+ + p,.-

Given such pyramid 7, the corresponding shifted Yangian Y (gl,,) [4] is the associative algebra over C
defined by generators

a”, i=1,....n, r>1, (1)
fO =1, -1, r>1,
657')’ i=1,...,n—1, rZ=piy1 —pi +1,

subject to the following relations:
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D = 0 1 = £+ £

e, el = el el = —elel3),

O O = 0 5t = -,

e, el =0, it Ji—j>1,

17, 19 =0, it Ji—j > 1,
e, e e + [l e, e =0, it i—j]=1,

TS ,fft I+ [ffs)v[ffr)yf;t)ﬂ =0, if |i—j|=1,

for all possible i, j,r, s,t, where d§°) =1 and the elements d; (") are obtained from the relations
T
SaPdl " =6, r=0,1,....

Note that the algebra Y,(gl,) depends only on the differences p;11 — p; (see (1)), and our definition
corresponds to the left-justified pyramid 7, as compared to [4]. In the case of a rectangular pyramid 7 with
p1 = -+ = pn, the algebra Y (gl,,) is isomorphic to the Yangian Y(gl,,); cf. [20]. Moreover, for an arbitrary
pyramid 7, the shifted Yangian Y, (gl,,) can be regarded as a subalgebra of Y(gl,,).
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Following [4], the finite W -algebra W (), associated with the pyramid 7, can be defined as the quotient of

l(r) with 7 > p; + 1. In the case of the one-column

Y. (gl,,) by the two-sided ideal generated by all elements d
pyramids ™ we obtain the universal enveloping algebra of gl,. We refer the reader to [4,5] for a description
and the structure of the algebra W (r), including an analog of the Poincaré-Birkhoff-Witt theorem as well

as a construction of algebraically independent generators of the center of W ().
2.1. Gelfand-Tsetlin modules

Recall that the pyramid 7 has left-justified rows (p1, ..., pn). Denote 7 the pyramid associated with the
tuple (p1,...,pk), and let W(mg) be the corresponding finite W-algebra, k = 1,...,n. Then we have the
following chain of subalgebras

W(m) C W(mg) C--- C W(m,) = W(m). (2)

Denote by I' the commutative subalgebra of W () generated by the centers of the subalgebras W (my,) for
k=1,...,n, which is called the Gelfand—Tsetlin subalgebra of W () [5].
A finitely generated module M over W () is called a Gelfand-Tsetlin module (with respect to I') if

M= B Mm)

méeSpecm I

as a ['-module, where
M(m) = {x € M | mFz =0 forsome k& >0}

and Specm I' denotes the set of maximal ideals of T.
Theory of Gelfand-Tsetlin modules for W (w) was developed in [8], [9], [10]. In particular, it was shown

Theorem 2.1. [[10], Theorem II] Given any m € SpecmD the number F(n) of non-isomorphic simple
Gelfand-Tsetlin modules M over W () with M (m) # 0 is non-empty and finite.

The proof of this result is based on the important fact that the finite W-algebra W () is a Galois order [11]
(or equivalently, integral Galois algebra) ([10], Theorem 3.6). Moreover, in particular cases of one-column
pyramids [23] and two-row pyramids [10], the number F'(n) is bounded by p1!(p1 +p2)! ... (p1+... +Pn-1).
This remains a conjecture in general.

2.2. Finite-dimensional representations of W ()

Set
fz(u) — Z fl('f") uw " ez(u) _ Z 62(»7‘) u"
r=1 r=pit1—pi+1
and denote

Ai(w) =uP (u—1)P2 .. (u—i+ )P a;(u)

fori=1,...,n with a;(u) = dy(u)da(u—1)...d;(u — i+ 1), and

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.106226




JPAA:106226

V. Futorny et al. / Journal of Pure and Applied Algebra see (ssee) essees 5

Bi(u) =uP* (u—1)"2 .. (u—i+2)P (u—i+ 1) a;(u) e;(u—i+ 1),
Ci(w) =uP (u—1)"2 ... (u—i+ )P filu—i+1)a;(u)

fori=1,...,n — 1. Then A;(u), B;(u), and C;(u), i =1,...,n are polynomials in u, and their coefficients
are generators of W(m) [9]. Define the elements a® for r = 1,....,nand k=1,...,p1 + -+ + p, through
the expansion

pit-+pr
Ay (u) = uPrtter 4 Z agk) yPr =k
k=1

Thus, the elements asak) generate the Gelfand—Tsetlin subalgebra I' of W ().

Fix an n-tuple A(u) = (A1(u),...,Ax(u)) of monic polynomials in u, where A;(u) has degree p;. Let
L(A(u)) denote the irreducible highest weight representation of W (m) with highest weight A(u). Then L(A(u))
is a Gelfand-Tsetlin module generated by a nonzero vector £ such that

B;(u)¢=0 for i=1,...,n—1,and

Let
() = (w+ AD) AP @+ AP, i=1, .

The explicit construction of a family of finite-dimensional irreducible representations of W (7)) was given
in [9]. As it will play an important role in the arguments of this paper. We recall this construction below.

2.3. Gelfand-Tsetlin basis for finite-dimensional representations
Consider a family of finite-dimensional representations of W () by imposing the condition
(k) _ y(m) ;s
A NUEL, for all 7,7 andall k#m

on a highest weight A(u). A standard Gelfand-Tsetlin tableau p(u) associated with the highest weight A(u)

is an array of rows (Ar1(u), ..., Arr(¢)) of monic polynomials in u for r =1,...,n, where
Ai(w) = (w+ A w+ AP 1<ig<r <o,

with /\g? = )\Ek), such that the top row coincides with A(u), and
/\1@1,2‘ - Ai?) €Z>o and Aﬁ/;) - Ag%,iﬂ €Z>o

fork=1,....,pjand 1 <i<r<n—1.
The following result was shown in [9].

Theorem 2.2. The representation L(A(w)) of the algebra W(m) allows a basis {£,} parametrized by all
standard tableaux p(u) associated with A(u) such that the action of the generators is given by the formulas

Ar(u)§, = Aa(u) .. App(u—r+1)¢,, r=1,...,n (3)

and

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
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Br(—1i) € = =Mrera(<15) - Arpr i (<1 = 7)€ s 1SrSn—1, (4)
Col—1) € = Mmaa (<) - Mma (S =1+ 2) €0, TSP <n—1, (5)

where lr(l-k) = )\f,lf) —i+1 and €& L5 corresponds to the tableau obtained from u(u) by replacing )\Qf) by
HE0;
)\g;) + 1, while the vector §,, is set to be zero if p(u) is not a standard tableau associated with \(u).

The action of the operators B, (u) and C,(u) for an arbitrary value of u can be calculated using the
Lagrange interpolation formula.

