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1. Introdução  

Em finanças, a volatilidade de um ativo representa a variabilidade dos seus 

retornos ao longo do tempo, sendo frequentemente utilizada como uma medida de risco. 

Altos níveis de volatilidade implicam em maior incerteza quanto ao comportamento futuro 

dos preços, o que impacta diretamente o processo de tomada de decisão por parte de 

investidores, gestores de risco e formuladores de políticas econômicas. 

No contexto atual, marcado por intensa dinâmica dos mercados financeiros, as 

criptomoedas se destacam como ativos de elevada volatilidade. Essa característica torna 

essencial o desenvolvimento de modelos robustos capazes de antecipar os padrões de 

variação de seus preços. Modelos baseados em dados intradiários têm se mostrado 

particularmente promissores nesse aspecto, conforme estudos como o de Val et al. 

(2014). 

O presente trabalho se insere nesse contexto, visando contribuir para a literatura 

de previsão de volatilidade com foco em ativos digitais, por meio de modelos 

heterogêneos autoregressivos (HAR) e suas extensões. 

2. Objetivo 

O objetivo central deste estudo é desenvolver modelos estatísticos preditivos da 

volatilidade de ativos, com ênfase no uso de dados intradiários e variáveis exógenas que 

reflitam informações de mercado e sentimento econômico. Almeja-se: 

 Avaliar o desempenho preditivo dos modelos HAR, HAR-CJ, HAR-TCJ, LHAR-

TCJ e HAR-SJ; 

 Investigar o valor informacional de variáveis como retorno negativo e 

indicadores de saltos; 

 Adicionar medidas de retorno excessivo ao mercado; 

 Incorporar medidas de sentimento, como o Índice de Incerteza de Política 

Econômica (GEPU) e Google Trends; 

 Comparar os modelos em termos de previsões dentro e fora da amostra. 
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3. Variáveis 

A variável dependente principal dos modelos é a Realized Volatility (RV), obtida a 

partir da soma dos quadrados dos retornos intradiários: 

                                          𝑅𝑅𝑅 = ∑ 𝑟𝑖,𝑡
2𝑛

𝑖=1 ,                                                     (1) 

onde ri,t representa o retorno no intervalo i do dia t. 

As Figuras B.1 a B.3 mostram a série de RV para os ativos Bitcoin (BTC), Amazon 

(AMZN) e Apple (AAPL), respectivamente. 

As variáveis explanatórias incluem: 

● Médias móveis de RV; 

● “Saltos” (jumps): distinguem movimentos bruscos dos preços da variabilidade 

global; 

● Retornos negativos: capturam efeitos de assimetria (leverage effect); 

● S&P500: um índice de mercado, mantido pela empresa Dow Jones, que 

acompanha o desempenho de 500 das maiores empresas de capital aberto dos 

Estados Unidos, amplamente utilizado como proxy para movimentos do mercado 

de ações como um todo; 

● GEPU - Global Economic Policy Uncertainty Index: índice desenvolvido em Baker 

et al. (2016) que mede a incerteza da política econômica a partir da frequência de 

termos relacionados à incerteza econômica em jornais de diversos países. Quanto 

maior o índice, maior a percepção de incerteza; 

● Google Trends: usado como índice de atenção, fornece dados sobre o volume de 

buscas por palavras-chave ao longo do tempo, refletindo o interesse público ou de 

investidores por certos termos. 
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3. Modelos HAR 

Os modelos do tipo heterogêneos autoregressivos (HAR) utilizam a volatilidade 

realizada do ativo para realizar previsões de volatilidade em janelas futuras com uma 

estrutura simples de regressão linear. 

Estudos como o de Izzeldin et al. (2019) e Corsi (2009) mostram que o modelo 

HAR apresenta previsões de volatilidade robustas em diferentes condições de mercado 

e horizontes temporais, quando comparado com modelos tradicionais, como ARFIMA e 

GARCH. 

Modelo HAR 

Desenvolvido em Corsi (2009), o modelo HAR simples assume que a volatilidade 

realizada pode ser explicada por sua própria média ao longo de diferentes janelas 

temporais: 

                        𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−5
(𝑊)

+ 𝛽𝑚𝑅𝑉𝑡−22
(𝑀)

+ 𝜖𝑡 ,                     (2) 

com 𝑅𝑉𝑡−5
(𝑊)

=
1

5
∑ 𝑅𝑉𝑡

𝑡−1
𝑡=𝑡−5  e 𝑅𝑉𝑡−22

(𝑀)
=

1

22
∑ 𝑅𝑉𝑡

𝑡−1
𝑡=𝑡−22  médias móveis semanais e mensais 

de RV, respectivamente. 

 Se baseia na ideia de que diferentes tipos de agentes de mercado possuem 

comportamentos e tempos de reação distintos quando expostos a novas informações, 

gerando impacto na volatilidade em diversas janelas temporais. 

Modelo HAR-CJ 

O modelo HAR-CJ, apresentado em Corsi et al. (2010), separa a volatilidade 

realizada em componentes contínuos e discretos, utilizando jumps. Inclui saltos que 

afetam a dinâmica da volatilidade de forma diferente da variação contínua: 

               𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝐶𝑡−1 + 𝛽𝑤𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝐶𝑡−22
(𝑀)

+ 𝛾𝐽𝑡−1 + 𝜖𝑡 ,                  (3) 

onde 𝐽𝑡−1 representa a componente de jumps da volatilidade e 𝐶𝑡−1 = 𝑅𝑉𝑡−1 − 𝐽𝑡−1 . 

 Essa decomposição dos componentes gera uma melhor previsão pois permite 

captar de forma mais eficiente a dinâmica dos choques no mercado ao distingui-la de 

variações contínuas. 



11 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

Modelo HAR-TCJ 

O modelo HAR-TCJ (Andersen et al., 2011), possui a mesma estrutura do HAR-

CJ, porém utiliza uma correção robusta no teste de saltos, gerando mais precisão e 

assertividade: 

                  𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑇𝐶𝑡−1 + 𝛽𝑤𝑇𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝑇𝐶𝑡−22
(𝑀)

+ 𝛾𝑇𝐽𝑡−1 + 𝜖𝑡,           (4) 

onde 𝑇𝐽𝑡−1 é a parcela que representa jumps da volatilidade, corrigida por um limitador, 

e 𝑇𝐶𝑡−1 = 𝑅𝑉𝑡−1 − 𝑇𝐽𝑡−1 . 

A utilização de um threshold (limitante) para calcular os saltos elimina parte do 

ruído nos dados, criando um modelo que performa melhor. Sua descrição e cálculo serão 

abordados de forma mais aprofundada na seção subsequente. 

Modelo LHAR-TCJ 

Corsi e Renò (2012) adicionam uma componente de assimetria (leverage) ao 

HAR-TCJ, seguindo a premissa de que os retornos negativos têm um impacto maior na 

volatilidade do que os positivos, criando o LHAR-TCJ: 

         𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑇𝐶𝑡−1 + 𝛽𝑤𝑇𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝑇𝐶𝑡−22
(𝑀)

+ 𝛾𝑇𝐽𝑡−1 +  𝛿𝑒𝑟𝑡−1
−

+ 𝜖𝑡 ,      (5) 

em que 𝑟𝑡−1
− = min(𝑟𝑡−1, 0). 

Modelo MLHAR-TCJ 

Agregando o retorno excedente do ativo sobre o mercado, nesse caso 

considerando o retorno do S&P500 como aproximação, buscamos metrificar o impacto 

do resultado excessivo na volatilidade, baseado na conexão intrínseca de risco e retorno. 

Assim, temos o modelo MLHAR-TCJ: 

      𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑇𝐶𝑡−1 + 𝛽𝑤𝑇𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝑇𝐶𝑡−22
(𝑀)

+ 𝛾𝑇𝐽𝑡−1 +  𝛿𝑒𝑟𝑡−1
−

+  𝜏𝐷𝑡−1 + 𝜖𝑡,     (6) 

com 𝐷𝑡−1 = max (𝑟𝑡−1
𝑎𝑡𝑖𝑣𝑜 − 𝑟𝑡−1

𝑆&𝑃500, 0). 

Modelo ULHAR-TCJ 

Adicionando o GEPU como variável independente, criamos o modelo UHAR-TCJ, 

que busca cumular poder de previsão de volatilidade dos ativos utilizando o nível de 

incerteza política global refletida no mercado: 
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  𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑇𝐶𝑡−1 + 𝛽𝑤𝑇𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝑇𝐶𝑡−22
(𝑀)

+ 𝛾𝑇𝐽𝑡−1 +  𝛿𝑒𝑟𝑡−1
−

+  𝜇𝐺𝐸𝑃𝑈𝑡−1 + 𝜖𝑡 , (7) 

Modelo ALHAR-TCJ 

Utilizando o Google Trends, esperamos capturar a influência do número de 

investidores atentos ao ativo em sua volatilidade, devido a variação do volume de 

transações e/ou a expectativa de acontecimentos relevantes: 

      𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝑇𝐶𝑡−1 + 𝛽𝑤𝑇𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝑇𝐶𝑡−22
(𝑀)

+ 𝛾𝑇𝐽𝑡−1 +  𝛿𝑒𝑟𝑡−1
−

+  𝜓𝐺𝑡−1 + 𝜖𝑡 ,    (8) 

com 𝐺𝑡 sendo o volume normalizado de pesquisas do termo referente ao ativo no 

Google Trends no dia t. 

Modelos HAR para funções de RV 

Os modelos serão estimados usando 3 funções de RV. Exemplificando com o modelo 

HAR-CJ, temos: 

𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑𝐶𝑡−1 + 𝛽𝑤𝐶𝑡−5
(𝑊)

+ 𝛽𝑚𝐶𝑡−22
(𝑀)

+ 𝛾𝐽𝑡−1 + 𝜖𝑡 

√𝑅𝑉𝑡 = 𝛼 + 𝛽𝑑√𝐶𝑡−1 + 𝛽𝑤√𝐶𝑡−5
(𝑊)

+ 𝛽𝑚√𝐶𝑡−22
(𝑀)

+ 𝛾√𝐽𝑡−1 + 𝜖𝑡 

ln(𝑅𝑉𝑡) = 𝛼 + 𝛽𝑑 ln(𝐶𝑡−1) + 𝛽𝑤 ln (𝐶𝑡−5
(𝑊)

) + 𝛽𝑚 ln (𝐶𝑡−22
(𝑀)

) +𝛾 ln(𝐽𝑡−1 + 1) + 𝜖𝑡 

4. Testes de jumps 

Para testar a existência de jumps no dia t utilizaremos um teste de hipóteses proposto 

por Barndorff-Nielsen e Shephard (2006), baseado na ideia de que, na ausência de 

saltos, a diferença entre a soma de quadrados dos retornos (RV) e a soma dos produtos 

dos pares de retornos imediatamente seguintes (BPV) deve ser pequena. 

O teste pode ser realizado com as estatísticas de teste Z simples ou C-Tz, uma 

estatística robusta com limitador (threshold): 

𝑍 = 𝛿−
1
2

(𝑅𝑉𝑡 − 𝐵𝑃𝑉𝑡). 𝑅𝑉𝑡
−1

√𝜃. max {1,
𝑇𝑟𝑖𝑃𝑉𝑡

(𝐵𝑃𝑉𝑡)²
}

, 
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𝐶-𝑇𝑧 = 𝛿−
1
2

(𝑅𝑉𝑡 − 𝐶-𝑇𝐵𝑃𝑉𝑡). 𝑅𝑉𝑡
−1

√𝜃. max {1,
𝐶-𝑇𝑇𝑟𝑖𝑃𝑉𝑡

(𝐶-𝑇𝐵𝑃𝑉𝑡)²
}

, 

com 𝜃 =
𝜋2

4
+ 𝜋 − 5,  𝛿 =

𝑇

𝑛
 ,  o tamanho dos subintervalos em que dividimos o período T 

(dia) e 𝐵𝑃𝑉𝑡, 𝑇𝑟𝑖𝑃𝑉𝑡,  𝐶-𝑇𝐵𝑃𝑉𝑡, 𝐶-𝑇𝐵𝑃𝑉𝑡 descritos no Apêndice C. Ambas seguem uma 

Normal Padrão sob a hipótese nula de não existência de salto.  

As Figuras B.4 a B.6 mostram que o número de dias em que saltos são detectados 

utilizando a estatística com threshold C-Tz é consistentemente maior do que com os 

testes feitos com a estatística Z para todos os ativos. 