For convenience we identify &, with the tableau [I] with entries lg-v), and guﬂ( » With the tableau [! iéﬁf)],

which corresponds to the tableau obtained from [l] by replacing li’;) by lgf) + 1. Set
i(w) = (w+153) . (w+1%Y),  1<i<r<n,
with liki) = )\l(-k) —i+1, as £, is standard, we have
10

1 ZS) € Z >0 and li’f) - lgj-)l,i-i-l €Z>o (6)

fork=1,...;pjand 1 <@ <r <n—1If \j(u) = l5(u+i— 1), the Gelfand-Tsetlin formulas can be
rewritten as follows:

Ar()l] = la(u) .. L (u) [I],r =1,...,n, (7)

and
Br(~IS) ] = ~Losaa (<15 by (L) 400, =1, n =1 (8)
Col(—I"N [ = Loy (LY g (LY 1= 6W), r =1, n—1, (9)

where a vector [I] is set to be zero if it does not satisfy (6).
By the Lagrange interpolation formula we have

A (W)[l] = Loy (u) . . L (u) [0,

e, =1t

- _ E gt (t) (k)
Bl = - I1 (Z(t) — l(k)) ‘tH» . (u+ lr,j) [+ 0,571,
, G R) r,j 7, (43,£)#(3,k) (10)

e, — i)

Cr(w) =3 | = |l (u+ 1) 1= o).

i,k H ( T, (X ) j,t ik
GLR) J (4,£)#(i,k)

It is easy to see that d,.(u) = a,*

J(w)a,(u) = (u—r+1)"Pr A1 A, Then the action of d,(u) is given by
lp(w) ...l ()

dr(u)ll] = (w—r+ )Pl (u).. . Loy pr—q(u)

[1].

Note that the polynomials 1 (u) - - - Iy (w) and (w—7+1)P7 11 1(w) - - - l,—1 ,—1(u) have the same degree

p1+ -+ + p,. Hence (u—r+1)Pirl,l,v(i),;ilurf.%ifl,7_1(u) can be written as the following formal series in u:

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
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%)
t —t
1+ dP 0,
t=1

where dr(t)(l) is a polynomial in lii-) and lis_)l)j with1<i<r, 1<k<p;,1<j<r—1,1<k<p;. Thus
dr(u)[l] = d(0)]1)
Similarly, since

er(u) = up’“fp’”“Ajl(u +r—1)B.(u+r—1),
fr(w) =Crlu+r—1DA (u+r—1),

the action of e, and f, is given by

e | O )
j,t Jt)#(1, (k)
er(u)[l] = — . (146,51,
zk: I a0 =18y wee=pe ] (wtr— 1410 + 60 "
(4, t)#(4,k) (45t) (11)
IH&LJfé?)()iju+r—1+$p
j t J,0)# (4, (k)
f=>" |- - =06,
T\ IO -t Twar—1+10) 1
(4,6)#(1,k) (4,t)

Since ] (u4r-— 1+l£2) is a polynomial in u of degree p1 +- - -+p, —1 while ] (u+r— 1—|—l7(3- +5£I;))
(4:)#(i,k) (4,t)
and [[(u+r—14 lﬁt;) are polynomials of degree p; + - - - + p,-, we can write the two rational functions in
(3,8)
(11) as follows:

[T (utr—1+1")

(G)#(i.k) - o) ~
= br (l) u o,
ubreiTpr (1__{)(“ +r—1+ li? +87) t=pr+12_pr+1 .
Js
I1 (u+r—1—|—l£2) -
(4:1)#(i,k) 5 _ it})C (D) ut
[Tuw+r—1+107) = v

(3:%)

where b%z(l) and cit,)ﬂ(l) are polynomials in lg{? with1 < <7, 1<k<p;and bt P (1) = c(l,z’i(l) =

r,k,i T,

1. Therefore the action of egt) and fr(t) can be expressed as follows:

T, ;=19

J;t t k
== u)__l(k_))bi,z,i(l) 1+,

i,k ( )1;[( k)(lr,] Ty
)7 (2,
’ (12)
102, = 1)
r—1,j T4
jit (t) (k)
M= : ¢ (D) [ [0 =057
T (t) (k) r.k,i %
ik H (lr, i lr,i )
GGk
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3. Admissible sets of relations

In this section we discuss admissible sets of relations and obtain their characterization. Each such set
defines an infinite family of Gelfand-Tsetlin modules over W (r). Let a,b € C, from now on whenever we write
a > b (respectively a > b) we will mean a —b € Z>¢ (respectively a —b € Z~g). Set U := {(k,1,7) |1 <j <
i <n, 1 <k<p;}. From now on when we write a triple (k,%,j) we assume that 1 <j <i<n,1 <k <p;,
without mentioning this restriction.

Set

RY = {((k,i, 5); (K, i = 1,5)},
R™ = {((k77’7])7 (k/7i + le))}’
R = {((k,n,); (K',n,5') | k # K or j #j'}.

Let us consider R := R~ UROURT C U x Y. From now on any C C R will be called a set of relations.

Associated with any C C R we can construct a directed graph G(C) with set of vertices U and an arrow
going from (k, 1, 7) to (r,s,t) if and only if ((k,4,J); (r,s,t)) € C. For convenience we will picture the set of
vertex as disposed in an arrangement of p,, triangular arrays with k-th array given by {(k,¢,j)[n —r+1 <
Jj <i<n}, where p,_1 < k < p, for some r € {1,2,...,n} (taking pp = 0).

Definition 3.1. Let C be any set of relations.

(i) By U(C) we will denote the subset of U consisting of all (k, i, j) which are the starting or the ending
vertex of an arrow in G(C).
(ii) C is called indecomposable if G(C) is a connected graph.
(iii) C is called a loop if G(C) is a loop.
(iv) Given (k,1,7), (r,s,t) € U(C) we will write (k,i,7) =¢ (r, s,t) if there exist a path in G(C) starting in
(k,4,7) and finishing in (r, s,t).

Given CC R, we have C=C~ UC°UCT, where C”" : =R~ NC,C°:=R°NCand CT :=R+ NC.
Definition 3.2. Let C be any set of relations and [I] any Gelfand-Tsetlin tableau.

(i) We will say that [I] satisfies C if:
. lz(f) - 13;) € Z> for any ((k,i,j); (r,s,t)) € CtuC’.
. lz(f) — lg) € Zo for any ((k,4,7); (r,s,t)) € C™.
(ii) We say that [I] is a C-realization if [I] satisfies C and for any 1 < i < mn — 1 we have, lg?) - lgf,/) € Zif
only if (k,4,7) and (k',4, ;") in the same connected component of G(C).
(iii) Let [I] be a C-realization. By B¢([l]) we denote the set of all tableaux of the form [l + z], zl(jk) €7,
27(1];) = 0, satisfying C (in particular such tableaux are C-realizations). By V¢ ([]) denote the complex

vector space spanned by Be([I]).

Definition 3.3. Let C be any subset of R. We call C admissible if for any C-realization [l], Gelfand-Tsetlin
formulas (10) define on V¢([l]) a structure of W (m)-module.

Example 3.4. It follows from Theorem 2.2 that if

ST ={((kyi+1,5); (ki) [ i <n—1},
S ={((k,3,5); (kyi+1,j+1)) | i <n—1},

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.106226
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then S := ST US™ is admissible.

Our goal is to determine admissible sets of relations.

Description of admissible sets is a difficult problem. Nevertheless, the relations removal method (RR-
method for short), developed in [12] can be applied in the case of finite W-algebras and provides an effective
tool of constructing admissible subsets of R.

Definition 3.5. Let C C R and A C U(C). By C4 we denote the set of relations obtained from C by removing
all pairs in C containing elements of A. We say that C C C is obtained from C by the RR-method if
C= Ciuy,....vy} Where v1 is maximal or minimal in G/(C) and v, is maximal or minimal in G(Cyy, .. 0, _,}) for
any s =2,...,t.

Let ©, be the free abelian group generated by the Kronecker delta’s 55;?), 1<j<i<n—-1,1<k<p,.
We can identify €2,, with the set of integral tableaux with zero top rows.

Given pyramid m, denote by F the corresponding free algebra on the following generators

di(r)7 i:l,...,n, T>1,
fO =1, -1, r>1
ei=1,. -1, T2 piy1 —pi+ L

Then Gelfand-Tsetlin formulas can be used to define an action of F; on V¢([l]). Denote the kernel of the
canonical homomorphism F, — W(r) by €.