Finalmente, os saltos são calculados com base no teste considerado: 

𝐽𝑡 = 𝟏(𝑧𝑡>Φ𝛼)max (𝑅𝑉𝑡 − 𝐵𝑃𝑉𝑡 , 0) 

ou 

𝑇𝐽𝑡 = 𝟏(𝐶-𝑇𝑧𝑡>Φ𝛼)max (𝑅𝑉𝑡 − 𝑇𝐵𝑃𝑉𝑡 , 0) 

em que Φ𝛼 é a função de distribuição acumulada (f.d.a.) da Normal Padrão, com nível 

de confiança 𝛼, e 𝑇𝐵𝑃𝑉𝑡, é descrito no Apêndice C. 

5. Análise in-sample 

O propósito da análise in-sample (dentro da amostra), é observar se as variáveis 

explicativas possuem poder preditivo sobre a volatilidade dos ativos.  

Para isso, utilizamos a série completa para estimar a regressão do modelo 

utilizando o método de mínimos quadrados ordinários (OLS), porém com o estimador 

de Newey-West (1987) para calcular a matriz de variância-covariância, dos 

estimadores dos coeficientes, de forma robusta na presença de heterocedasticidade 

e autocorrelação.  
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Avaliamos o desempenho preditivo dos modelos, nas transformações 𝑅𝑉𝑡, √𝑅𝑉𝑡 

e ln(𝑅𝑉𝑡), utilizando as medidas: 

 R²: de Mincer-Zarnowitz (1969) para previsões de regressão; 

 HRMSE: Raiz do Erro Quadrático Médio Heterocedástico Ajustado, proposto em 

Bollerslev e Ghysels (1996), dado por: 

𝐻𝑅𝑀𝑆𝐸 = √1

𝑇
∑ (

𝑅𝑉𝑡−𝑅𝑉𝑡̂

𝑅𝑉𝑡
)

2
𝑇
𝑡=1 ; 

onde 𝑅𝑉𝑡̂ é o valor previsto pelo modelo para a RV no tempo t. 

 QLIKE: Função de Perda de Quase-Verossimilhança, robusta na avaliação de 

previsões de volatilidade, na forma definida em Patton (2011): 

𝑄𝐿𝐼𝐾𝐸 =
1

𝑇
∑ (log 𝑅𝑉𝑡 −

𝑅𝑉𝑡̂

𝑅𝑉𝑡
)𝑇

𝑡=1 , 

As Tabelas A.1 a A.9 mostram os resultados da análise para o Bitcoin, Amazon e 

Apple.  

Os resultados revelam padrões consistentes e algumas distinções importantes entre 

os ativos no desempenho dos modelos considerados. 

Um resultado comum a todos os ativos foi a melhora sistemática nas métricas de 

previsão ao aplicarmos transformações na variável dependente. Especificamente, a 

transformação logarítmica da RV apresentou o melhor desempenho preditivo, seguida 

pela transformação por raiz quadrada, enquanto a modelagem da RV em sua forma 

original resultou nos ajustes menos eficazes. Por exemplo, no caso do BTC, os valores 

de R² do modelo mais simples, HAR, foram 0,279, 0,522 e 0,589, respectivamente. 

Tendência semelhante foi observada para AMZN e AAPL, indicando que transformações 

estabilizadoras de variância são eficazes para melhorar a qualidade da previsão. 

Para o BTC, o modelo que apresentou o melhor desempenho geral foi o MLHAR-TCJ, 

que utiliza o retorno excedente sobre o mercado, com R² de 0,6, HRMSE de 0,893 e 

QLIKE de 1,867, porém, no caso da previsão de RV, o modelo com as melhores métricas 

foi o ALHAR-TCJ, com R² de 0,365, HRMSE de 2,005 e QLIKE de 2,171. Modelos mais 
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simples apresentaram R² inferiores e erros preditivos maiores, o que reforça a percepção 

de que a dinâmica de ativos voláteis como as criptomoedas possuem reflexo em seus 

retornos e devem sofrer maior impacto conforme os agentes de mercado desviam sua 

atenção em direção a eles. 

No caso da AMZN, o modelo de melhor desempenho foi o HAR-CJ, com R² de 0,724, 

HRMSE de 0,581 e QLIKE de 0,713. A inclusão de variáveis adicionais em modelos mais 

complexos, como o ULHAR-TCJ ou ALHAR-TCJ, melhoram gradativamente as medidas 

de desempenho do modelo LHAR-TCJ, mas não o suficiente para superarem a 

previsibilidade do HAR-CJ. Isso indica que, para a AMZN, a estrutura básica de 

heterogeneidade de horizontes com componente de salto já é suficiente para capturar a 

dinâmica da volatilidade. 

Por fim, para a AAPL, o modelo com melhor desempenho, considerando também a 

complexidade, foi o LHAR-TCJ, que apresentou R² de 0,594, HRMSE de 0,619 e QLIKE 

de 0,174. As tentativas de adicionar novas variáveis exógenas não resultou em ganhos 

expressivos: tanto o R² quanto os erros de previsão permaneceram sem melhoras 

significativas. Isso sugere que a estrutura do LHAR-TCJ é adequada para a dinâmica da 

AAPL, e que modelos mais complexos podem apenas aumentar o risco de sobreajuste 

sem ganhos substanciais em previsão ou que as variáveis exógenas estudadas não 

possuem poder explicativo sobre esse ativo. 

Podemos observar o comportamento das previsões dos modelos que performaram 

melhor em cada ativo pelas Figuras B.7 a B.9. 

6. Análise out-of-sample 

Na análise out-of-sample (fora da amostra), cujo objetivo é validar a qualidade das 

previsões realizadas pelos modelos, a estimação é feita de forma iterativa: 

 Partindo de uma janela inicial de tamanho 𝑅 = 0.4 ∗ 𝑇 (limitada a 3 anos), com T 

sendo o tamanho da série, a estimação do modelo é feita como na análise in-

sample, com a variável dependente igual a média móvel de RV, de 1 dia, 1 

semana, 2 semanas ou 1 mês, à frente; 

 Em seguida, é feita a previsão da observação imediatamente seguinte ao final da 

janela, que é então armazenada em um vetor; 
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 A janela de estimação é movida 1 passo à frente (com tamanho R, fixo) e a 

previsão seguinte é feita, armazenada, e assim por diante. 

 Por fim, é feita uma regressão simples entre os valores previstos e os reais, 

denominada Regressão OS. 

As medidas utilizadas para comparação dos modelos, novamente para as funções  

𝑅𝑉𝑡, √𝑅𝑉𝑡 e ln(𝑅𝑉𝑡), são: 

 R²: da Regressão OS; 

 HRMSE, como descrita anteriormente, da Regressão OS; 

 MAE: Erro Absoluto Médio, também da Regressão OS, dado por: 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑅𝑉𝑡 − 𝑅𝑉𝑡̂|𝑇

𝑡=1 . 

Os resultados dessa análise (Tabelas A.10 a A.18), mostram o mesmo padrão quanto 

as transformações: melhores previsões são alcançadas utilizando a transformação 

logarítmica, seguida da raiz quadrada e por fim as previsões menos eficazes são obtidas 

sem transformação alguma (RV), com exceção da AAPL, onde as melhores previsões 

são realizadas com a transformação pela raiz quadrada. 

No caso do BTC, a melhora das previsões também ocorre conforme aumentamos a 

janela de previsão, de 1 dia até 1 mês, algo que pode ser específico de ativos tão voláteis 

quanto as criptomoedas, reduzindo o ruído nos dados e amortecendo grandes variações. 

Novamente, o melhor modelo é o MLHAR-TCJ, porém com menos disparidades nas 

medidas comparativas, fazendo previsões menos precisas em janelas curtas, de 1 dia e 

1 semana, do que outros modelos mais simples, como o HAR-CJ, em especial para a 

transformação do logaritmo de RV. 

De forma similar ao BTC, as previsões da AMZN também melhoram ao longo do 

aumento das janelas temporais, porém, o R² começa a decair a partir da janela mensal, 

indicando que, para esse ativo, estender muito a janela de previsão pode causar uma 

suavização exagerada da volatilidade, reduzindo assim as informações específicas 

contidas em janelas menores. Em linha com a análise in-sample, o modelo que apresenta 

as melhores previsões fora da amostra é o HAR-CJ, porém, não com o destaque anterior, 



17 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

tendo previsões menos precisas do que o modelo ALHAR-TCJ, em janelas de 1 dia e 1 

semana na transformação quadrática. 

Já para AAPL, janelas preditivas de 2 semanas ou mais apresentam medidas 

comparativas piores do que da janela de 1 semana, onde ocorre a maior precisão das 

previsões, replicando o movimento de perda de informação observado na AMZN. 

Divergente da análise in-sample, o modelo com a melhor qualidade preditiva fora da 

amostra é o ULHAR-TCJ, que apresenta medidas consistentemente maiores do que o 

modelo LHAR-TCJ, apontando que, provavelmente, ativos ligados diretamente ao poder 

de compra e políticas econômicas, sofrem maiores impactos dos índices de incerteza 

como o GEPU. 

Mais uma vez, podemos observar o comportamento das previsões, em todas as 

janelas temporais, dos modelos que performaram melhor em cada ativo pelas Figuras 

B.10 a B.12. 

7. Conclusão 

As análises sobre o comportamento dos modelos HAR para previsão de volatilidade 

realizada (RV), reforçam tanto a importância de considerar a transformação da variável 

dependente quanto a adequação específica do modelo à dinâmica de cada ativo. 

Enquanto o BTC exige maior flexibilidade estrutural, ativos como AMZN e AAPL parecem 

responder melhor a modelos mais parcimoniosos, desde que adequadamente 

especificados. 

Em ambos os cenários, in-sample e out-of-sample, a transformação logarítmica da 

RV se destacou como a mais eficaz no geral, seguida pela transformação por raiz 

quadrada, com a modelagem da RV em sua forma original apresentando os piores 

desempenhos. Essa tendência se confirmou para BTC, AMZN e AAPL, refletindo a 

eficácia das transformações estabilizadoras de variância na melhora das métricas 

preditivas. 

Os desempenhos dos modelos variaram significativamente entre os ativos. Para o 

BTC, o modelo MLHAR-TCJ apresentou o melhor ajuste in-sample e também o melhor 

desempenho preditivo em janelas maiores fora da amostra, evidenciando a importância 

de variáveis de retorno de mercado em ativos de alta volatilidade. Para a AMZN, o HAR-
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CJ demonstrou desempenho superior in-sample e manteve sua competitividade out-of-

sample, principalmente em janelas curtas, sugerindo que a inclusão de saltos já é 

suficiente para capturar a dinâmica de sua volatilidade. No caso da AAPL, embora o 

LHAR-TCJ tenha se destacado in-sample, o ULHAR-TCJ superou os demais modelos 

fora da amostra, especialmente em janelas curtas, indicando que variáveis relacionadas 

à incerteza econômica (como o GEPU) podem ter maior relevância nesse ativo. 

Adicionalmente, observou-se que o horizonte de previsão influencia fortemente a 

acurácia preditiva: no BTC e AMZN, janelas maiores tendem a suavizar o ruído e 

melhorar a performance, até certo ponto; por outro lado, para a AAPL, janelas maiores 

levam à perda de informação, com o melhor desempenho concentrado em horizontes 

curtos (1 semana). 

Esses resultados reforçam que não há um modelo universalmente superior, sendo 

necessário considerar tanto a natureza do ativo quanto o horizonte temporal e a forma 

de transformação da variável de interesse. Além disso, modelos mais complexos nem 

sempre geram ganhos significativos em previsão, podendo inclusive aumentar o risco de 

sobreajuste, especialmente quando as variáveis exógenas adicionadas possuem baixo 

poder explicativo. 
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 Tabela A.1 Resultados in-sample para previsão de RV do Bitcoin (BTC)  

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,011*** 0,012*** 0,007* 0,971* 1,000** 0,968* -3,657* 

βd 0,392*** 0,390*** 0,176 0,102 0,102 0,101 0,377 

βw 0,052 0,070 0,140 0,204 0,204 0,201 0,079 

βm 0,219** 0,217* 0,353 0,294* 0,295* 0,315* 0,186* 

γ  -0,154 1,050 0,863* 0,862* 0,859* 3,898* 

δ    -0,973* -1,002** -0,979* -0,237* 

ͳ / μ / ψ       -0,031 0,000 0,000 

R² 0,245 0,247 0,302 0,362 0,362 0,362 0,365 

HRMSE 2,146 2,208 2,001 2,073 2,078 2,095 2,005 

QLIKE 2,712 2,728 2,563 2,292 2,292 2,299 2,171 
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Tabela A.2 Resultados in-sample para previsão de √RV do Bitcoin (BTC)  