Theorem 3.6. Let Cy be any admissible subset of R and suppose that Cs is obtained from C1 by the RR-method,
then Ca is admissible.

Proof. Suppose Cs is obtained from C; by removing the relations involving (k, 4, j). To show Cs is admissible
it is sufficient to prove that for any Cs-realization [I] and any generator g € &, we have g[l + z] = 0, where
z € Q, is such that [+ z] € Be, ([]]). The proof of this fact generalizes the argument of the proof of Theorem
4.9 in [12].

Assume (k,,7) to be maximal (resp. minimal) and m some positive (resp. negative) integer with |m| > 3.
Let [y] be a Cy-realization such that 'yg) =+ z)g) for (s,t,r) # (k,i,7). Then Ve, ([y]) is a W (m)-module
and [y + mdg.c)] € Be, ([v]). Therefore we have

gy +ms ) = 3" guly + mo) [y +méd) +wl,
wEA

where A C Q,, is such that [y + mégc) + w] € Be, ([7]) for all w € A. We have that [l + z + w] € Be,([l]) if
and only if [y + mégf) + w] € Be, ([7]) when |m| > 3. Thus,

gll+21= > gu(ll+2D)([1 + 2 + w)).

weA

Since gy, ([ + még)]) are rational functions in the variable m and they are zero for infinitely many values
of m, we conclude that g, ([l + z + w]) = 0 for all w € A and, hence, C; is admissible. O

Since empty set can be obtained from S applying the RR-method finitely many times, Theorem 3.6
immediately implies:
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Corollary 3.7. Empty set is admissible. In particular, if [I] is a tableau with Z-independent entries (i.e. the
differences of entries on the same row are non-integers) lf]); 1 <j<i<nl<k<p;, B([l]) the set
of all tableauz [l + 2] with z € Q,, and V([l]) the complex vector space spanned by B([l]). Then V([l]) is a

W (m)-module with the action of generators given by the formulas (10).

For any fixed i, let G; be group of permutations on the set {(k,%,5),1 < j < 4,1 < k < p;}. Let
G = G1 x G X -+- X Gy,. For any relation ((k,1,7); (r,s,t)), and o0 € G, we denote o((k,1,7); (r,s,t)) =
(o(k,i,7);0(r,s,t)), and oC = {oa | a € C}. Since the Gelfand-Tsetlin formulas (10) are G-invariant, we
immediately have:

Lemma 3.8. If C is admissible then oC is admissible for any o € G,

Example 3.9. The following sets are admissible by Theorem 2.2 and Theorem 3.6.

(k,i+1,7)
(k;,’i + 1,j) / \
@ @] (kis)) (ki + 1)
(k,1,7) /
(kyi—1,7)
(k,i+1,7+ 1)
(i) /

(k7 i? J)
It follows from Lemma 3.8 that the permutations of these sets are also admissible.

Example 3.10. The following sets are not admissible.
(kyi+1,7) (k,i,5) (kyi,j+1)

7N N

(k,i,5 — (k,i,7)
Hence, the permutatlonb of these sets are not admlsblble elther by Lemma 3.8.

Definition 3.11. C C R is called noncritical if for any C- realization [I], and any (k,,7), (k,4,t) € U(C), one
has I%) = 19
1] 1t

Definition 3.12. Let C be an indecomposable noncritical subset of R. A subset of C of the form
{((k1,d,51); (kayi + 1, 4a)), ((K3,i+ 1, J3); (2,4, 52))} with ki < ka(or k1 = k2, j1 < j2) and ks < ka(or
ks = k4,73 < j4) will be called a cross.

Proposition 3.13. Let C be an indecomposable noncritical subset of R. If C contains a cross, then it is not
admissible.

Proof. Indeed, assume that C is admissible and contains a cross. Then, applying the RR-method to C we
will obtain a set of relations from Example 3.10 (see details in [12]). Therefore C is not admissible. 0O
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Definition 3.14. Let C be any noncritical set of relations. We call C reduced if for every (k,i,5) € U(C) the
following conditions are satisfied:

(i) There exist at most one (r,t) such that ((r,i+ 1,¢); (k,i,7)) € C
(ii) There exist at most one (r,t) such that ((k,4,7); (r,i + 1,t)) € C,
(iii) There exist at most one (r,t) such that ((k,,7);(r,i —1,t)) € C
(iv) There exist at most one (r,t) such that ((r,i —1,1); (k,4,4)) € C,
(v) Any relation in the top row is not implied by other relations.

The following important result follows from [12], Theorem 4.17.
Theorem 3.15. Any noncritical set of relations is equivalent to an unique reduced set of relations.

Let C be an indecomposable set and < be the lexicographical order. We say that C is pre-admissible if it
satisfies the following conditions:

(i) C does not contain loops.
(ii) C is noncritical.
(iii) For any 1 < <mn, (k,i,5) =¢ (r,i,t) if only if (k,4,7), (r,i,t) are in the same indecomposable subset
of C and (k,j) < (r,t).
(iv) C is reduced.
(v) There is not crosses in C.

An arbitrary set C is pre-admissible if every indecomposable subset of C is pre-admissible.

The results in [12] show that in order to construct gl,,-modules using sets of relations it is enough to
consider pre-admissible sets of relations.

Denote by § the set of all indecomposable sets C which satisfy the following condition:

Condition 1. for every adjoining triples (k,i,7) and (r,i,8), 1 <i <n —1, one of the following is a subset
of C

{((k,l,j), (klai + Ltl))a ((klai + 1at1); (Taia S))ﬂ ((ka iaj); (kQ,iatQ))a ((ka iatQ)v (T,i, 8))}

14
{((kvlvj)v (khi + ]-vjl))ﬂ ((k%i + 17j2); (T,i,S))}, (klvjl) = (k27j2)' ( )

It is easy to verify that if C is reduced and satisfies Condition 1, then C satisfies all other conditions in the
definition of pre-admissible. Thus one has that C € § if and only if C is reduced and it satisfies Condition 1.

The main result of this section is the following theorem which gives a characterization of admissible sets
of relations. A detailed proof will be given in Section 6. For the universal enveloping algebra of gl, this
result was established in [12], Theorem 4.27.

Theorem 3.16. A pre-admissible set of relations C is admissible if and only if C is a union of indecomposable
sets from §.

For an admissible set of relations C and any [I] which satisfies C, the W (r)-module V¢([l]) is a Gelfand-
Tsetlin module. We will call it a relation module.

4. Simplicity of relation modules

In this section we establish the criterion of simplicity of the module V¢ ([I]).
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Lemma 4.1. Let ) c,[l,] be a vector in Ve([l]) with nonzero ¢,,. Then [l,,] € Ve([l]) for each p.

Proof. Suppose c,[l,] + ¢ [l] € Ve([l]) and [I,], [I,] have different entries in r-th row. By Theorem 2.2
we have A,(u)[l,] = au[l,], Ar(u)[l,] = a,[l,]. Moreover, a, = a, if and only if the r-th row of [I,] is
a permutation of the corresponding row of [l,], which is a contradiction with the non criticality of C. So
a, # a, and both [l,,] and [I,] are in V¢([l]). The general case follows by induction on the number of terms
in the linear combination. O

(k) (k)

n,i = 7n,i’
lﬁ{? — ’yr(f? € Z,1 <r < n—1. Then there exist {(ki,is,7¢)}i=1,....s C D(C) such that for any r < s,

+>0, et(;i(tkfl] satisfies C and [l + >, et(sl(i‘j)t] = [v], where ¢, = 1 if ’yz(t]i‘])t — lz(ffj)t >0 and e = —1 if
(k) _ (ko)

it,Jt it,Jt <0.

Lemma 4.2. Let C be an admissible set of relations, [I] and [y] be tableauz satisfying C and 1

Proof. We prove the statement by induction on #0(C). It is obvious if #0(C) = 2. Assume #0(C) = n. Let

(k,i,7) be maximal and C’ be the set obtained from C by RR-method i.e. removing all relations that involve
5(/@,)]

it,Jt

(k,4,7). By induction, there exist sequences (kj,4},j;) 1 < ¢ < s such that for any r < s, [[+ > /_, &
satisfies C’' and [+ >.;_, eﬁfftj)t] =[y+ ng) - Z(jk)]
If lgf)—'yi(f) =m >0, set (ke,it, ji) = (ky, 44, j;) for 1 <t < s, and (k, i, ji) = (k,4,7) for s+1 <t < t+m.
If lgc) — 'yi(f) =m < 0, set (ky,i¢,5¢) = (kyi,j) for 1 <t < m and (Kmrt, bmst, Jmrt) = (ki, 1}, 5;) for

1<t<s. O

Definition 4.3. We say that a set C is the mazimal set of relations for [I] if [I] satisfies C and for any other
set of relations C’ satisfied by [I], we have (k,,7) »=¢/ (r,4,t) implies (k,4,7) =¢ (r,4,1).

Now we can prove Theorem 1.2.

Theorem 4.4. Let C be an admissible set of relations. The module V¢ ([l]) is simple if and only if C is the
mazimal set of relations satisfied by [I].

Proof. Suppose C is not the maximal set of relations satisfied by [I]. Then there exists lfjjzu — lffj) e
and there is not relation between (s,r + 1,7) and (¢,r,7). So there exists tableau [y] € W (x)[l] such that
'yﬁi)l,i - ’yﬁtj) € Z>p and ¢ € W(m)[l] such that §£t]) — fﬁi)“ € Z~g. By Equation (11) one has that £ is not
in the submodule W (m)[y] of Ve ([l]) generated by [v], thus Ve ([!]) is not simple.

Conversely, let C be the maximal set of relations satisfied by [/]. By Lemma 4.2, for any tableaux [{] and [7],

there exist {(ky, s, ji) }1<t<s such that for any r < s, [[+>",_,; etégkt-)] satisfies C and [1+);_; etégkt-)] =[]

LtyJt t,Jt
If [I] and [l + (58?)] satisfy C, then ll(z) # (5§21J, for any ¢,7’. Similarly if [I] and [l — 51(?)] satisfy C, then
quj) # (5?_)17]., for any t,j’. Thus the coefficient of [l + 61(13)} in egpi“_pﬁl) [l] (resp. [l — 51(13)] in fi(l) [] is

nonzero. By Lemma 4.1, [I + 6@1)] € Ve([I]). By induction on s, we conclude that [y] € Ve([l]). O

11,71

4.1. Highest weight relation modules

Denote by ¢x the number of bricks in the column k of the pyramid 7, k =1,...,p,, where [ := p,, is the
number of the columns in 7. We have N = ¢1 +g2+---+q =p1+- -+ pn, with ¢ > --+- > ¢; > 0, moreover,
if p;_1 <k <p;forsomeie {1, ..., n} (taking py = 0), then g, = n—i+1. Let g = gly, p be the standard
parabolic subalgebra of g with the Levi factor a = gl, @ --- @ gl ,. Then W (7) is a subalgebra of U(p). We
will identify U(a) with U(gl, ) ®--- @ U(gl,,). Let £ : U(p) — U(a) be the algebra homomorphism induced
by the natural projection p — a. The restriction
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& W(r) = Ula)

of & to W () is called the Miura transform. By [4], Theorem 11.4, £ is an injective algebra homomorphism,
allowing us to view W () as a subalgebra of U(a).

Let My be a module for the Lie algebra gl , k =1,...,l. Then using the Miura transform & the vector
space

Mi®...9 M

can be equipped with a module structure over the algebra W ().

For each i = 1,...,n, let C; be an admissible set of relations for gl and [L(™)] be a tableau such that C; is
the maximal set of relations satisfied by [L(V]. Then V¢, ([LW]))®...®@ Ve, ([LW]) isa gl,, @ ... @ gl -module
and thus a W(7)-module.

In the following we describe a family of highest weight modules which can be realized as relation modules
Ve([l]) for some admissible sets of relations C.

1 , .
Let A(u) = (Ar(w), ..., An(w)), where A;(u) = ] (u+ /\gl)), i=1,...,n. We identify A\(*) with the tuple
s=1

OO A,
Denote [L]x = ([™M],...,[I]), where each [I¥)] is the tableau such that lg-c) = lfl’;-) = )\g-k) -J+1,
i=1,...n, =1, 0 k=1,...,1

Definition 4.5. We will say that p = (g1, 2, ..., in) is good if it satisfies the conditions: p; — u; ¢ Z or
i —p; >i—j for any 1 <i < j < n. We say that \(u) is good if A(*) is good for all k = 1,...,l. In this
case [L]y is also called good.

Assume A(u) is good. For each k = 1,...,1 let C, be the maximal set of relations satisfied by [1(*)].
Then Ve, ([I*)]) is simple highest weight gl,,-module with highest weight AR = ()\ng_)qu, e ,)\glk)) ([12]
Proposition 5.7).

The following proposition follows from Theorem 3.16 and Theorem 4.4.

Proposition 4.6. Let \(u) be good, [L]x = ([IM],...,[IV]), and C be the mazimal set of relations satisfied
by [Lx. If for any [T] € Be([l]) and all i,5, r # s, we have T,g:) #* Tlij.) fork=1,...,n—1, then C is
admissible and L(A(u)) = Ve ([l]). Moreover, the explicit basis of L(A(u)) is Be([l]).

In particular, if A(u) is a good dominant integral highest weight, then L(A(u)) is a finite dimensional
relation module. We note that not every finite dimensional W (7)-module is a relation module. For instance,
if t =2, A1 = \2 = (5,1), then we have some equal entries in the first row. Hence, the corresponding
finite dimensional module is not a relation module.

5. Tensor product of highest weight relation modules

If the pyramid 7 has parameters p; = ... = p, = p then W () is a finitely generated Yangian of level p.
In this section we consider highest weight relation modules for the Yangians. The Yangian Y(n) :=Y(gl,),

is the complex associative algebra with the generators tgjl-),tg), ... where 1 < 4,j < n, and the defining
relations
1
[tij (), tha(v)] = ——(th; (W)ta(v) — trj (0)ta(u)) (15)
where
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1

tij(u) = 8+t u™t + tPu"2 4 e Y(n)[[u Y]

and v is a formal variable.
Y(n) is a Hopf algebra with the coproduct A : Y(n) — Y(n) ® Y(n) defined by

n

Atig(w) = Y tia(u) ® toj(u) (16)

a=1

Given sequences ay, ..., a, and by, ..., b, of elements of {1, ..., n} the corresponding quantum minor of the
matrix [t;;(u)] is defined by the following equivalent formulas:

tp e (u) = Z sgn o - ta, b, (W) ta, b, (U —1+1)
oeES,

- Z Sg0 0+ tayb, ) (U =1 +1) - ta,n,,, (u).
€S,

a-ap

The series L2 (u) is skew symmetric under permutations of the indices a;, or b;.