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e ***, 

respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,028*** 0,031*** 0,035*** 1,790* 3,567** 1,787* 1,769* 

βd 0,488*** 0,498*** 0,485*** 0,355*** 0,326*** 0,354*** 0,345*** 

βw 0,137* 0,132* 0,162* 0,249** 0,254*** 0,249** 0,244** 

βm 0,157** 0,158** 0,143** 0,132** 0,144** 0,135** 0,112* 

γ  -0,036 0,188** 0,129** 0,101* 0,129** 0,136** 

δ    -1,755* -3,520** -1,758* -1,749* 

ͳ / μ / ψ       -0,284* 0,000 0,004* 

R² 0,478 0,484 0,478 0,513 0,529 0,513 0,516 

HRMSE 1,223 1,227 1,202 1,186 1,226 1,187 1,147 

QLIKE 2,105 2,102 2,093 2,084 2,093 2,085 2,071 



22 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

 

 

 

 

 

Tabela A.3 Resultados in-sample para previsão de ln(RV) do Bitcoin (BTC)  

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α -0,565*** -0,504*** -0,587*** -0,730*** -0,944*** -0,394 -1,083*** 

βd 0,491*** 0,512*** 0,461*** 0,403*** 0,391*** 0,404*** 0,389*** 

βw 0,233*** 0,209*** 0,210*** 0,251*** 0,253*** 0,250*** 0,250*** 

βm 0,169*** 0,170*** 0,153*** 0,147*** 0,150*** 0,141*** 0,132*** 

γ  -4,828 3,562*** 2,555* 2,024 2,596* 2,719* 

δ    -3,979*** -6,042*** -3,937*** -4,001*** 

ͳ / μ / ψ       -0,021** -0,065 0,080* 

R² 0,568 0,578 0,589 0,597 0,600 0,597 0,598 

HRMSE 0,962 0,965 0,982 0,917 0,893 0,922 0,902 

QLIKE 1,889 1,882 1,877 1,870 1,867 1,870 1,868 
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Tabela A.4 Resultados in-sample para previsão de RV da Amazon (AMZN)  

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,003** 0,002* 0,003*** 0,121* 0,291** 0,143* 0,123* 

βd 0,082* 0,437*** 0,583** 0,549** 0,511* 0,561** 0,550** 

βw 0,133 0,342* 0,588* 0,588* 0,621* 0,601* 0,581* 

βm 0,595*** 0,561** 0,440* 0,434* 0,422* 0,392* 0,436* 

γ  0,002 0,090** 0,080* 0,091* 0,064 0,079* 

δ    -0,119* -0,288** -0,134* -0,121* 

ͳ / μ / ψ       -0,257** 0,000*** 0,000* 

R² 0,172 0,207 0,179 0,181 0,184 0,191 0,182 

HRMSE 1,809 1,348 1,853 1,762 1,756 1,600 1,773 

QLIKE 1,588 1,403 1,717 1,667 1,658 1,462 1,666 



24 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

 

 

 

 

 

Tabela A.5 Resultados in-sample para previsão de √RV da Amazon (AMZN) 

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,011*** 0,000 0,005** 0,325 0,388 0,512** 0,427* 

βd 0,256*** 0,449*** 0,400*** 0,379*** 0,377*** 0,391*** 0,391*** 

βw 0,158*** 0,298*** 0,401*** 0,407*** 0,409*** 0,413*** 0,393*** 

βm 0,427*** 0,387*** 0,293*** 0,298*** 0,298*** 0,274*** 0,283*** 

γ  0,027 0,245*** 0,239*** 0,239*** 0,195*** 0,206*** 

δ    -0,319 -0,382 -0,469* -0,410* 

ͳ / μ / ψ       -0,010 -0,003*** -0,001*** 

R² 0,460 0,516 0,467 0,468 0,468 0,482 0,479 

HRMSE 1,063 0,724 0,903 0,904 0,903 0,838 0,911 

QLIKE 0,978 0,870 0,947 0,945 0,945 0,912 0,945 
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Tabela A.6 Resultados in-sample para previsão de ln(RV) da Amazon (AMZN) 

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α -0,525*** 0,410*** 0,667*** 0,560*** 0,592*** 2,479*** 0,582*** 

βd 0,487*** 0,499*** 0,222*** 0,201*** 0,203*** 0,220*** 0,259*** 

βw 0,184*** 0,286*** 0,535*** 0,536*** 0,536*** 0,499*** 0,477*** 

βm 0,242*** 0,260*** 0,287*** 0,292*** 0,292*** 0,245*** 0,282*** 

γ  -1,679*** 4,789*** 4,270*** 4,318*** 2,749** 1,611** 

δ    -4,362*** -3,933** -6,155*** -5,761*** 

ͳ / μ / ψ       0,003 -0,458*** -0,049*** 

R² 0,689 0,724 0,631 0,633 0,633 0,668 0,687 

HRMSE 0,925 0,581 0,723 0,706 0,707 0,647 0,661 

QLIKE 0,760 0,713 0,768 0,765 0,765 0,744 0,738 
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Tabela A.7 Resultados in-sample para previsão de RV da Apple (AAPL) 

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,002*** 0,001*** 0,002*** 0,109* 0,205*** 0,108* 0,110* 

βd 0,191*** 0,366*** 0,592*** 0,526** 0,521** 0,527** 0,526** 

βw 0,353** 0,682*** 0,859*** 0,895*** 0,893*** 0,893*** 0,895*** 

βm 0,231** 0,072 -0,128 -0,148 -0,144 -0,148 -0,151 

γ  0,069 0,106* 0,086 0,092* 0,086 0,086 

δ    -0,108* -0,203*** -0,107** -0,108* 

ͳ / μ / ψ       -0,170** 0,000 0,000 

R² 0,240 0,282 0,295 0,299 0,302 0,299 0,299 

HRMSE 1,714 1,324 1,268 1,157 1,171 1,174 1,150 

QLIKE 0,927 0,791 0,765 0,691 0,690 0,697 0,687 



27 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

 