Proposition 5.1 (/22] Proposition 1.11). The images of the quantum minors under the coproduct are given

by
Altglgr () = Y e (u) @ 1 (u) (17)
e <--<er
summed over all subsets of indices {c1,..., ¢} from {1,...,n}.

For m > 1 introduce the series a,,(u), by (u) and ¢, (u) by
an (u) = (), b (1) = 001 1 (W), em(u) = 607" ().
The coefficients of these series generate the algebra Y(n), they are called the Drinfeld generators.
Definition 5.2. Let V be a Y (n)-module. A nonzero v € V' is called singular if:

(i) v is a weight vector (with respect to all ¢;;(u));
(i) by (u)v =0 for any m > 1.

Let Ejj,4,j = 1,...,n denote the standard basis elements of the Lie algebra gl,. We have a natural
embedding

Ulgl,) = Y(n) , Eij vt

Moreover, for any a € C the mapping

Pq - t”(u) — 5ij + U _ja (18)

defines an algebra epimorphism from Y(n) to the universal enveloping algebra U(gl,,) so that any gl,,-module
can be extended to a Y(n)-module via (18). Consider the simple gl -module L(\) with highest weight
A= (M, ..., A,) with respect to the upper triangular Borel subalgebra generated by E;;, i < j. The
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corresponding Y (n)-module is denoted by L, (A), and we call it the evaluation module. We keep the notation
L()) for the module Ly (A) with a = 0. The coproduct A defined by (16) allows one to consider the tensor
products Ly, A) ® Ly, (AP) @ -+ ® Ly, (AY) as Y(n)-modules.

Let L be a gl,-module with finite dimensional weight subspaces,

L=@PL,, dimL, <.

14

Then we define the restricted dual to L by
=L,
n

The elements of L* are finite linear combinations of the vectors dual to the vectors of any weight basis
of L. The space L* can be equipped with a gl -module structure by

(Eijf)(v) = f(=En—iz1n—jr1v) , f€L", veL
Denote by w the anti-automorphism of the algebra Y(n), defined by
w tij (U) — tn_i+1)n_]‘+1(—u).

Suppose now that the gl,, action on L is obtained by the restriction of an action of Y(n). Then the
gl,,-module structure on L* can be regarded as the restriction of the Y(n)-module structure defined by

(xf)(v) = f(w(z)v) , for z € Y(n) and f € L*, ve L.
For any A= (A1, ... , Ap) weset A= (=X, ..., —\1). Then we have

Proposition 5.3. [20] Let L be the tensor product L(AY) @ LIAN®) @ --- @ L(AY). Then the Y (n)-module
L* is isomorphic to the tensor product module

LOMY e L) .. .0 L(AWY) .
Proposition 5.4. Suppose that the Y(n)-module

LY@ L) - @ L(\WY) (19)
is simple. Then any permutation of the tensor factors gives an isomorphic Y (n)-module.

Proof. Denote the tensor product by L. Note that L is a Y(n)-module with highest weight (A1(w), ..., An(u)).
Consider a module L’ obtained by a certain permutation of the tensor factors in (19). The tensor product
¢’ of the highest weight vectors of the modules L(A(*) is a singular vector in L’ whose weight is the same
as the highest weight of L. This implies that ¢’ generates a highest weight submodule in L’ such that its
simple quotient is isomorphic to L. However, L and L' have the same formal character as gl,,-modules which
implies that L and L’ are isomorphic. O

t . .
Let AM(u) = (A1 (w), ..., An(u)), where Ai(u) = [](u+ M), i =1,...,n. Set A® = (AP . AP and
s=1

consider a simple highest weight gl,,-module L(A\()).
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6. Simplicity of tensor product

In this section we discuss the simplicity of tensor product of highest weight relation modules for the
Yangians.

Definition 6.1. Let A\(¥) = (/\gi), cee )\%)), i=1,...,0 be n-tuples of complex numbers. We will call the set
(MM ADY generic if for each pair of indices 1 < i < j < I we have AP /\ij) ¢7,st=1,...,n. We

will say that \(u) is integral if it is not generic.

Denote by L(A®) the simple gl,,-module with highest weight A), i = 1,..., 1. Our first result is the sim-
plicity of tensor product LAM)® LIA®)®---@ L(AY) in the generic case. Recall that A = (A1, A, ..., \n)
isgoodif \i = A\j ¢ Zor \; —Aj >i—jforany 1 <i<j<mn.

Theorem 6.2. Let {\), ..., XU} be a generic set with good XV, i =1,...,1. Then the Y(n)-module
LOM) @ L) ® - @ L(AD)
is simple.

We will establish sufficient conditions of simplicity of the Y(n)-module L(\) ® L(x) with good integral A
and p. This extends the result of [21] to some infinite dimensional highest weight modules, though unlike
in [21] we can not show the necessity of these conditions for the simplicity of the tensor product, neither
can we prove it for any number of tensor factors.

Let A = (A1,...,A\n) and p = (u1,..., i) be n-tuples of complex numbers and consider simple highest
weight gl -modules L(\) and L(p). Set also

li=XN—i+1, my=pu—i+1,i=1,--,n.
For any pair of indices ¢ < j the set {lj,l;_1,...,l;} is the union of pairwise disjoint sets
{liygs--- iy, boA{lings - i, oo dlig, - litmt} such that I;  —;., ¢ Z for any r # s, l;,, — l;,, € Z

and i, > i, for a < b.
‘We shall denote

U . J_ = {lirl7lirl +1’.'.7Zi7‘m7\}\{lirl7lir27‘"7lirmr}7i’r’m1 :]
e iy, +2 1 2€ Lo} \{liyyslivgs oo slipy,, brirm, #J

and

|_l l J-‘r . {liTl ) lirl + 17 ] li'mnr} \ {lir17lir2’ ttty li'mn,- }7 Z"’""nl = Z
e (i, + 212 € L0} \{liyis lias -+ li, Jo e, 7

<ljvli>_ =

<lj7 li>+ =

Wiy livn, ]~

Wiys liyn, 1T

c~iC-

r=1

Theorem 6.3. Let A and p be good integral gl,,-highest weights. Suppose that for each pair of indices 1 < i <
7 < n we have

m; ¢ <ljvli>_7mi ¢ <ljali>+ or lj ¢ <mj7mi>_7li ¢ <mj7mi>+' (20)

Then the Y(n)-module L(N\) @ L(u) is simple.
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In the following we prove Theorem 6.2 and Theorem 6.3. The proofs closely follow the proof of Theorem
3.1 in [21] for finite dimensional modules. We include the details for completeness.

6.1. Integral case

We start with the proof of Theorem 6.3. Assume that L(A) ® L(u) is not simple as Y(n)-module. Let &
and &’ denote the highest weight vectors of the gl,,-modules L(X) and L(u), respectively. Consider a nonzero
Y (n)-submodule N of L(A) ® L(x). Then N must contain a nonzero singular vector (. We will show by
induction on n that ¢ € C - £ ® &'. Since A is good then L()) is a relation gl,,-module by [12], Proposition
5.7. We denote by b the Cartan subalgebra of gl,, consisting of diagonal matrices. We identify an element
w € h* with the n-tuple consisting of values of w on the standard basis of b.

Consider the Gelfand-Tsetlin basis B(A) of L(A). The tableau corresponding to the element & is of the
form [R] = (r;;) with rj; = A; —j+1foralli=1,...,n,j=1,...,1.

The element ¢ can be written uniquely as a finite sum:

(= > [Lem, (21)

[(L]eB(N)

where my, € L(u).

Viewing L(A) ® L(p) as a gl,,-module we immediately see that ¢ is a weight gl,,-singular vector, that is
E;;¢ =0 for all ¢ < j. Moreover, all elements [L] ® my, in (21) have the same gl,-weight.

If [L] = (l;;), then the weight w(L) of [L] is a sequence

k k—1
{Zlki—zlk17i+k—1, k= 1n}
=1 =1

Given two weights w,w’ € h*, we shall write w < w’ if w’ — w is a Z>p-linear combination of the simple
roots of gl,,. This defines a partial order on the set of weights of gl,,.

Denote by supp ¢ the set of tableaux [L] € B()) for which my, # 0 in (21). Let [L°] be a minimal element
in supp ¢ with respect to the partial ordering on the weights w(L)’s.

Since 17 41 (u)¢ = 0, we have

SNt (WL @y e (wWmy, = (22)

c1<--<cm L

=t )L @ty (Wmpe + .= 0.

Hence, t177 1 11 (u)mpo = 0 for all m. Thus m o is a highest vector of L(y) and we conclude that m o
is a scalar multiple of &’. This immediately implies that L° is determined uniquely. For any L € supp ( we
have w(L) = w(L%). If [L] = (I;;) € supp& and [L°] = (l?j) then we have [;; fl?j €Zsofor1 <j<i<n-—-1

Permuting L(A) and L(u) if necessary and applying Proposition 5.4, we assume that m,, ¢ (I,,,11)",m1 ¢
(L, 11)T.

Lemma 6.4. The (n — 1)-th row of [L°] is (19, ..., 18_,), where 1§ = \; —i+ 1.

n—1

Proof. Suppose the contrary. Then for each j with l%—l,j #* l? there exists a minimal r(j) such that

[L'(r(i))] = [L° + 0p-1jy + -+ + On—r(j).jr;) 18 @ Gelfand-Tsetlin tableau of L(A) with ji = j. Choose j
such that r(j) is minimal and denote it by r. Also set L' = L'(r).
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Since (¢ is a singular vector, we have

and hence, by (17) we have

Yoo Dot WL @t (wmg =0, (23)

c1<<Cp—r L

Following the proof of Lemma 3.5 in [21] we look at the coefficient of [L'] ® mpo in the expansion of the
left hand side. It comes from the following two summands in (23):

T WL @ T T (w)my (24)
and
o)L @ty Ty, (w)ymp, (25)

if [L'] € supp(.
Consider (24) first. Due to the minimality of r we have F;,[L°] =0 for n —r < i < n — 1. Hence

Enfr,n[LO] = (_1)7'_1En71,nEn72,n71 e Enfr,nfr+1[L0]~

Therefore the expansion of E,,_,,[L°] contains a term a[L’] with a # 0.
It will be convenient to use polynomial quantum minors defined by:

11 tm

Then the coefficient of [L'] in T} =" | (u)[L°] equals

l..n—r—1n

a(u + lgfr,l) T /\ T (U + l?lfr,nfr) .

On the other hand,

T =i @ympe = (u ma) -+ (w4 mp_ 1) (w+my, +7)mpo.

Hence,

T (WL @ Ty 22 (W = (26)

n—r—1,n

a(u+1_p1) - N\ (D) (At ma) - (utmy ) (w+my +7) (L] @ myo).

Consider now (25). We have
TS @] = (u+ ) (wt by 1) (wt I )]

Let [L,] be the highest weight tableau of L(x) in the Gelfand-Tsetlin realization of L(u). Then myo is a
multiple of [L,]. Comparing the weights of [L°] @ myo and [L'] ® mp, we see that my/ is a multiple of the
tableau [L, ] :== [Ly —0p—14, — -+ — On—pj, |- Since (n —r,j) > (n—r—1,j) for j=1,...,n —r —1 and
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the (n —r — 1)-th row of each patter is (41, - . ., fn—r—1), we have that j, = n —r and the (n — r)-th row
of [Ly ] is (ma, ..., Mp_p_1, Mp_p —1).

Therefore E,,_, ,my is a scalar multiple of mpo. If [L'] is not in supp ¢ then my, = 0. In both cases we
have that E,,_, ,mr = bmpo for some constant b, and so

Tllf_'ﬁ__:_l,n(u)my =b-(u+mq) - (u+mp_r_1)mpo.

We have

T @) @ T my =

..n—r—1n

be(utma) - (utmp ) utly_p ) (il + 1) (ut (L] @mp).

Combining these results we obtain

a(u+mn+r)+b-(utily_,., +1)=0.

In particular, we have b = —a # 0 and m,, = I, _,; — 7+ 1. By the minimality of 7 we have I;) ,; =
9 giri, +landm, =109, .
By the definition of [L°] we have I; — I3, ; > 0 and [}, ; — I > 0, where k is the minimal index such

that k > i and A\; — A\ € Z>¢. This implies I; — m,, € Z>o and m,, — I, € Zso. Thus m,, € (I,,,11)~, which
is a contradiction. This completes the proof of the lemma. 0O

Lemma 6.4 implies that all tableaux [L] € supp ¢ belong to the gl,_;-submodule L(A_) of L()) generated
by &. Note that the module L(A_) is simple with the highest weight A_ = (A1, ..., Ap—1) by [12], Proposition
5.3. We have E,,,[L] = A\, [L] for all [L] € supp (. Moreover,

w(L) +w(my) = w(L°) + p.

Hence, E,,mj, = p,my, and the (n— 1)-th row of each tableau my, coincides with p := (1, ..., pn—1). We
see that each my, belongs to the gl, ;-submodule L(u_) generated by &', which is simple highest weight
gl,,_;-module. Therefore, { € L(A_) ® L(p—).

The Y(n — 1)-module structure on L(A_) ® L(u_) coincides with the one obtained by restriction from
Y(n) to the subalgebra generated by the t;;(u) with 1 < 4,57 < n—1 by (16) and (15). The vector ( is
singular for Y(n — 1) (it is annihilated by by (uw),...,by,—2(u)). By the assumption of the theorem, for each
pair (i, j) such that 1 <4 < j < n — 1 the condition (20) is satisfied. Therefore L(A_) ® L(u_) is simple
Y (n — 1)-module by the induction hypothesis. Hence, ( is a scalar multiple of £ ® £’.

It remains to show that L(\) ® L(u) is generated by & ® £’. Suppose that £ ® & generates a proper
submodule N in £ = L(\) ® L(u). Set

N={felL"| flv)=0forallve N}.

Then N is a nonzero (since N # £) submodule of £*. By Proposition 5.3 and above argument, N contains
a singular vector (. As it was shown above ( is a scalar multiple of £* ® £ * of the highest weight vectors
of L(A\)* and L(u)* respectively. On the other hand, £* ® ¢'* ¢ N giving a contradiction. Hence, & @ &
generates L(A) ® L(u). Since all singular elements of the highest weight Y(n)-module L(\) ® L(u) belong
to C - (£ ®¢), the module L(A) ® L(u) is simple. This completes the proof of Theorem 6.3.
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6.2. Generic highest weight modules

Now we prove Theorem 6.2 by induction on [. The case [ = 2 is a consequence of Theorem 6.3, since the
conditions of Theorem 6.3 trivially follow from the conditions of Theorem 6.2.

We assume now that [ > 2 and denote by K the tensor product L(A®?)) @ --- @ L(A(!). Suppose that
K is simple highest weight Y (n)-module. We will show that £ = L(A()) @ K is simple. Then Theorem 6.2
follows by induction.

The proof of simplicity of £ is similar to the proof of Theorem 6.3. Suppose N is a nonzero Y (n)-submodule
of £. Then N must contain a singular vector (:

(= [Lem, (27)
L

summed over finitely many Gelfand-Tsetlin tableaux [L] of L(A®)), where my, € K.