 

 

 

 

Tabela A.8 Resultados in-sample para previsão de √RV da Apple (AAPL) 

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α 0,012*** 0,007*** 0,008*** 0,773*** 1,061*** 0,763*** 0,768*** 

βd 0,320*** 0,553*** 0,646*** 0,559*** 0,555*** 0,560*** 0,559*** 

βw 0,220*** 0,315*** 0,351*** 0,394*** 0,394*** 0,393*** 0,393*** 

βm 0,257*** 0,141** 0,063 0,063 0,064 0,064 0,065 

γ  -0,002 0,085*** 0,067** 0,063** 0,066** 0,067** 

δ    -0,764*** -1,051*** -0,758*** -0,762*** 

ͳ / μ / ψ       -0,044** 0,000 0,000 

R² 0,405 0,471 0,482 0,489 0,490 0,489 0,489 

HRMSE 1,179 0,805 0,760 0,740 0,735 0,744 0,741 

QLIKE 0,446 0,346 0,333 0,322 0,322 0,324 0,323 
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Tabela A.9 Resultados in-sample para previsão de ln(RV) da Apple (AAPL) 

As estimativas com valores-p menores do que 5%, 1% e 0,1% são denotadas por *, ** e 

***, respectivamente. 

 

 

 

 

 

  HAR HAR-CJ HAR-TCJ LHAR-TCJ MLHAR-TCJ ULHAR-TCJ ALHAR-TCJ 

α -0,911*** -0,324*** -0,364*** -0,634*** -0,783*** -0,782*** -0,85***0 

βd 0,435*** 0,513*** 0,485*** 0,420*** 0,418*** 0,421*** 0,422*** 

βw 0,178*** 0,221*** 0,240*** 0,268*** 0,267*** 0,268*** 0,267*** 

βm 0,243*** 0,181*** 0,151*** 0,153*** 0,152*** 0,154*** 0,156*** 

γ  -2,261* 2,627*** 0,614 0,136 0,564 0,607 

δ    -9,346*** -11,567*** -9,271*** -9,274*** 

ͳ / μ / ψ       -0,014*** 0,033 0,059 

R² 0,523 0,581 0,584 0,594 0,596 0,594 0,594 

HRMSE 0,924 0,650 0,627 0,619 0,621 0,620 0,621 

QLIKE 0,230 0,182 0,178 0,174 0,173 0,174 0,174 
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Tabela A.10 Resultados out-of-sample para previsão de RV do Bitcoin (BTC) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² 
HRMS

E 
MAE R² 

HRMS
E 

MAE 

HAR 0,032 3,713 2,974 0,047 1,930 2,361 0,030 1,641 2,298 0,008 1,224 2,235 

HAR-CJ 0,031 3,732 2,974 0,047 1,931 2,355 0,032 1,637 2,288 0,009 1,216 2,226 

HAR-
TCJ 

0,025 3,763 3,044 0,035 1,959 2,385 0,023 1,666 2,305 0,010 1,211 2,217 

LHAR-
TCJ 

0,039 3,523 2,966 0,037 1,949 2,375 0,027 1,647 2,290 0,013 1,204 2,209 

MLHAR-
TCJ 

0,039 3,478 2,969 0,031 1,976 2,403 0,023 1,660 2,300 0,011 1,212 2,213 

ULHAR-
TCJ 

0,041 3,534 2,970 0,045 2,144 2,411 0,038 1,703 2,298 0,033 1,146 2,212 

ALHAR-
TCJ 

0,041 3,350 2,939 0,080 1,697 2,158 0,077 1,429 2,109 0,064 1,074 2,093 

 

Tabela A.11 Resultados out-of-sample para previsão de √RV do Bitcoin (BTC) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,093 2,739 2,578 0,173 1,198 1,571 0,145 1,087 1,433 0,094 0,896 1,339 

HAR-CJ 0,091 2,823 2,585 0,175 1,199 1,559 0,151 1,079 1,420 0,108 0,876 1,326 

HAR-
TCJ 

0,056 3,205 2,729 0,162 1,280 1,554 0,162 1,099 1,389 0,146 0,844 1,275 

LHAR-
TCJ 

0,095 2,590 2,518 0,165 1,262 1,542 0,164 1,095 1,387 0,146 0,847 1,277 

MLHAR-
TCJ 

0,160 2,004 2,396 0,173 1,229 1,520 0,173 1,081 1,372 0,151 0,850 1,272 

ULHAR-
TCJ 

0,098 2,582 2,517 0,169 1,333 1,567 0,167 1,142 1,411 0,166 0,826 1,301 

ALHAR-
TCJ 

0,098 2,446 2,497 0,247 0,950 1,341 0,292 0,788 1,171 0,292 0,664 1,136 
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Tabela A.12 Resultados out-of-sample para previsão de ln(RV) do Bitcoin (BTC) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,147 1,469 2,370 0,324 0,781 1,157 0,260 0,817 1,048 0,178 0,763 0,963 

HAR-CJ 0,152 1,530 2,340 0,331 0,779 1,141 0,274 0,803 1,031 0,210 0,730 0,946 

HAR-
TCJ 

0,084 3,597 2,925 0,310 0,879 1,122 0,314 0,769 0,975 0,277 0,677 0,900 

LHAR-
TCJ 

0,371 2,870 2,480 0,323 0,836 1,111 0,314 0,763 0,977 0,276 0,678 0,901 

MLHAR-
TCJ 

0,554 3,054 2,388 0,362 0,757 1,078 0,318 0,763 0,974 0,275 0,686 0,897 

ULHAR-
TCJ 

0,358 2,863 2,483 0,321 0,861 1,123 0,309 0,790 0,993 0,282 0,687 0,912 

ALHAR-
TCJ 

0,394 2,825 2,450 0,450 0,582 0,924 0,516 0,498 0,769 0,484 0,506 0,736 

 

Tabela A.13 Resultados out-of-sample para previsão de RV da Amazon (AMZN) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,191 1,922 0,712 0,405 1,566 0,653 0,476 1,450 0,625 0,485 1,278 0,579 