Following the proof of Theorem 6.3 we choose a minimal element [L°] of the set of tableaux [L] occurring
in (27) with respect to the partial ordering on the weights w(A). As before [L"] is determined uniquely, m o
is a scalar multiple of ¢’ and for any [L] that occurs in (27) w(L) = w(L°). Moreover, for each entry l;; of
[L] occurring in (27) we have l;j — If; € Z>o, for 1 <j <i<n—1.

We also have an analog of Lemma 6.4

Lemma 6.5. The (n — 1)-th row of [L°] is (19, ..., 19

n—1

), where 19 = \; —i + 1.
Proof. Choose [L’] as in the proof of Lemma 6.4. Since ¢ is a singular vector, we have

0 =T} iy ()G =

,n—r—1n

= > ZT”’Z )L ® T o (w)me.

c1<-<Cp—r L

The coefficient of [L'] ® myo in the expansion of the left hand side of (21) is the following

k
W+ ) N+ ) [+ mP) - (w+m) )%

[ =2

k
(a [T +m® +7) + glw)(u+1_,; +1)) =0,
=2

where a # 0 and g(u) is a certain polynomial in wu.

Put u = —I)_,; —1. Since a is nonzero, we get m$) = =1y ., —r+1=1)_,, forsome 2 <j < k. Thus
A - )\ Y € Z which is a contradiction. O

It remains to show that £ ® £ generates £. The argument is the same as in the proof of Theorem 6.3.
This completes the proof of Theorem 6.2.

Remark 6.6. We can combine Theorem 6.2 and Theorem 6.3 and obtain simplicity of the tensor product
L)L) @ L(v) ® ... L(vs),

where A and p satisfy the conditions of Theorem 6.3, v1,...,vs satisfy the conditions of Theorem 6.2 and
vl =\, ¢ Z, v} — uy, ¢ Z for all possible 1, j, k.
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7. Proof of Theorem 3.16

Let C be a pre-admissible set of relations and [L] a tableau satisfying C. Assume that C is a union of
indecomposable sets from §. We will show that for any defining relation g = 0in W(x) and [I] € B¢([L]) holds
g[l] = 0. Recall that the action of generators of W (n) in V¢([L]) is given by (12), where a? ] = dr(t)(l)[l]
and the action of d;/”) on [] is a multiplication by a scalar which is polynomial in /. Also recall that the
vector [l £ 55’?] is zero if it does not satisfy C.

Set

T, =) »

e (1) = *W%k,i(l)a if [1] € Be([L])
Tk Go#Ear

0, if [1] ¢ Be([L]),

I(CRREE! 0

J.t .
) _ SO i), A [l] € Be([L])
Fria(® <j,t>g<i,k>( " )
0, if [1] ¢ Be([L]),
B(1, 2 o) = 1, if[l+21+...4+ 2] €Bc(L]) forany 1 <t <m
Pl Em 0, otherwise.

Note that egf,)f ;(1) and f. ® ,(1) are rational functions in the components of [I] and

l<t) _l(k_) l(t) _l(k>
(pr-fl—Pr“rl) (l) _ ]I_I( r+1,j ) (1) ( ) _ ]1_[¢( r—1,j r,1)
.k, (lit; l(k))7 r.k,i H (ls‘t;_likz))
(G,t)#(i,k) (3,t)#(i,k)

Now the action of generators can be written as follows:

4 m — a1, (28)
Z@ (1,84l ) [t + 5%, (29)
£ Z@l—é““ £ -l (30)

We proceed with the verification of defining relations.
1.

QPO
[d;7, d; 71 = 0.

The statement is obvious.

2.
r+s—1
r s 7 ( r+s—t—1
e M = =0 - d] VT, (31)
t=0
The tableaux that appear in the equation (31) are of the form [l—l—éz(ljjl 5(k2 .|, Assume [l—i—éz(lfjl) 53(%2)] €
Be([l]) and |i — j] > 1. Under these conditions [l + 61121} [l — 651222] € Bc([ ). Let [v] be a tableau with

Z-independent entries. Then we have [e; ) f; S)][ ] = 0. Therefore the coefficient of [ _’_51(1211) 6;%’2)] on both
sides of (31) is equal.

Suppose now that |i — j| = 1 and there is no relation between (k1,4,u1) and (kz,j,usz). Similarly to
the case |[i — j| > 1, let [v] be a tableau with Z-independent entries. By comparing the coefficients of
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[+ 51(1211) 5ka | and [v+ (51(]111) 5](]223] we conclude that the coefficient of [l + (52(1111 - (5](122 ] on both sides of
(31) is equal.

Suppose |i — j| = 1 and there is a relation between (k1,,u;) and (ka,j,u2). We denote by C’ the set
that consists of this relation. Let [v] be a tableau such that v(km) = l(k’”) = 1,2 and all other entries are
Z-independent. By Example 3.9 Ve ([v]) is a W (r)-module. Thus [e <T>, £7[v] = 0. Since [1+ 2] € Be([l]) if
and only if [v+2] € Be/([v]) where z = 51121), 55%2 or 52(’21 5(k2) Therefore the coefficient of [l+51(211) 55%,3]
on both sides of (31) is equal.

Suppose i = j and (k1,u1) # (k2,u2). Then there is no relation between (k1, 4, u1) and (kz, 4, ug). Similarly
to the case |i — j| > 1, we prove that the coefficient of [l + 51(1211) 5;1222)] on both sides of (31) are equal.

Suppose ¢ = j and (k1,u1) = (ko,u2) = (k,u). Let [v] be a tableau with Z-independent entries. Then
e, £ Me) = =81y S5l df T V),

The coefficient of [I] on the left hand side is as follows:

r k s s k r
zeszu — OIS ) = ST w4 0)eln L (v).

k,u

We denote the coefficient of [v] on the right hand side by h(v).
Since ®(l, —80),d0)) = ®(1, —0..)) and (1,00, —55)) = ®(1,6.), the coefficient of [I] in [e”, £1*)][1]

) T Y w0 r Y u

is

Z(P 5(k) 1‘ (l_(sz(k zku Z(PL(S?(S zku(l+6 )6 k“(l)

The coefficient of [I] in —d;; SJite ' d t) dl(:fs =1 [l] is h(l). We have

S 0l —def = S0 - S oA+ L0

k,u

= Y =R ST Ll )

kyu,®(1,—6)=1 Foou, (1,68 =1

. r k s k
= bim DR CE O VA ) RN S v A CR O Ly )
kou,d(1,—58))=1 keyu, @ (1,808))=1

In order to show

Z@Z—é““ (L= 0WN ) 1) = ST @1, 60 15 L+ 00)el) () = h(D)

k,u

it is sufficient to prove that

lim 3 ) W= = ST 8wl )el) () | =0, (32)

v—l
kyu, @ (1,—6%))=0 kyu, ®(1,6(8))=0

computing we have

. r k k) r
’})li)nl Z gk)u( 5( ))fzku(v)_ Z flku(v+6( )6 ,k),u(v)
keu, (1,—5)) 20 keou, ®(1,65)£0
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=0, 00l (1= o) ) L Zcb (100N £ 1+ 6)el) (1),
k,u

v—l

lim Zemvfa"”)f“) W) = > f5) w+auhel) ()
k,u

=S "D, —80Nel) (18U 5 1) = ST (1,600 5 L1+ 6)el) L ().
ko

k,u

On the other hand,

Zeﬁ)u — ) F (v Zf“ (v+ 68 () | = h(v)

where h(v) is a polynomial in v. Then the limit is h(l).
Thus we have

S, —00)en) (1= 6 S 1) = ST @l 88 £ L1+ 8l (1) = h().

k,u

The following statements can be verified by direct computation:

(i) If (1, -6y = 0 and 1k, — IF, £ 1 for any (K',u’) # (k,u), then
tim el’) (0= 60)) 5, (0) = 0.
(i) If ®(I, 5(5)) =0and ¥, —1¥ #1 for any (k',u’) # (k,u), then
tim £5, (0 + 30 )el),(0) = 0.

?,

(iii) If 1%, — I¥', = 1, then ®(I, —6'") = &(1,6*)) = 0 and

s Yiu!

. r s s k (r
Therefore (32) holds and we complete the proof.
3.
r—1
r s r4+s—t—1
[d] ),€§' = (0i5 — dij41) Zdi(t) eg‘ e, (33)
t=0
r—1
r s r4+s—t—1 t
4 N = Gy = 8) 350 a, (3
t=0

To prove that for every [l + 55?] € Bc([l]), the coefficients on both sides of (33) are equal, consider a
tableau [v] with Z-independent entries. For [v] the coefficients on both sides of (33) are equal. Taking the
limit v — [ we obtain the statement.

The Relation (34) can be proved by the same argument.

Please cite this article in press as: V. Futorny et al., Gelfand-Tsetlin representations of finite W-algebras, J. Pure Appl.
Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.106226




JPAA:106226

24 V. Futorny et al. / Journal of Pure and Applied Algebra ess (sses) eeseee
4.
e, eV = (e e = Vel + e, (33)
r+1 s r s+1 r) pls $) T
AR Pl R PR Al [ S Pl R A e (36)

The tableaux which appear in the Equation (35) are of the form [l+25§?] and [l+5£,ks) +5i(;)], (k,s) # (r,t).
In the following we show the for any such tableau in B¢ ([!]) the coefficients on both sides of (35) are equal. It is
easy to see that when [l+25§”€5) ] € Be([l]) then [l+5§,ks)] € Be([l]). Hence the corresponding value of @ is 1 and
the coefficients on both sides are equal. Similarly, if [l+5§i,) +5§?] € Be([l]) then [l+5fi)], [l+5£?] € Be([1)).
Thus the coefficients of [l + §(k) + 5(T)] (k,s) # (r,t) on both sides of (35) are equal.

Consider a tableau [v] with Z- independent entries. For [v] the coefficients on both sides of (35) are equal.
Taking the limit v — | we obtain Equation (35).

The Relation (36) can be proved using the same arguments.

5.
7, 3V — [+, el 00 =~ o
A0 = (17 5TV = RO, (38)

The tableaux which appear in Equation (37) are of the form [l+5(k)+5l+1 .). Let [l+5(k)+5fi)1 ) € Be(l]).

If there is no relation between (k,,s) and (r,i+ 1,t), then [l + 5(k)], [+ 51(?1 ) € Be([l]). By the argument
on the proof of (7) we have the same coefficients of [l 4+ 5(k) + 5(7") ] on both sides of (37).

i+1,t
Assume C' = {(r,i+1,t) > (k,i,5)} C C. It is admissible by Example 3.9. Let [v] be a tableau such that
f:_)l ;= lz(:_)l " Z(ks) = l( ) and all other entries are Z- independent. Then V¢ ([v]) is a W (m)-module and

[eET’,efit”n ]~ [, )] = el [o]. Since [1 + 2] € Be([) if and only if [o + =] € Bor([e) for
z = 6 s ,61+1 “ by substituting [ for v in the coefficients of [v + §; k) + 57+1 ;] we obtain the coefficients of
1+ 9, k) + 5l+1 ;]. Therefore the coefficient of [I + 6(k) + (5(+1 ,] on both sides of (37) are equal.

Slmllarly one treats the case when {(k,i,s) > (7", i+ 1,t)} C C. This completes the proof of (37). The
equality (38) can be proved by the same argument.

6.
e €571 =0, it i j > 1,
7, 0 = o, if i —j| > 1.
The proof is analogous to the proof of Relations (37) and (38).
7.
el 61 N + et [ef”, e =0, it Ji—jl =1, (39)
O L 7 £ = o, it i gl =1 (10)
Potential tableaux in the equality (39) are of the form [l + 511211) + 61(%2 + 5(k3 ] (we want to show that
the coefficient of such tableaux is zero). Assume [l + 51(]21) + 51(1222) + 5112”3)] € Bc([l]). Suppose first that there

is no relation between (k1,4,u1), (ke,i,us) and (ks, j,uz). Let [v] be a tableau with Z-independent entries.
Then

e e e [e] + [ [e1”, o] = 0.
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The coefficient of [l + stk gka) | (5 } is obtained by substituting ! for v in the coefficient of [v 4+ stk

7, U1 1, U2

sika) 4 5(k3 -], which is zero.

1, U2

zul

Suppose Jj =14+ 1 1If (ks,j,u3z) > (k1,4,u1) and there is no relation between (ks, j, u3) and (ka, 1, uz),
then set C' = {(ks,j,us) > (k1,i,u1)}. Consider a tableau [v] such that v(k”f) = l(lC for m = 1,2,3,

i1 = iy = i,43 = ¢+ 1 and all other entries are Z-independent. Then [l + z] € Bc([ ]) if and only if
[v+ 2] € Be:([v]), where z is §°) or gm1) 4 5lkma)

s Um g s Umy Tmg sUmoy

Since [e(r), [egs), e;t)]][v] + [egs)7 [e Z(-r), (t )]][ | = 0, we have that the coefficient of [I + 5(k1) 4 gke) y 5tka)

i ] i,u2 Ju3]

, m,my,mo = 1,2, 3.

is zero.
If there exists a relation between (kg, j, usz) and (k1,¢,uq1), then by the same argument one can show that
the coefﬁment of [ +9; (k1) | 5lk2) 4 sk

2]
2,U1 2, U2 Jug

f (k1,i,u1) > (ks,j,us) and (ks,j,us) > (ko2,%,us), then there exists (kq,7 — 1,u4) such that
(k]_,i,U]_) Z (k47i - 17“’4) and (k47i - 1,U4) Z (kg,l-,U/Q). Let C, = {(k]_,i,’l,t]_) > (]{73,],U3> (kg,],’l,tg) e
(ka,t,u2), (k1,4,u1) > (kg,i — 1, uq), (ka,i — 1, uq) > (k2,4,u2)} and [v] a tableau such that vl(fi";) = lz(m’:‘u)m

form=1,2,3,4,9 =1y = 14,13 = i+1,74 = i—1 and all other entries are Z-independent. Then [I+z] € B¢ ([I])
if and only if [v + 2] € Be/([v]), where z is 5§im) or 5 Fma) -y 5 ma)

JUm Tmq sUmyq Ty yUmy

Since [e(- i e (&) ;t)]][v} + [egs), [el(,”)7 ey)]][v] = 0, we have that the coefficient of [l + 5(k1) 4 gke) y 5tka)

7 % iU Jug]

is zero.

m,my,mo = 1,2, 3.

is zero.

The case j = i — 1 is treated similarly. This completes the proof of (39). The second equality can be
proved in the same way. We complete the proof of the sufficiency of conditions in Theorem 3.16.

Suppose there exists an adjoining triple (k,,35), (r,4,t) which does not satisfy the condition (1). Then
applying the RR-method to C, after finitely many steps, we will obtain a set of relations from Example 3.10
which is not admissible. Thus C is not admissible.
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