HAR-CJ 0,232 1,475 0,648 0,503 1,284 0,587 0,598 1,239 0,563 0,591 1,193 0,534 

HAR-
TCJ 

0,220 1,333 0,652 0,482 1,171 0,595 0,570 1,155 0,572 0,553 1,162 0,545 

LHAR-
TCJ 

0,221 1,298 0,644 0,486 1,160 0,589 0,576 1,156 0,568 0,558 1,162 0,542 

MLHAR-
TCJ 

0,224 1,285 0,644 0,490 1,137 0,588 0,580 1,141 0,567 0,564 1,149 0,540 

ULHAR-
TCJ 

0,219 1,307 0,651 0,477 1,136 0,597 0,559 1,110 0,579 0,512 1,076 0,565 

ALHAR-
TCJ 

0,224 1,468 0,643 0,497 1,321 0,582 0,593 1,304 0,561 0,583 1,279 0,534 
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Tabela A.14 Resultados out-of-sample para previsão de √RV da Amazon (AMZN) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,211 1,479 0,676 0,561 0,986 0,458 0,608 0,902 0,420 0,589 0,813 0,386 

HAR-CJ 0,246 1,166 0,629 0,661 0,748 0,407 0,716 0,709 0,371 0,679 0,689 0,347 

HAR-
TCJ 

0,240 1,002 0,628 0,630 0,669 0,416 0,670 0,655 0,385 0,625 0,667 0,365 

LHAR-
TCJ 

0,241 0,981 0,621 0,632 0,671 0,413 0,676 0,655 0,383 0,629 0,665 0,364 

MLHAR-
TCJ 

0,240 0,981 0,621 0,630 0,671 0,413 0,674 0,655 0,383 0,627 0,664 0,364 

ULHAR-
TCJ 

0,241 1,002 0,621 0,628 0,676 0,414 0,665 0,653 0,389 0,611 0,643 0,377 

ALHAR-
TCJ 

0,249 1,089 0,613 0,663 0,736 0,397 0,714 0,703 0,365 0,665 0,696 0,346 

 

Tabela A.15 Resultados out-of-sample para previsão de ln(RV) da Amazon (AMZN) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,225 1,287 0,652 0,643 0,750 0,348 0,666 0,700 0,324 0,638 0,652 0,314 

HAR-CJ 0,251 1,097 0,624 0,727 0,554 0,315 0,752 0,533 0,291 0,714 0,523 0,283 

HAR-
TCJ 

0,222 0,921 0,652 0,621 0,560 0,360 0,626 0,547 0,338 0,599 0,542 0,324 

LHAR-
TCJ 

0,218 0,934 0,643 0,631 0,562 0,356 0,641 0,550 0,336 0,609 0,540 0,322 

MLHAR-
TCJ 

0,216 0,954 0,644 0,630 0,559 0,354 0,639 0,550 0,336 0,607 0,541 0,322 

ULHAR-
TCJ 

0,247 0,990 0,628 0,691 0,598 0,334 0,709 0,587 0,314 0,669 0,582 0,310 

ALHAR-
TCJ 

0,219 0,952 0,638 0,632 0,563 0,354 0,636 0,549 0,338 0,600 0,534 0,325 
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Tabela A.16 Resultados out-of-sample para previsão de RV da Apple (AAPL) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,254 1,928 0,476 0,402 1,421 0,421 0,398 1,288 0,395 0,300 1,090 0,380 

HAR-CJ 0,303 1,607 0,438 0,485 1,290 0,391 0,488 1,200 0,376 0,372 1,041 0,370 

HAR-
TCJ 

0,315 1,546 0,434 0,500 1,274 0,391 0,494 1,205 0,378 0,366 1,048 0,372 

LHAR-
TCJ 

0,311 1,482 0,434 0,504 1,217 0,388 0,498 1,170 0,377 0,367 1,038 0,370 

MLHAR-
TCJ 

0,309 1,501 0,436 0,504 1,238 0,389 0,503 1,180 0,377 0,370 1,042 0,371 

ULHAR-
TCJ 

0,309 1,511 0,436 0,508 1,191 0,385 0,510 1,146 0,379 0,401 1,028 0,388 

ALHAR-
TCJ 

0,310 1,479 0,435 0,502 1,212 0,387 0,493 1,187 0,379 0,363 1,052 0,374 

 

Tabela A.17 Resultados out-of-sample para previsão de √RV da Apple (AAPL) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,284 1,632 0,450 0,495 1,008 0,313 0,475 0,913 0,286 0,375 0,798 0,272 

HAR-CJ 0,319 1,360 0,422 0,561 0,898 0,290 0,535 0,826 0,268 0,420 0,739 0,260 

HAR-
TCJ 

0,334 1,277 0,415 0,580 0,857 0,286 0,550 0,800 0,266 0,422 0,729 0,260 

LHAR-
TCJ 

0,327 1,245 0,413 0,586 0,831 0,283 0,556 0,783 0,264 0,426 0,722 0,259 

MLHAR-
TCJ 

0,323 1,271 0,414 0,586 0,845 0,283 0,557 0,791 0,264 0,425 0,725 0,259 

ULHAR-
TCJ 

0,331 1,187 0,410 0,608 0,775 0,280 0,596 0,725 0,262 0,504 0,676 0,262 

ALHAR-
TCJ 

0,327 1,235 0,412 0,587 0,815 0,281 0,556 0,774 0,264 0,429 0,720 0,260 
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Tabela A.18 Resultados out-of-sample para previsão de ln(RV) da Apple (AAPL) 

 1 dia 1 semana 2 semanas 1 mês 

 R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE R² HRMSE MAE 

HAR 0,298 1,437 0,440 0,548 0,824 0,256 0,525 0,753 0,237 0,441 0,667 0,218 

HAR-CJ 0,318 1,191 0,420 0,594 0,650 0,232 0,551 0,613 0,216 0,461 0,580 0,205 

HAR-
TCJ 

0,296 1,344 0,425 0,467 0,832 0,244 0,371 0,856 0,235 0,348 0,691 0,212 

LHAR-
TCJ 

0,255 1,532 0,439 0,481 0,816 0,242 0,392 0,829 0,231 0,360 0,679 0,210 

MLHAR-
TCJ 

0,235 1,674 0,450 0,493 0,804 0,241 0,403 0,814 0,229 0,361 0,676 0,210 

ULHAR-
TCJ 

0,271 1,460 0,432 0,572 0,699 0,230 0,520 0,676 0,214 0,487 0,586 0,201 

ALHAR-
TCJ 

0,255 1,530 0,439 0,483 0,808 0,241 0,395 0,822 0,231 0,368 0,671 0,210 
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Figura B.1 Série temporal da volatilidade realizada (RV) do Bitcoin (BTC) 

 

 

Figura B.2 Série temporal da volatilidade realizada (RV) da Amazon (AMZN) 
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Figura B.3 Série temporal da volatilidade realizada (RV) da Apple (AAPL) 

 

 

Figura B.4 Número de dias com saltos, de acordo com o nível de confiança γ e a 

estatística de teste, para o Bitcoin (BTC) 
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Figura B.5 Número de dias com saltos, de acordo com o nível de confiança γ e a 

estatística de teste, para a Amazon (AMZN) 

 

Figura B.6 Número de dias com saltos, de acordo com o nível de confiança γ e a 

estatística de teste, para a Apple (AAPL) 
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Figura B.7 Previsões in-sample de RV, pela transformação logarítmica, do modelo 

MLHAR-TCJ para o Bitcoin (BTC) 

Figura B.8 Previsões in-sample de RV, pela transformação logarítmica, do modelo 

HAR-CJ para a Amazon (AMZN) 

Figura B.9 Previsões in-sample de RV, pela transformação logarítmica, do modelo 

LHAR-TCJ para a Apple (AAPL) 
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Figura B.10 Previsões out-of-sample de RV, pela transformação logarítmica, do modelo 

MLHAR-TCJ para o Bitcoin (BTC) 

Figura B.11 Previsões out-of-sample de RV, pela transformação logarítmica, do modelo 

HAR-CJ para a Amazon (AMZN) 

Figura B.12 Previsões out-of-sample de RV, pela transformação logarítmica, do modelo 

ULHAR-TCJ para a Apple (AAPL) 



40 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

 

 

 

 

 

 

 

 

APÊNDICE C 

Detecção de Saltos 

 

 

 

 



41 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

Casos particulares de multipower variation, desenvolvidos em Barndorff-Nielsen e 

Shephard (2004): 

 BPV – Bipower variation: 

𝐵𝑃𝑉𝑡 = 𝜇1
−2 ∑|𝑟𝑖−1,𝑡|

𝑛

𝑖=2

. |𝑟𝑖,𝑡| 

com 𝜇1 ≅ 0,7979. 

 TriPV – Tripower variation: 

𝑇𝑟𝑖𝑃𝑉𝑡 = 𝜇4
3

−3 ∑|𝑟𝑖−2,𝑡|
4
3

𝑛

𝑖=3

. |𝑟𝑖−1,𝑡|
4
3. |𝑟𝑖,𝑡|

4
3 

com 𝜇4

3

≅ 0,8309. 

Medidas alternativas de RV com threshold: 

 TBPV – Threshold bipower variation: 

𝑇𝐵𝑃𝑉𝑡 = 𝜇1
−2 ∑|𝑟𝑖−1,𝑡|

𝑛

𝑖=2

𝟏(𝑟𝑖−1,𝑡
2  ≤ 𝜗𝑖−1,𝑡). |𝑟𝑖,𝑡|𝟏(𝑟𝑖,𝑡

2  ≤ 𝜗𝑖,𝑡) 

 C-TBPV – Corrected threshold bipower variation: 

𝐶-𝑇𝐵𝑃𝑉𝑡 = 𝜇1
−2 ∑ 𝑍1(𝑟𝑖,𝑡; 𝜗𝑖,𝑡)

𝑛

𝑖=2

. 𝑍1(𝑟𝑖−1,𝑡; 𝜗𝑖−1,𝑡) 

 C-TTriPV – Corrected threshold tripower variation: 

𝐶-𝑇𝑇𝑟𝑖𝑃𝑉𝑡 = 𝜇4
3

−3𝛿−1 ∑ 𝑍4
3

(𝑟𝑖,𝑡; 𝜗𝑖,𝑡)

𝑛

𝑖=3

. 𝑍4
3

(𝑟𝑖−1,𝑡; 𝜗𝑖−1,𝑡). 𝑍4
3

(𝑟𝑖−2,𝑡; 𝜗𝑖−2,𝑡) 



42 
 

_____________________________________________________________________________ 

CENTRO DE ESTATÍSTICA APLICADA – IME / USP 
 

 

sendo 

𝑍𝜁(𝑥, 𝑦) =  { 

|𝑥|𝜁                                                              𝑠𝑒 𝑥2 ≤ 𝑦

1

2𝑁(−𝑐𝜗)√𝜋
(

2

𝑐𝜗
2 𝑦)

𝜁
2

Γ (
𝜁 + 1

2
;
𝑐𝜗

2

2
)     𝑠𝑒 𝑥² > 𝑦 

 

E 𝜗𝑡 o thershold estocástico dado por: 

𝜗𝑡 = 𝑐𝜗
2 . 𝑉̂𝑡 

onde 𝑐𝜗  (= 3) é uma constante sem escala usada para mudar o limitador e 𝑉̂𝑡 uma 

estimativa auxiliar da variância local 𝜎𝑡
2 calculada utilizando um filtro não-paramétrico de 

tamanho 2𝐿 +  1 (𝐿 =  25), adaptado para saltos iterando em 𝑍: 

𝑉̂𝑡
𝑍 =

∑ Κ (
𝑖
𝐿) 𝑟𝑡+𝑖

2 𝟏(𝑟𝑡+𝑖
2  ≤ 𝑐𝑉

2 .𝑉̂𝑡
𝑍−1)

𝐿
𝑖=−𝐿,𝑖≠−1,0,1

∑ Κ (
𝑖
𝐿) 𝟏(𝑟𝑡+𝑖

2  ≤ 𝑐𝑉
2 .𝑉̂𝑡

𝑍−1)
𝐿
𝑖=−𝐿,𝑖≠−1,0,1

, 𝑍 = 1, 2, … 

com Κ(𝑦) =
1

√2𝜋
𝑒−

𝑦²

2  , um kernel gaussiano, 𝑐𝑣 = 3 e 𝑉̂0 = +∞. Aceitamos a 

convergência do método quando a máxima diferença absoluta entre 2 vetores seguidos 

da variância local é menor do que 10-6. 
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